首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Free radical research》2013,47(4-6):355-363
Quinones may be toxic by a number of mechanisms. including arylation and oxidative stress caused by redox cycling. Using isolated hepatocytes, we have studied the cytotoxicity of four quinones. with differing abilities to arylate cellular nucleophiles and redox cycle. in relation to their effects on cellular pyridine nucleotides. High concentrations of menadione (redox cycles and arylates). 2-hydroxy-1,4-naphthoquinone (neither arylates nor redox cycles via a one electron reduction) 2.3-dimethoxy-1.4-naphthoquinone (a pure redox cycler) and p-benzoquinone (a pure arylator) caused an initial decrease in NAD+ and loss of viability, which was not prevented by 3-aminobenzamide. an inhibitor of poly(ADP-ribose)polymerase. In contrast. 3-aminobenzamide inhibited the loss of NAD' and viability caused by dimethyl sulphate so implicating poly(ADP-ribose)polymerase in its toxicity but not that of the quinones. Non-toxic concentrations of menadione. 2.3-dimethoxy-1.4-naphthoquinone and 2-hydroxy-1.4-naphthoquinone all caused markedly similar changes in cellular pyridine nucleotides. An initial decrease in NAD+ was accompanied by a small. transient increase in NADP+ and followed by a larger. prolonged increase in NADPH and total NADP+ + NADPH. Nucleotide changes were not observed with non-toxic concentrations of p-benzoquinone. Our findings suggest that a primary event in the response of the cell to redox cycling quinones is to bring about an interconversion of pyridine nucleotides. in an attempt to combat the effects of oxidative stress  相似文献   

2.
Exposure of hepatoma lclc7 cells to 2,3-drniethoxy-1.4-naphthoquinone (DMNQ) resulted in a sustained elevation of cytosolic Ca2+. DNA single strand breaks and cell killing. DNA single strand break formation was prevented when cells were preloaded with either of the intracellular Ca2+ chelators. Quin 2 or BAPTA, to buffer the increase in cytosolic Ca2+ concentration induced by the quinone. DMNQ caused marked NAD+ depletion which was prevented when cells were preincubated with 3-aminobenzamide. an inhibitor of nuclear poly-(ADP-ribose)-synthetase activity. or with either of the two Ca2+ chelators. However. 3-aminobenzamide did not protect the hepatoma cells from loss of viability. Our results indicate that quinone-induced DNA damage. NAD+ depletion and cell killing are mediated by a sustained elevation of cytosolic Ca2+  相似文献   

3.
Akira Kusai  Tateo Yamanaka 《BBA》1973,292(3):621-633
A highly purified preparation of an NAD(P) reductase was obtained from Chlorobium thiosulfatophilum and some of its properties were studied. The enzyme possesses FAD as the prosthetic group, and reduces benzyl viologen, 2,6-dichloro-phenolindophenol and cytochromes c, including cytochrome c-555 (C. thiosulfato-philum), with NADPH or NADH as the electron donor. It reduces NADP+ or NAD+ photosynthetically with spinach chloroplasts in the presence of added spinach ferredoxin. It reduces the pyridine nucleotides with reduced benzyl viologen. The enzyme also shows a pyridine nucleotide transhydrogenase activity. In these reactions, the type of pyridine nucleotide (NADP or NAD) which functions more efficiently with the enzyme varies with the concentration of the nucleotide used; at concentrations lower than approx. 1.0 mM, NADPH (or NADP+) is better electron donor (or acceptor), while NADH (or NAD+) is a better electron donor (or acceptor) at concentrations higher than approx. 1.0 mM. Reduction of dyes or cytochromes c catalysed by the enzyme is strongly inhibited by NADP+, 2′-AMP and and atebrin.  相似文献   

4.
Pyridine nucleotide transhydrogenase is a metabolic enzyme transferring the reducing equivalent between two nucleotide acceptors such as NAD+ and NADP+ for balancing the intracellular redox potential. Soluble transhydrogenase (STH) of Azotobacter vinelandii was expressed in a recombinant Saccharomyces cerevisiae strain harboring the Pichia stipitis xylose reductase (XR) gene to study effects of redox potential change on cell growth and sugar metabolism including xylitol and ethanol formation. Remarkable changes were not observed by expression of the STH gene in batch cultures. However, expression of STH accelerated the formation of ethanol in glucose-limited fed-batch cultures, but reduced xylitol productivity to 71% compared with its counterpart strain expressing xylose reductase gene alone. The experimental results suggested that A. vinelandii STH directed the reaction toward the formation of NADH and NADP+ from NAD+ and NADPH, which concomitantly reduced the availability of NADPH for xylose conversion to xylitol catalyzed by NADPH-preferable xylose reductase in the recombinant S. cerevisiae.  相似文献   

