首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The biotic resistance hypothesis predicts that more diverse communities should have greater resistance to invasions than species-poor communities. However for facultative and obligate epiphytic invaders a high native species richness, abundance and community complexity might provide more resources for the invader to thrive to. We conducted surveys across space and time to test for the influence of native algal species abundance and richness on the abundance of the invasive facultative epiphytic filamentous alga Lophocladia lallemandii in a Mediterranean Cystoseira balearica seaweed forest. By removing different functional groups of algae, we also tested whether these relationships were dependent on the complexity and abundance of the native algal community. When invasion was first detected, Lophocladia abundance was positively related to species richness, but the correlation became negative after two years of invasion. Similarly, a negative relationship was also observed across sites. The removal experiment revealed that more complex native communities were more heavily invaded, where also a positive relationship was found between native algal richness and Lophocladia, independently of the native algal abundance. Our observational and experimental data show that, at early stages of invasion, species-rich seaweed forests are not more resistant to invasion than species-poor communities. Higher richness of native algal species may increase resource availability (i.e. substrate) for invader establishment, thus facilitating invasion. After the initial invasion stage, native species richness decreases with time since invasion, suggesting negative impacts of invasive species on native biodiversity.  相似文献   

2.
Exotic species can cause changes to their invaded ecosystems, which can be large and long lasting. Despite most landscapes being invaded by multiple exotic plant species, >90 % of impact studies only characterize the impacts of single species. Therefore, our knowledge of invasive plant impacts does not reflect the co-invaded nature of most landscapes, potentially ignoring complex interactions among exotic species. Our objective was to characterize potential invader synergies (positive interactions) on biotic and abiotic ecological parameters among the important forest invaders Japanese stiltgrass (Microstegium vimineum) and wavyleaf basketgrass (Oplismenus undulatifolius), which co-invade eastern US deciduous forests. To characterize synergies, we used a factorial selective removal study, as well as an observational study to further explore invader cover-impact relationships. Although both invaders can reduce native plant richness by 70 % individually or in combination, there were no impact synergies. Total cover of any combination of the two invaders had a negative quadratic effect on total, exotic, and native plant richness; i.e., all community metrics were greatest at intermediate levels of total invader cover and lowest at maximum invader cover. Native richness was more greatly affected than exotic richness by the co-invasion. Soil metrics had no clear trend in either study. Japanese stiltgrass and wavyleaf basketgrass appear to have overlapping impact niches—the number, magnitude, and direction of biotic and abiotic changes to the invaded ecosystem—that only vary in impact magnitude, not breadth. As a result of their overlapping impact niches and non-synergies in this co-invaded system, the addition of the recent invader wavyleaf basketgrass has not resulted in additional changes to the invaded forests. Future impact studies should focus on multiple species and identifying synergies, especially as they relate to invader cover, which informs ecological interactions and management prioritization.  相似文献   

3.
A pervasive problem in invasion ecology is the limited recovery of native communities following removal of invaders. Little evidence exists on the causes of variation in post-invasion recovery. In a 4-year experiment using 65 sets of matched plots, we imposed an invader removal treatment (with control) on heterogeneous grassland plots invaded or uninvaded by an aggressive recent arrival, Aegilops triuncialis (barb goatgrass). We tested the validity of plot matching using transplants and soil analyses. We analyzed the community-level correlates of invader impacts, removal treatment side effects, and community recovery, each defined in two ways: by compositional similarity to uninvaded plots, and by relative native species richness. Recovery of native species richness in invaded and treated plots was high (approaching 100 %) although recovery of composition was not high (median 71 % Bray–Curtis dissimilarity to uninvaded untreated plots). We measured resilience as the residuals of community recovery in models that controlled for invader impacts and removal treatment side effects. Compositional resilience was highest where the uninvaded communities had the least cover by other invaders in the same functional group as the focal invader. Richness resilience was highest where the uninvaded communities had the lowest native species richness. Our study suggests that the recovery of native species per se may be a more relevant goal than the recovery of the exact pre-invasion species composition of particular sites, particularly in cases where pre-invasion species composition included exotic species other than the focal invader.  相似文献   

