首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 440 毫秒
1.
Vasoactive intestinal contractor (VIC) caused a series of biochemical events, including the temporal biphasic accumulation of 1,2-diacylglycerol (DAG), transient formation of Ins(1,4,5)P3, and increase in intracellular free Ca2+ [( Ca2+]i) in neuroblastoma NG108-15 cells. In these cellular responses, VIC was found to be much more potent in NG108-15 cells than in cultured rat vascular smooth-muscle cells. The single cell [Ca2+]i assay revealed that in the presence of nifedipine (1 microM) or EGTA (1 mM), the peak [Ca2+]i declined more rapidly to the resting level in VIC-stimulated NG108-15 cells, indicating that the receptor-mediated intracellular Ca2+ mobilization is followed by Ca2+ influx through the nifedipine-sensitive Ca2+ channel. Pretreatment with pertussis toxin only partially decreased Ins(1,4,5)P3 generation as well as the [Ca2+]i transient induced by VIC, whereas these events induced by endothelin-1 were not affected by the toxin, suggesting involvement of distinct GTP-binding proteins. The VIC-induced transient Ins(1,4,5)P3 formation coincident with the first early peak of DAG formation suggested that PtdIns(4,5)P2 is a principal source of the first DAG increase. Labelling studies with [3H]myristate, [14C]palmitate and [3H]choline indicated that in neuroblastoma cells phosphatidylcholine (PtdCho) was hydrolysed by a phospholipase C to cause the second sustained DAG increase. Down-regulation of protein kinase C (PKC) by prolonged pretreatment with phorbol ester markedly prevented the VIC-induced delayed DAG accumulation. Furthermore, chelation of intracellular CA2+ completely abolished the second sustained phase of DAG production. These findings suggest that PtdCho hydrolysis is responsible for the sustained production of DAG and is dependent on both Ca2+ and PKC.  相似文献   

2.
The proposed Ca(2+)-signaling actions of inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4), formed by phosphorylation of the primary Ca(2+)-mobilizing messenger, inositol 1,4,5-trisphosphate (Ins(1,4,5)P3), were analyzed in NIH 3T3 and CCL39 fibroblasts transfected with rat brain Ins(1,4,5)P3 3-kinase. In such kinase-transfected cells, the conversion of Ins(1,4,5)P3 to Ins(1,3,4,5)P4 during agonist stimulation was greatly increased, with a concomitant reduction in Ins(1,4,5)P3 levels and attenuation of both the cytoplasmic Ca2+ increase and the Ca2+ influx response. This reduction in Ca2+ signaling was observed during activation of receptors coupled to guanine nucleotide-binding proteins (thrombin and bradykinin), as well as with those possessing tyrosine kinase activity. Single-cell Ca2+ measurements in CCL39 cells revealed that the smaller averaged Ca2+ response of enzyme-transfected cells was due to a marked increase in the number of cells expressing small and slow Ca2+ increases, in contrast to the predominantly large and rapid Ca2+ responses of vector-transfected controls. There was no evidence that high Ins(1,3,4,5)P4 levels promote Ca2+ mobilization, Ca2+ entry, or Ca2+ sequestration. These data indicate that Ins(1,4,5)P3 is the major determinant of the agonist-induced Ca2+ signal in fibroblasts and that Ins(1,3,4,5)P4 does not appear to contribute significantly to this process. Instead, Ins(1,4,5)P3 3-kinase may serve as a negative regulator of the Ca(2+)-phosphoinositide signal transduction mechanism.  相似文献   

3.
C. reinhardtii sheds its flagella in response to acidification. Previously, we showed correlations between pH shock, deflagellation, and inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] production, but 100% of cells deflagellated by 5 s, which was the earliest that Ins(1,4,5)P3 accumulation could be accurately measured by techniques available to us at that time (Quarmby, L. M., Y. G. Yueh, J. L. Cheshire, L. R. Keller, W. J. Snell, and R. C. Crain. J. Cell Biol. 1992. 116:737-744). To learn about the causal relationship between Ins(1,4,5)P3 accumulation and deflagellation, we extended these studies to early times using a continuous-flow rapid-quench device. Within 1 s of acidification to pH 4.3-4.5, 100% of cells deflagellated. A transient peak of Ins(1,4,5)P3 was observed 250-350 ms after pH shock, preceding deflagellation. Preincubation with 10 microM neomycin, which prevents hydrolysis of phosphatidylinositol 4,5-bisphosphate, inhibited both the transient production of Ins(1,4,5)P3 and the subsequent deflagellation. The nonspecific Ca2+ channel blockers La3+ and Cd2+ prevented flagellar excision induced by mastoparan without inhibiting rapid Ins(1,4,5)P3 production. Likewise, the Ins(1,4,5)P3-gated channel inhibitors ruthenium red and heparin blocked deflagellation in response to mastoparan. These studies were extended to mutants defective in flagellar excision. Fa-1, a mutant defective in flagellar structure, produced Ins(1,4,5)P3 but failed to deflagellate. These results support a model in which acid pH activates a putative cellular receptor leading to G-protein dependent activation of phospholipase C and accumulation of Ins(1,4,5)P3. These events are upstream of Ins(1,4,5)P3-dependent Ca2+ entry from the medium, and of deflagellation.  相似文献   