5.
Huub Haaker  Arie De Kok  Cees Veeger 《BBA》1974,357(3):344-357
1. In intact Azotobacter vinelandii the influence of oxygen on the levels of oxidized nicotinamide adenine dinucleotides and adenine nucleotides in relation to nitrogenase activity was investigated.

2. The hypothesis that a high (NADH + NADPH)/(NAD+ + NADP+) is the driving force for the transport of reducing equivalents to nitrogenase in intact A. vinelandii was found to be invalid. On the contrary, with a decreasing ratio of reduced to oxidized pyridine nucleotides, the nitrogenase activity of the whole cells increases.

3. By measuring oxidative phosphorylation and using 9-amino acridine as a fluorescent probe, it could be demonstrated that respiration-coupled transport of reducing equivalents to the nitrogenase requires a high energy level of the plasma membrane or possibly coupled to it, a high pH gradient over the cytoplasmic membrane. Furthermore nitrogen fixation is controlled by the presence of oxygen and the ATP/ADP ratio.  相似文献   


6.
Crude extracts of Clostridium thermoaceticum DSM 521 contain various AMAPORs (artificial mediator accepting pyridine nucleotide oxidoreductases). The specific activities of this mixture of AMAPORs is about 8-9 U mg-1 protein (µmoles mg-1 min-1) for NADPH and 3-4 U mg-1 protein for NADH formation with reduced methylviologen (MV++) as electron donor. These AMAPOR-activities are only slightly oxygen sensitive. The reoxidation of NADPH and NADH with carboxamido-methylviologen is catalysed by crude extracts with 2.0 and 1.6 U mg-1 protein, respectively. The same crude extracts also catalyse the dehydrogenation of reduced pyridine nucleotides with suitable quinones such as anthraquinone-2,6-disulphonate. The reduced quinone can be reoxidised by dioxygen.

The Km-values of these enzymes for the pyridine nucleotides and also for the artificial electron mediators are in a suitable range for preparative transformations.

Furthermore the crude extract of C. thermoaceticum contains about 2.5 U mg-1 protein of an NADP+-dependent formate dehydrogenase (FDH), which is suitable for NADPH and/or MV++ regeneration. The regeneration of MV++ with FDH and formate as electron donor proceeds with a specific activity of about 5 U mg-1 protein of the crude extract. The reduced viologen in turn reduces NAD(P)+ by AMAPOR. The formate dehydrogenase is sensitive to oxygen.

Examples of compounds which have been prepared by combination of AMAPORs or formate dehydrogenase with an oxidoreductase are: (S)-3-hydroxycarboxylates, esters of (S)-3-hydroxycarboxylates, (1R,2S)-1-hydroxypropane-tricarboxylate (Ds-(+)-isocitrate), Ls-(-)-isocitrate and 6-phosphogluconate.  相似文献   

7.
NAD+ kinase (ATP: NAD+ 2-phosphotransferase, EC2.7.1.23) isolated from chicken liver was immobilized on a silica-based support possessing aldehyde functional groups. The highest catalytic activity achieved was 16 U g−1 solid. The optimal pH for the catalytic activity of the immobilized NAD+ kinase was pH 7.1–7.3. The apparent optimum temperature for the immobilized enzyme was about 5°C higher than that of the soluble enzyme. There were no significant differences in the Km app values. The immobilization improved the conformational stability of the enzyme. In preliminary experiments, a 95% conversion of NAD+ to NADP+ was achieved with use of the immobilized NAD+ kinase, which preserved its starting activity practically unchanged up to 36 days.  相似文献   