4.
There is increasing evidence that the severity of the ecological impact of non-native species does not necessarily scale linearly with their abundance in the introduced range. Nonetheless, the potential of low abundance invaders to alter the resilience of native communities to disturbance has been poorly explored. On Mediterranean rocky reefs, we tested the hypothesis that (1) a pulse disturbance opening gaps within canopy stands formed by the fucoid seaweed Cystoseira brachycarpa facilitates the establishment of the non-native seaweed Caulerpa cylindracea and that (2), once established, the seaweed can reduce the recovery of macroalgal canopies. In July 2011, C. cylindracea was experimentally transplanted in small and large plots that were either cleared of the canopy or left untouched. After 45 months, the cover of C. cylindracea was greatest in small canopy-removal plots, without, however, achieving values exceeding ~10%. Nonetheless, such a low abundance of C. cylindracea caused a threefold reduction in canopy recovery. The establishment of C. cylindracea in canopy-removal plots did not alter the structure of the understory assemblages or the cover of turf-forming, erect and encrusting algae and sessile invertebrates. Our results suggest that some non-native species may be stronger competitors than natives, despite their low abundance. This property has important implications for control programs since not achieving the total eradication of the targeted invader would make little progress towards the mitigation of its impacts. Finally, our results show that non-native species acting as passengers of change can ultimately promote the persistence of alternative degraded states.  相似文献   

5.
Recent multi-habitat studies across a range of spatial scales have shown that species-rich habitats are often highly invasible by exotic species. The primary measures of invasion in these and other studies are invader richness and the absolute cover or biomass of invaders. We argue that the relative biomass or cover of invaders (dominance) is an important but overlooked measure of plant invasion. We re-analyzed data presented in five previous studies to evaluate whether exotic relative abundance is positively correlated with native richness. There were either no relationships or negative relationships between native richness and relative exotic cover calculated from three spatial scales (1, 1000 and 4000 m2). Thus while the original studies reported high exotic richness or absolute cover in habitats rich in native species, native richness did not predict the degree to which exotics had become dominant or abundant relative to natives. Absolute measures of exotic cover reported in the original studies underestimated relative exotic cover in habitats with low native species richness. High exotic dominance in areas of low native richness may indicate that exotic richness and dominance are controlled by different factors. We conclude that it is useful for researchers to measure both invader richness and invader dominance when trying to understand the environmental factors that are associated with plant invasions.  相似文献   

6.
Invasive plants may establish strong interactions with species in their new range which could limit or enhance their establishment and spread. These interactions depend upon traits of the invader and the recipient community, and may alter interactions among native species. In the Patagonian steppe we studied interactions of native ant assemblages with seeds of native and exotic plants, and asked whether ant–seed interactions differ with seed types and disturbance levels and whether the amount and type of ant–seed interactions can be predicted if both ant and seed traits are known. To characterize and quantify ant–seed interactions, we offered baits with large seeds of Pappostipa speciosa (native) and medium-sized elaiosome-bearing seeds of Carduus thoermeri (exotic), near and far from a road (high vs. low disturbed areas), and compared ant abundance and composition between areas. Interaction frequency was the highest for C. thoermeri seeds far from the road. Composition of ants interacting with C. thoermeri in these areas differed from that near the road and from that interacting with native seeds. Ant composition and abundance were similar between areas, but some species interacted more with exotic seeds in low disturbed areas. Ant foraging type predicted ant–seed interactions since the abundance of seed harvesters was positively correlated to interactions with P. speciosa, and that of generalists and predators, with interactions with C. thoermeri. The high interaction of ants with exotic seeds in low invaded areas suggests that ant activity could influence plant invasion, either by predating or dispersing seeds of invasive plants.  相似文献   