4.
Several properties of macrophages change when suspended cells become adherent. To determine the intracellular signals involved in these changes, concentrations of the second messenger inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] were monitored during adherence of J774.1 cells, a macrophage-like cell line. When cells grown in suspension were allowed to adhere to a glass surface, there was a transient increase in InsP3 that reached a peak between 100 and 120 s after plating. Inositol mono- and bis-phosphate concentrations were also elevated 100 and 120 s after plating. Analysis of isomer distribution showed significant 3-fold increases in Ins(1,4,5)P3 and inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4] at 100 s after plating. These values were maintained at 120 s, with the additional appearance of a 4-fold increase in inositol 1,3,4-trisphosphate. The adherence-induced generation of Ins(1,4,5)P3 was decreased, and Ins(1,3,4,5)P4 formation was blocked, in Ca2+-free medium. However, doubling intracellular [Ca2+] by addition of the Ca2+ ionophore ionomycin (1 microM) did not increase Ins(1,4,5)P3 in suspended cells. Adherence of J774.1 cells to fibronectin-coated glass also induced an increase in InsP3.  相似文献   

5.
Inositol trisphosphate, calcium and muscle contraction   总被引:13,自引:0,他引:13  
The identity of organelles storing intracellular calcium and the role of Ins(1,4,5)P3 in muscle have been explored with, respectively, electron probe X-ray microanalysis (EPMA) and laser photolysis of 'caged' compounds. The participation of G-protein(s) in the release of intracellular Ca2+ was determined in saponin-permeabilized smooth muscle. The sarcoplasmic reticulum (SR) is identified as the major source of activator Ca2+ in both smooth and striated muscle; similar (EPMA) studies suggest that the endoplasmic reticulum is the major Ca2+ storage site in non-muscle cells. In none of the cell types did mitochondria play a significant, physiological role in the regulation of cytoplasmic Ca2+. The latency of guinea pig portal vein smooth muscle contraction following photolytic release of phenylephrine, an alpha 1-agonist, is 1.5 +/- 0.26 s at 20 degrees C and 0.6 +/- 0.18 s at 30 degrees C; the latency of contraction after photolytic release of Ins(1,4,5)P3 from caged Ins(1,4,5)P3 is 0.5 +/- 0.12 s at 20 degrees C. The long latency of alpha 1-adrenergic Ca2+ release and its temperature dependence are consistent with a process mediated by G-protein-coupled activation of phosphatidylinositol 4,5 bisphosphate (PtdIns(4,5)P2) hydrolysis. GTP gamma S, a non-hydrolysable analogue of GTP, causes Ca2+ release and contraction in permeabilized smooth muscle. Ins(1,4,5)P3 has an additive effect during the late, but not the early, phase of GTP gamma S action, and GTP gamma S can cause Ca2+ release and contraction of permeabilized smooth muscles refractory to Ins(1,4,5)P3. These results suggest that activation of G protein(s) can release Ca2+ by, at least, two G-protein-regulated mechanisms: one mediated by Ins(1,4,5)P3 and the other Ins(1,4,5)P3-independent. The low Ins(1,4,5)P3 5-phosphatase activity and the slow time-course (seconds) of the contractile response to Ins(1,4,5)P3 released with laser flash photolysis from caged Ins(1,4,5)P3 in frog skeletal muscle suggest that Ins(1,4,5)P3 is unlikely to be the physiological messenger of excitation-contraction coupling of striated muscle. In contrast, in smooth muscle the high Ins(1,4,5)P3-5-phosphatase activity and the rate of force development after photolytic release of Ins(1,4,5)P3 are compatible with a physiological role of Ins(1,4,5)P3 as a messenger of pharmacomechanical coupling.  相似文献   