8.
Rat liver epithelial cells were exposed to three quinones with different properties: menadione (2-methyl-1,4-naphthoquinone, vitamin K3), an alkylating as well as redox-cycling quinone, the strongly alkylating p-benzoquinone (BQ), and the non-arylating redox-cycler, 2,3-dimethoxy-1,4-naphthoquinone (DMNQ). All three quinones induced the activation of extracellular signal-regulated kinase (ERK) 1 and ERK 2 via the activation of epidermal growth factor receptor (EGFR) and MAPK/ERK kinases (MEK) 1/2. ERK activation resulted in phosphorylation at Ser-279 and Ser-282 of the gap junctional protein, connexin-43, known to result in the loss of gap junctional intercellular communication. Another EGFR-dependent pathway was stimulated, leading to the activation of the antiapoptotic kinase Akt via phosphoinositide 3-kinase. The activation of EGFR-dependent signaling by these quinones was by different mechanisms: (i) menadione, but not BQ or DMNQ, inhibited a protein-tyrosine phosphatase regulating the EGFR, as concluded from an EGFR dephosphorylation assay; (ii) although menadione-induced activation of ERK was unimpaired by pretreatment of cells with N-acetyl cysteine, activation by BQ and DMNQ was prevented; (iii) cellular glutathione (GSH) levels were strongly depleted by BQ. The mere depletion of GSH by application of diethyl maleate EGFR-dependently activated ERK and Akt, thus mimicking BQ effects. GSH levels were only moderately decreased by menadione and not affected by DMNQ. In summary, EGFR-dependent signaling was mediated by protein-tyrosine phosphatase inactivation (menadione), GSH depletion (BQ), and redox-cycling (DMNQ), funneling into the same signaling pathway.  相似文献   

9.
Quinones are believed to be toxic by a mechanism involving redox cycling and oxidative stress. In this study, we have used 2,3-dimethoxy-1,4-naphthoquinone (2,3-diOMe-1,4-NQ), which redox cycles to the same degree as menadione, but does not react with free thiol groups, to distinguish between the importance of redox cycling and arylation of free thiol groups in the causation of toxicity to isolated hepatocytes. Menadione was significantly more toxic to isolated hepatocytes than 2,3-diOMe-1,4-NQ. Both menadione and 2,3-diOMe-1,4-NQ caused an extensive GSH depletion accompanied by GSSG formation, preceding loss of viability. Both compounds stimulated a similar increase in oxygen uptake in isolated hepatocytes and NADPH oxidation in microsomes suggesting they both redox cycle to similar extents. Further evidence for the redox cycling in intact hepatocytes was the detection of the semiquinone anion radicals with electron spin resonance spectroscopy. In addition we have, using the spin trap DMPO (5,5-dimethyl-1-pyrroline N-oxide), demonstrated for the first time the formation of superoxide anion radicals by intact hepatocytes. These radicals result from oxidation of the semiquinone by oxygen and further prove that both these quinones redox cycle in intact hepatocytes. We conclude that while oxidative processes may cause toxicity, the arylation of intracellular thiols or nucleophiles also contributes significantly to the cytotoxicity of compounds such as menadione.  相似文献   

10.
The involvement of pyridine nucleotides in the reduction of extracytoplasmatic electron acceptors by iron-deficient Plantago lanceolata L. roots has been examined by measuring the changes in NAD(P)H and NAD(P) induced by various external acceptors. Exposure of the plants to FeEDTA, ferricyanide, ferric citrate or hexachloroiri-date resulted in a transient decrease in NADPH and an increase in NAD. No major differences in this pattern were observed between acceptors which were assumed to be reduced by different enzymes. The application of the membrane-permeable oxidant nitro blue tetrazolium led to similar changes in reduced and oxidized pyridine nucleotides and decreased the reduction of external acceptors. The amino acid analog p -fluorophenylalanine caused a transient decline in both NADPH level and NADPH/ NADP ratio and a decrease in the ratio of NADH to NAD without affecting the level of NADH. Exposure of the plants to the translation inhibitor cycloheximide increased both NADH and NADPH concentrations. A comparison of the redox activities and pyridine nucleotide fractions after inhibitor treatment revealed that the constitutive, but not iron stress-induced redox activity correlates with NADPH levels. These results are interpreted as confirming that the redox systems on the root plasma membrane are separately regulated. Possible metabolic reactions during the reduction processes are discussed.  相似文献   