7.
Invasion by exotic plant species and herbivory can individually alter native plant species diversity, but their interactive effects in structuring native plant communities remain little studied. Many exotic plant species escape from their co-evolved specialized herbivores in their native range (in accordance with the enemy release hypothesis). When these invasive plants are relatively unpalatable, they may act as nurse plants by reducing herbivore damage on co-occurring native plants, thereby structuring native plant communities. However, the potential for unpalatable invasive plants to structure native plant communities has been little investigated. Here, we tested whether presence of an unpalatable exotic invader Opuntia ficus-indica was associated with the structure of native plant communities in an ecosystem with a long history of grazing by ungulate herbivores. Along 17 transects (each 1000 m long), we conducted a native vegetation survey in paired invaded and uninvaded plots. Plots that harboured O. ficus-indica had higher native plant species richness and Shannon–Wiener diversity H′ than uninvaded plots. However, mean species evenness J was similar between invaded and uninvaded plots. There was no significant correlation between native plant diversity and percentage plot cover by O. ficus-indica. Presence of O. ficus-indica was associated with a compositional change in native community assemblages between paired invaded and uninvaded plots. Although these results are only correlative, they suggest that unpalatable exotic plants may play an important ecological role as refugia for maintenance of native plant diversity in intensely grazed ecosystems.  相似文献   

8.
Forests understories in Europe are known to generally resist invasion, though some alien plants do invade woodland communities. Here we focused on the impact of the widespread invasive annual Impatiens glandulifera, common along watercourses, but recently spreading in forests up to timberline. We investigated its impact on plant–soil feedback and ecosystem functioning. We recorded >40 variables focusing on: soil characteristics, including micro- and macro-nutrients; characteristics of litter layer and enzyme activity in litter; and richness and species composition of the forest understory. Three treatments were followed for 3 years: plots invaded by I. glandulifera; adjacent invader removal plots within the invaded area; and spatially separated uninvaded plots outside the invaded area. The effect of year-to-year variation was generally greater than that of the treatments, especially in soil and litter characteristics. Copper and boron were higher in invaded than invader removal and uninvaded plots, though in quantities that are unlikely to harm other plants. We found no effect of I. glandulifera on litter characteristics or enzyme activity. Despite almost 80% cover of I. glandulifera, we did not detect any difference in species richness and total vegetation cover between invaded and uninvaded plots. The floristic composition differed among the uninvaded, invader removal and invaded plots across 3 years. Our results indicate that the effect of I. glandulifera on the forest community studied was minor, and largely resulted from its increased shading to other plant species. In conclusion, we show how misleading the evaluation of impacts can be if based on a single season.  相似文献   

9.
Exotic annual grasses have been introduced into many semi-arid ecosystems worldwide, often to the detriment of native plant communities. The accumulation of litter from these grasses (i.e. residual dry biomass) has been demonstrated to negatively impact native plant communities and promote positive feedbacks to exotic grass persistence. More targeted experiments are needed, however, to determine the relative impact of exotic grass litter on plant community structure across local environmental gradients. We experimentally added exotic grass litter to annual forb-dominated open woodland communities positioned along natural canopy cover gradients in southwest Western Australia. These communities are an important component of this region’s plant biodiversity hotspot and are documented to be under threat from exotic annual grasses. After a one-year treatment period, we measured the effects of exotic grass litter, soil properties, and canopy cover on native and exotic species richness and abundance, as well as common species’ biomass and abundances. Plant community structure was more strongly influenced by soil properties and canopy cover than by grass litter. Total plant abundances per plot, however, were significantly lower in litter addition plots than control plots, a trend driven by native species. Exotic grass litter was also associated with lower abundances of one very common native species: Waitzia acuminata. Our results suggest that exotic grass litter limits the establishment of some native species in this system. Over multiple years, these subtle impacts may contribute substantially to the successful advancement of exotic species into this system, particularly in certain microenvironments.  相似文献   