11.
Quinones may induce toxicity by a number of mechanisms, including alkylation and oxidative stress following redox cycling. The metabolism of quinones by isolated rat hepatocytes is associated with cytoskeletal alterations, plasma membrane blebbing, and subsequent cytotoxicity. The different mechanisms underlying the effects of alkylating (p-benzoquinone), redox cycling (2,3-dimethoxy-1,4-naphthoquinone), and mixed redox cycling/alkylating (2-methyl-1,4-naphthoquinone) quinones on hepatocyte cytoskeleton have been investigated in detail in this study. Analysis of the cytoskeletal fraction extracted from quinone-treated cells revealed a concentration-dependent increase in the amount of cytoskeletal protein and a concomitant loss of protein thiols, irrespective of the quinone employed. In the case of redox cycling quinones, these alterations were associated with an oxidation-dependent actin crosslinking (sensitive to the thiol reductant dithiothreitol). In contrast, with alkylating quinones an oxidation-independent cytoskeletal protein crosslinking (insensitive to thiol reductants) was observed. In addition to these changes, a dose-dependent increase in the relative abundance of F-actin was detected as a consequence of the metabolism of oxidizing quinones in hepatocytes. Addition of dithiothreitol solubilized a considerable amount of polypeptides from the cytoskeletal fraction isolated from hepatocytes exposed to redox cycling but not alkylating quinones. Our findings indicate that the hepatocyte cytoskeleton is an important target for the toxic effects of different quinones. However, the mechanisms underlying cytoskeletal damage differ depending on whether the quinone acts primarily by oxidative stress or alkylation.  相似文献   

12.
DT-diaphorase catalysed the reduction of 1,4-naphthoquinones with hydroxy, methyl, methoxy and glutathionyl substituents at the expense of reducing equivalents from NADPH. The initial rates of quinone reduction did not correlate with either the half-wave reduction potential (E1/2) value (determined by h.p.l.c. with electrochemical detection against an Ag/AgCl reference electrode) or the partition coefficient of the quinones. After their reduction by DT-diaphorase the 1,4-naphthoquinone derivatives autoxidized at distinct rates, the extent of which was influenced by the nature of the substituents. Thus for the 1,4-naphthoquinone series the following order of rate of autoxidation was found: 5-hydroxy-1,4-naphthoquinone greater than 3-glutathionyl-1,4-naphthoquinone greater than 5-hydroxy-3-glutathionyl-1,4-naphthoquinone greater than 1,4-naphthoquinone greater than 2-hydroxy-1,4-naphthoquinone. For the 2-methyl-1,4-naphthoquinone (menadione) series the following order was observed: 5-hydroxy-2-methyl-1,4-naphthoquinone greater than 3-glutathionyl-5-hydroxy-2-methyl-1,4-naphthoquinone greater than 3-glutathionyl-2-methyl-1,4-naphthoquinone greater than 2-methyl-1,4-naphthoquinone greater than 3-hydroxy-2-methyl-1,4-naphthoquinone. The autoxidized naphthohydroquinone derivatives were re-reduced by DT-diaphorase, thus closing a cycle of enzymic reduction in equilibrium autoxidation. This was expressed as an excess of NADPH oxidized over the initial concentration of quinone present as well as H2O2 formation. These findings demonstrate that glutathionyl conjugates of 1,4-naphthoquinone and 2-methyl-1,4-naphthoquinone and those of their respective 5-hydroxy derivatives are able to act as substrates for DT-diaphorase and that they also autoxidize at rates higher than those for the unsubstituted parent compounds. These results are discussed in terms of the cellular role of DT-diaphorase in the reduction of hydroxy- or glutathionyl-substituted naphthoquinones as well as the further conjugation of these hydroquinones with glucuronide or sulphate within the cellular milieu, thereby facilitating their disposal from the cells.  相似文献   

13.
Klaus Lendzian  James A. Bassham 《BBA》1976,430(3):478-489
Levels of reduced and oxidized triphosphopyridine nucleotides have been determined in reconstituted spinach chloroplasts and compared with levels in whole isolated chloroplasts during photosynthesis and darkness. The ratio of NADPH/NADP+ reaches values slightly above 1.0 at the beginning of photosynthesis, less than half the ratio attained with whole chloroplasts. Nonetheless these lower ratios are sufficient to maintain high rates of photosynthetic carbon dioxide fixation and reduction, which are comparable in the reconstituted chloroplasts to the rates found with whole chloroplasts. As with whole chloroplasts there is a decline in the ratio of NADPH/NADP+ as a function of time of photosynthesis. The effect of addition of bicarbonate (6 mM) in causing a transient drop in the ratio of NADPH/NADP+ is described and discussed in terms of the reversibility of the reduction of 3-phosphoglycerate to triose phosphate. The ratio NADPH/NADP+ can be improved by the addition of more lamellae either before or during the course of photosynthesis, and this improvement in ratio is accompanied by an improved rate of CO2 fixation or a more sustained rate of CO2 fixation with time of photosynthesis. The importance of NADPH/NADP+ ratio not only to the reduction of 3-phosphoglycerate to triose phosphate but also to the activation of the ribulose-1,5-diphosphate carboxylasemediated step is discussed.  相似文献   

14.
The results presented in this paper reveal the existence of three distinct menadione (2-methyl-1,4-naphthoquinone) reductases in mitochondria: NAD(P)H:(quinone-acceptor) oxidoreductase (D,T-diaphorase), NADPH:(quinone-acceptor) oxidoreductase, and NADH:(quinone-acceptor) oxidoreductase. All three enzymes reduce menadione in a two-electron step directly to the hydroquinone form. NADH-ubiquinone oxidoreductase (NADH dehydrogenase) and NAD(P)H azoreductase do not participate significantly in menadione reduction. In mitochondrial extracts, the menadione-induced NAD(P)H oxidation occurs beyond stoichiometric reduction of the quinone and is accompanied by O2 consumption. Benzoquinone is reduced more rapidly than menadione but does not undergo redox cycling. In intact mitochondria, menadione triggers oxidation of intramitochondrial pyridine nucleotides, cyanide-insensitive O2 consumption, and a transient decrease of delta psi. In the presence of intramitochondrial Ca2+, the menadione-induced oxidation of pyridine nucleotides is accompanied by their hydrolysis, and Ca2+ is released from mitochondria. The menadione-induced Ca2+ release leaves mitochondria intact, provided excessive Ca2+ cycling is prevented. In both selenium-deficient and selenium-adequate mitochondria, menadione is equally effective in inducing oxidation of pyridine nucleotides and Ca2+ release. Thus, menadione-induced Ca2+ release is mediated predominantly by enzymatic two-electron reduction of menadione, and not by H2O2 generated by menadione-dependent redox cycling. Our findings argue against D,T-diaphorase being a control device that prevents quinone-dependent oxygen toxicity in mitochondria.  相似文献   

15.
转录因子Rex是一种广泛存在于革兰氏阳性菌,能够与NADH或者NAD+直接结合响应胞内NADH/NAD+的氧化还原传感器,与靶基因的结合可调节细胞内的多种生理代谢。NAD(H)是调节细胞能量代谢的必需辅酶,显示微生物细胞内的氧化还原状态。研究发现Rex的调节活性与细胞内NADH/NAD+比率相关。需氧和厌氧菌属中Rex单体和复合物晶体结构的解析揭示了Rex、NADH/NAD+和靶基因间的作用关系及调控机制。通过比较分析了不同菌株中Rex单体和复合物的晶体蛋白结构,并揭示了NADH/NAD+对Rex调控活性的影响,进一步解析了Rex与碳和能量代谢、厌氧代谢、发酵、生物膜等之间的联系,并展望了Rex的研究和应用方向。  相似文献   

16.
The quinones 1,4-naphthoquinone (NQ), methyl-1,4-naphthoquinone (MNQ), trimethyl-1,4-benzoquinone (TMQ) and 2,3-dimethoxy-5-methyl-1,4-benzoquinone (UQ-0) enhance the rate of nitric oxide (NO) reduction by ascorbate in nitrogen-saturated phosphate buffer (pH 7.4). The observed rate constants for this reaction were determined to be 16±2,215±6,290±14 and 462±18 M-1 s-1, for MNQ, TMQ, NQ and UQ-0, respectively. These rate constants increase with an increase in quinone one-electron redox potential at neutral pH, E71. Since NO production is enhanced under hypoxia and under certain pathological conditions, the observations obtained in this work are very relevant to such conditions.  相似文献   

17.
Dithiothreitol in the presence of menadione or N,N,N′,N′-tetramethyl-p-phenylenediamine provides the reducing equivalents for oxidative phosphorylation and the ATP-dependent reduction of NAD+ in submitochondrial particles. With menadione the reaction is nearly as fast as with succinate and it is insensitive to antimycin, indicating electron entry between the first and second sites of oxidative phosphorylation. The phenylenediamine-mediated reduction of NAD+ is nearly as fast as succinate-linked reduction and is antimycin sensitive.  相似文献   