10.
The impact of invasion on diversity varies widely and remains elusive. Despite the considerable attempts to understand mechanisms of biological invasion, it is largely unknown whether some communities’ characteristics promote biological invasion, or whether some inherent characteristics of invaders enable them to invade other communities. Our aims were to assess the impact of one of the massive plant invaders of Scandinavia on vascular plant species diversity, disentangle attributes of invasible and noninvasible communities, and evaluate the relationship between invasibility and genetic diversity of a dominant invader. We studied 56 pairs of Heracleum persicum Desf. ex Fisch.‐invaded and noninvaded plots from 12 locations in northern Norway. There was lower native cover, evenness, taxonomic diversity, native biomass, and species richness in the invaded plots than in the noninvaded plots. The invaded plots had nearly two native species fewer than the noninvaded plots on average. Within the invaded plots, cover of H. persicum had a strong negative effect on the native cover, evenness, and native biomass, and a positive association with the height of the native plants. Plant communities containing only native species appeared more invasible than those that included exotic species, particularly H. persicum. Genetic diversity of H. persicum was positively correlated with invasibility but not with community diversity. The invasion of a plant community by H. persicum exerts consistent negative pressure on vascular plant diversity. The lack of positive correlation between impacts and genetic diversity of H. persicum indicates that even a small founder population may cause high impact. We highlight community stability or saturation as an important determinant of invasibility. While the invasion by H. persicum may decrease susceptibility of a plant community to further invasion, it severely reduces the abundance of native species and makes them more vulnerable to competitive exclusion.  相似文献   

11.
Riparian areas have experienced long-term anthropogenic impacts including the effects of plant introductions. In this study, 27 plots were surveyed across three Mediterranean rivers in north-eastern Spain to explore the effects of the invader giant reed (Arundo donax) on riparian habitat features and the diversity, trophic structure, body size, and abundances of epigeal and hypogeal arthropods in riparian areas. Using pitfall traps and Berlese funnels, this study detected a significant increase in collembola abundance and a decrease in the abundance, body size and diversity of macro-arthropods at order and family levels in invaded plots compared to native stands. Invaded and un-invaded areas also differed in the taxonomical structure of arthropod assemblies but not in trophic guild proportions. However, the fact that arthropods were smaller in A. donax soils, together with the absence of particular taxa within each trophic guild or even an entire trophic group (parasitoids), suggests that food-web alterations in invaded areas cannot be discarded. Habitat features also differed between invaded and un-invaded areas with the poorest herbaceous understory and the largest leaf litter deposition and soil carbon stock observed in A. donax plots. The type of vegetation in riparian areas followed by the total native plant species richness were identified as major causal factors to changes in the abundance, diversity and composition of macro-arthropods. However, our analyses also showed that some alterations related to A. donax invasion were inconsistent across rivers, suggesting that A. donax effects may be context dependent. In conclusion, this study highlights an impoverishment of native flora and arthropod fauna in A. donax soils, and suggests major changes in riparian food webs if A. donax displaces native riparian vegetation.  相似文献   

12.
Mechanisms underlying biological invasion of highly disturbed ecosystems are well known, yet mechanisms responsible for biological invasion of undisturbed or weakly disturbed ecosystems are less understood. The triggering attribute (TA) approach, proposed as a mechanism that explains plant invasion success in undisturbed or weakly disturbed systems, considers that the spread of alien species depends on specific vegetative or regenerative traits in invasive species, discontinuously distributed in comparison to the resident community. In mountain Chaco woodland, fruiting phenology of ornithocorous invasive plants has been proposed as a TA, because it would allow invasive species to benefit from seed dispersal service, which is unused by native plants during a specific period of the year (winter). Under the seed dispersal ecology framework, we evaluated if fruiting phenology (fructification largely uncoupled with native species) of the fleshy-fruited invasive Pyracantha angustifolia affects bird fruit consumption, and allows the invasive to take advantage of the unused seed dispersal service during winter. If uncoupled fructification phenology represents a TA, seed disperser, seed predator, and pulp consumer diversity, abundance, and fruit consumption on P. angustifolia (which fructifies in winter), will be higher than on its exotic congeneric P. coccinea during summer, when fructification overlaps with native Celtis ehrenbergiana and many other native species. We found that: (1) disperser bird abundance and fruit consumption did not differ between P. angustifolia and P. coccinea; (2) the most diverse frugivorous assemblage was observed on C. ehrenbergiana, yet it had the lowest proportion of seed dispersers and the highest fruit consumption by seed predators and, (3) we also observed higher proportion of seed predators on P. angustifolia (uncoupled fructification scenario) than on P. coccinea (coupled fructification scenario). Our results suggest that invasive uncoupled fructification phenology does not represent a true TA which facilitates plant invasion processes in undisturbed or weakly disturbed ecosystem.  相似文献   

13.
Conifers, which are widely planted as fast growing tree crops, are invading forested and treeless environments across the globe, causing important changes in biodiversity. However, how small-scale impacts on plant diversity differ according to pine size and habitat context remains unclear. We assessed the effects of different stages of pine invasion on plant communities in forest and steppe sites located in southern Chile. In each site, we sampled plant diversity under and outside the canopy of Pinus contorta individuals, using paired plots. We assessed the relative impact of pine invasion on plant species richness and cover. In both sites, richness and cover beneath pine canopy decreased with increasing pine size (i.e. height and canopy area). A significant negative impact of pines on species richness and plant cover was detected for pines over 4 m in height. The impact of pines on plant richness and cover depended on pine size (i.e. canopy area) and habitat type. Larger pines had more negative impacts than smaller pines in both sites, with a greater impact for a given pine size in the Patagonian steppe compared to the A. araucaria forest. Species composition changed between under and outside canopy plots when pines were 4 m or taller. Pine presence reduced cover of most species. The impacts of pine invasions are becoming evident in forested and treeless ecosystems of southern Chile. Our results suggest that the magnitude of pine invasion impacts could be related to how adapted the invaded community is to tree cover, with the treeless environment more impacted by the invasion.  相似文献   

14.
Although individual ecosystems vary greatly in the degree to which they have been invaded by exotic species, it has remained difficult to isolate mechanisms influencing invader success. One largely anecdotal observation is that polluted or degraded areas will accumulate more invaders than less-impacted sites. However, the role of abiotic factors alone in influencing invisibility has been difficult to isolate, often because the supply of potential invaders is confounded with conditions thought to increase vulnerability to invasion. Here, we conducted a field experiment to test how the assemblages of exotic versus native marine invertebrates changed during community assembly under different exposure levels of a common pollutant, copper. The experiment was conducted by deploying fouling panels in a Randomized Block Design in San Francisco Bay. Panels were periodically removed, placed into buckets with differing copper concentrations, and returned to the field after 3 days. This design allowed propagule availability to the plates to be statistically independent of short-term copper exposure. The results demonstrate that copper caused significant differences in community structure. Average native species richness was significantly affected by copper exposure, but average exotic richness was not. The total native species pool within treatments exhibited a greater than 40% decline within increasing copper, while the exotic species pool did not change significantly. These results confirm that anthropogenic alteration of abiotic factors influences invader success, indicating that management strategies to reduce invader impacts should include both efforts to improve environmental conditions as well as reduce invader supply.  相似文献   

15.
Theory and empirical work have demonstrated that diverse communities can inhibit invasion. Yet, it is unclear how diversity influences invader impact, how impact varies among exotics, and what the relative importance of diversity is versus extrinsic factors that themselves can influence invasion. To address these issues, we established plant assemblages that varied in native species and functional richness and crossed this gradient in diversity with resource (water) addition. Identical assemblages were either uninvaded or invaded with one of three exotic forbs: spotted knapweed (Centaurea maculosa), dalmatian toadflax (Linaria dalmatica), or sulfur cinquefoil (Potentilla recta). To determine impacts, we measured the effects of exotics on native biomass and, for spotted knapweed, on soil moisture and nitrogen levels. Assemblages with high species richness were less invaded and less impacted than less diverse assemblages. Impact scaled with exotic biomass; spotted knapweed had the largest impact on native biomass compared with the other exotics. Although invasion depressed native biomass, the net result was to increase total community yield. Water addition increased invasibility (for knapweed only) but had no effect on invader impact. Together, these results suggest that diversity inhibits invasion and reduces impact more than resource additions facilitate invasion or impact.  相似文献   