18.
烟酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide, NAD+)作为氧化还原反应的重要辅酶,是能量代谢的核心。NAD+也是非氧化还原NAD+依赖性酶的共底物,包括沉默信息调节因子(Sirtuins)、聚ADP-核糖聚合酶(poly ADP-ribose polymerases, PARPs)、CD38/CD157胞外酶等。NAD+已成为细胞信号转导和细胞存活的关键调节剂。最近的研究表明,Sirtuins催化多种NAD+依赖性反应,包括去乙酰化、脱酰基化和ADP-核糖基化。Sirtuins催化活性取决于NAD+水平的高低。因此,Sirtuins是细胞代谢和氧化还原状态关键传感器。哺乳动物中已经鉴定并表征了7个Sirtuins家族成员(SIRT1-7),其参与炎症、细胞生长、生理节律、能量代谢、神经元功能、应激反应和健康衰老等多种生理过程。本文归纳了NAD+的生理浓度及状态、NAD+的生物合成途径,并阐述了Sirtuins的生物学功能,重点讨论了SIRT1-7表达及活性与衰老和疾病之间的关系。此外,本文还进一步探讨了NAD+和Sirtuins依赖的衰老机制,机体NAD+水平随着年龄增长而下降,导致Sirtuins活性下降,尤其是SIRT1、SIRT3和SIRT6,引发细胞核和线粒体功能下降,衰老及老化相关疾病也随之发生。研究表明,NAD+前体补充剂能够快速提高机体NAD+水平和Sirtuins活性,是一种有效的抗衰老干预措施,为全球老龄化社会带来希望。  相似文献   

19.
Kazuhiko Satoh 《BBA》1981,638(2):327-333
Effects of medium osmolarity on the rate of CO2 fixation, the rate of the NADP+-Hill reaction, and the DPS1 transient of chlorophyll fluorescence were measured in intact Bryopsis chloroplasts. Upon decreasing the sorbitol concentration from 1.0 M (the isoosmotic conditions) to 0.25 M, the envelopes of the chloroplasts became leaky to small molecules, resulting in a considerable depression of the CO2-fixation rate and a higher rate of the NADP+-Hill reaction whereas the DPS1 transient was unaffected. This DPS1 transient of chlorophyll fluorescence is thought to be caused by the photoactivation of electron flow on the reducing side of Photosystem I at a site occurring after ferredoxin and probably before the reduction of NADP+ (Satoh, K. and Katoh, S. (1980) Plant and Cell Physiol. 21, 907–916). Little effect of NADP+ on the DPS1 transient and a marked lag in NADP+ photo-reduction in dark-adapted (inactivated) chloroplasts support the hypothesis that the site of dark inactivation is prior to the reduction site of NADP+, and therefore, that ferredoxin-NADP+ reductase is inactivated in the dark and activated in the light. Moreover, at 0.25 M sorbitol, the activity of ferredoxin-NADP+ reductase itself (2,6-dichlorophenolindophenol reduction by NADPH) was shown to increase according to dark-light transition of the chloroplasts. At low osmolarities (below 0.1 M sorbitol), the difference in the diaphorase activity between dark-and light-adapted chloroplasts and the lag time observed in the NADP+ photoreduction were lowered. This may correspond to a less pronounced DPS1 transient at low concentrations of sorbitol. The mechanism of the photo-activation is discussed.  相似文献   

20.
The redox level and compartmentation of pyridine nucleotides was studied under photorespiratory and non-photorespiratory conditions using rapid fractionation of barley ( Hordeum vulgare L. cv. Gunilla, Svalöv) leaf protoplasts. From comparative measurements of the NADPH/NADP+ ratio and the ATP/ADP ratio one acidic and one alkaline extraction medium was chosen which quenched the metabolism very efficiently. The mitochondrial NADH/NAD+ was higher under photorespiratory conditions than under non-photorespiratory conditions. Aminoacetonitrile, an inhibitor of the photorespiratory conversion of glycine to serine, lowered the mitochondrial NADH/NAD+ ratio. This supports the hypothesis that glycine oxidation is coupled to oxidative phosphorylation to provide ATP to the cytosol. The chloroplastic NADPH/NADP+ as well as the NADH/NAD+ ratios were quite stable in saturating and limiting CO2 as well as in the presence of aminoacetonitrile, although the triosephosphate/phosphoglycerate ratios changed. Thus, the redox level in the stroma seems to be tightly regulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号