16.
Although they are typically assumed to be negative, the consequences of plant invasions for native diversity or biological integrity are seldom broadly quantified (i.e., for multiple taxa or across large regions). We investigated the impacts associated with invasion of wetlands by reed canary grass (Phalaris arundinacea L.; RCG) on plants and several animal groups. In a local study, we compared plants, arthropods, and small mammals on treatment plots with reduced RCG dominance to those on highly invaded plots. We also conducted a companion study, where we measured RCG dominance and plants, arthropods, and birds in 82 randomly selected wetlands across Illinois (USA) to determine if our experimental results were consistent in communities across the region. Plant diversity, floristic quality, and diversity and abundance of Homopteran insects decreased with RCG dominance in all instances. Richness and abundance of all other arthropods decreased with increasing RCG in the local study, but no trend was detected in communities statewide. No relationship between total abundance or richness of small mammals (local) or birds (statewide) with RCG was detected. However, voles and shrews were more abundant, and mice less abundant, in RCG-dominated plots. These results support the hypothesis that there are negative effects for multiple taxa from RCG invasion. Because negative effects observed in the local study either corroborated, or were neutral with respect to results from statewide surveys, they suggest that native biodiversity and biological integrity are being dampened across wide areas of this invader’s range.  相似文献   

17.
The Brazilian Atlantic Forest suffered a severe geographic contraction along the last five centuries that reduced drastically most vascular epiphyte populations. Among the range of man-made matrixes, tree monocultures have the potential to contribute positively to the maintenance of the regional epiphyte diversity. Here, we test the similarity in abundance, richness, and species composition between vascular epiphytic communities established in managed monocultures of exotic and native species with natural communities occurring in neighboring native Araucaria Forest patches. In the São Francisco de Paula National Forest (Rio Grande do Sul state, Brazil), we recorded 62 epiphyte species from 300 phorophytes occurring in 12, one-hectare plots of Araucaria Forest and managed plantations of Pinus, Eucalyptus and Araucaria. Species richness, rarefied richness and abundance were significantly higher in Araucaria Forest in comparison to the exotic stands. Species composition was also substantially differentiated as Araucaria Forest patches harbored a greater number of zoochorous species than those of the exotic stands. Additionally, plantations of Araucaria angustifolia, a native species, sustained more individuals and more species than the exotic plantations. Neither tree height nor DBH explained epiphyte richness; however, both phorophyte diversity and stand age together accounted for 92% of the among-site variation in epiphytic species richness. We conclude that substrate heterogeneity in combination with time available for colonization contribute significantly to beta-diversity of epiphytes in Araucaria forests. However, demographic experimental studies are necessary in order to disentangle the role of substrate quality from metapopulation processes, such as dispersal limitation, at both temporal and spatial scales.  相似文献   

18.
Pinus contorta, one of the most invasive tree species in the world, has been proposed as a model species for improving our understanding of invasion ecology. In this study, we assessed the impact of P. contorta invasions on the species richness, diversity and species traits of a resident treeless steppe community. In a Pinus contorta invasion gradient (Patagonia, Chile), we surveyed vegetation from high canopy closure pine invasion to treeless steppe, and computed species richness, diversity and Sørensen similarity indexes. For all species, we determined functional trait values from the literature, data bases, and personal observations. Species richness and diversity were related to canopy cover (a proxy for invasion intensity) using generalized linear mixed-effects models. Changes in species traits due to canopy cover were analyzed using RLQ ordination analysis and the fourth-corner analysis. We found that Pinus contorta canopy cover significantly reduced the number of native species by 70 %, implying a strong effect on species exclusion. A few native species, however, prevail in the novel conditions (e.g. Baccharis magellanica, Acaena integerrima). Species traits changed significantly with increasing pine canopy cover, where P. contorta promoted the existence of traits related to shade-tolerance and conservative reproductive strategies. We conclude that the negative impacts of Pinus contorta into the treeless steppe, including a reduction in the number of species and the shifting to traits adapted to tolerate shade and associated with conservative reproductive strategies, can have severe implications for the conservation of biodiversity and ecosystem functioning where it invades.  相似文献   

19.
Potential impacts of an exotic grass, Hemarthria altissima, on restoration of wet prairie community structure (species richness and cover of indicator species) and assembly processes (temporal turnover rates of plant species) on the Kissimmee River floodplain in Central Florida, USA, were evaluated over a 12-year period before and after restoration of hydrologic regimes (2001), and implementation of herbicide treatments (2006–2007) to control its spread. Thresholds for impacts were derived from comparisons of sample sites with variable levels of H. altissima cover. Prior to herbicide treatments, cover of H. altissima exhibited a logistic increase over time, with peak colonization and expansion occurring during major flood events. Mean post-restoration cover of three native wet prairie indicator species (Polygonum punctatum, Panicum hemitomon, and Luziola fluitans) increased to 37.8 ± 3.4 % in plots in which H. altissima cover was <12 %, and did not exceed 15 % in any plots with H. altissima cover >30 %. Prior to and after herbicide treatments, these indicator species largely accounted for observed differences in wet prairie community structure (i.e., cover of wetland forbs and grasses) between heavily infested sites and plots with low or no cover of H. altissima. The cover threshold at which H. altissima began to have these community-level effects was 40–50 %, but lower species richness was found only where H. altissima cover was >80 %. Increasing cover of H. altissima led to a significant decline in temporal turnover rates of plant species (P < 0.001, r2 = 0.10), but also was largely due to plots with very high (>75 %) cover of H. altissima. Mean temporal turnover rates of plant species increased significantly (P = 0.03) after herbicide treatments and subsequently were highest during an ensuing flood pulse. However, 2–3 years after herbicide treatments, regrowth of H. altissima reestablished high cover (mean = 59 ± 9.5 %) in over half of the treated plots. The ability of H. altissima to establish dominant cover in restored hydrologic conditions on the Kissimmee River floodplain, and documented regrowth following herbicide treatments, increase the potential for this exotic grass species to be a pervasive threat to successful reestablishment of wet prairie community structure and assembly processes.  相似文献   

20.
Coastal dune areas are valuable ecosystems, generally impacted by habitat destruction and invasive alien species. In this study, we assessed how human disturbance and invasion by Carpobrotus edulis impact the soils and the establishment of native flora in the north-western coastal regions of Spain. We compared soil characteristics (pH, conductivity, water content, nutrients and enzymatic activities) and native plant as well as C. edulis fitness correlates (germination and early growth) between uninvaded and invaded soils from urban and natural coastal dune areas. We found that human disturbance impacts coastal soils by increasing organic matter and water content, modifying soil nutrients and cycles, and reducing the pH in urban soils. The presence of invasive C. edulis further increases these impacts. These changes in soil characteristics allow for the establishment of the native, but ruderal, Scolymus hispanicus and non-native C. edulis, both of which are not adapted to the typically limiting conditions of coastal dunes. In some instances, the coastal dune endemic, Malcolmia littorea, showed no fitness effects in response to urbanization or the presence of C. edulis. These results suggest that human disturbed coastal areas might be more easily invaded than natural areas. More broadly, our findings of differential responses of different native species to disturbance and invasion, illustrate the need for multi-taxon approaches when assessing the impacts of invasive species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号