6.
D-myo-Inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) regulates intracellular Ca2+ by mobilizing Ca2+ from a non-mitochondrial store. We have investigated the effects of Ca2+ on the binding of [32P]Ins (1,4,5)P3 to permeabilized rat hepatocytes and a liver plasma membrane-enriched fraction. Increasing the free Ca2+ concentration in the medium from 0.1 nM to 0.7 microM increased the capacity of a high affinity binding component (KD = 2-3 nM) in permeabilized cells by a factor of 10. If the membrane fraction was preincubated at 37 degrees C before binding was measured at 4 degrees C, all of the Ins(1,4,5)P3 receptors were transformed to a low affinity state (KD = 65 +/- 12 nM, Bmax = 3.1 +/- 0.1 fmol/mg, n = 4). When 0.7 microM of Ca2+ was added, the receptors were totally transformed to a high affinity state (KD = 2.8 +/- 0.4 nM, Bmax = 2.7 +/- 0.4 fmol/mg, n = 4). The EC50 of the Ca2(+)-induced interconversion of the Ins(1,4,5)P3 receptor was 140 nM. This Ca2(+)-induced transformation of the Ins(1,4,5)P3 receptor from a low affinity to a high affinity state was associated with an inhibition of the Ins(1,4,5)P3-induced Ca2+ release in permeabilized hepatocytes. These data suggest that the Ins(1,4,5)P3-dependent hormones, by increasing the intracellular Ca2+ concentration, induce a reversible transformation of the receptor from its low affinity state, coupled to the Ca2+ release, to a desensitized high affinity state. Transformation of the receptor may play a role in the oscillatory release of Ca2+ observed in single isolated hepatocytes.  相似文献   

7.
The dynamics of inositol 1,4,5-trisphosphate (Ins (1,4,5)P3) production during periods of G-protein-coupled receptor-mediated Ca2+ oscillations have been investigated using the pleckstrin homology (PH) domain of phospholipase C (PLC) delta1 tagged with enhanced green fluorescent protein (eGFP-PHPLCdelta1). Activation of noradrenergic alpha1B and muscarinic M3 receptors recombinantly expressed in the same Chinese hamster ovary cell indicates that Ca2+ responses to these G-protein-coupled receptors are stimulus strength-dependent. Thus, activation of alpha1B receptors produced transient base-line Ca2+ oscillations, sinusoidal Ca2+ oscillations, and then a steady-state plateau level of Ca2+ as the level of agonist stimulation increased. Activation of M3 receptors, which have a higher coupling efficiency than alpha1B receptors, produced a sustained increase in intracellular Ca2+ even at low levels of agonist stimulation. Confocal imaging of eGFP-PHPLCdelta1 visualized periodic increases in Ins(1,4,5)P3 production underlying the base-line Ca2+ oscillations. Ins(1,4,5)P3 oscillations were blocked by thapsigargin but not by protein kinase C down-regulation. The net effect of increasing intracellular Ca2+ was stimulatory to Ins(1,4,5)P3 production, and dual imaging experiments indicated that receptor-mediated Ins(1,4,5)P3 production was sensitive to changes in intracellular Ca2+ between basal and approximately 200 nM. Together, these data suggest that alpha1B receptor-mediated Ins(1,4,5)P3 oscillations result from a positive feedback effect of Ca2+ onto phospholipase C. The mechanisms underlying alpha1B receptor-mediated Ca2+ responses are therefore different from those for the metabotropic glutamate receptor 5a, where Ins(1,4,5)P3 oscillations are the primary driving force for oscillatory Ca2+ responses (Nash, M. S., Young, K. W., Challiss, R. A. J., and Nahorski, S. R. (2001) Nature 413, 381-382). For alpha1B receptors the Ca2+-dependent Ins(1,4,5)P3 production may serve to augment the existing regenerative Ca2+-induced Ca2+-release process; however, the sensitivity to Ca2+ feedback is such that only transient base-line Ca2+ spikes may be capable of causing Ins(1,4,5)P3 oscillations.  相似文献   

8.
Ca2+ release triggered by inositol trisphosphate (Ins(1,4,5)P3) has been measured in saponin-permeabilized hepatocytes with 45Ca2+ or Quin 2. The initial rate of Ca2+ release was not greatly affected by the incubation temperature (175 +/- 40 pmol X s-1 X mg dry weight-1, at 30 degrees C versus 133 +/- 24 pmol X s-1 X mg dry weight-1 at 4 degrees C). The amount of Ca2+ released by Ins(1,4,5)P3 was not affected by pH (6.5-8.0). La3+ (100 microM) markedly inhibited the effect of 1 microM Ins(1,4,5)P3. The possibility that La3+ chelates Ins(1,4,5)P3 cannot be excluded since the effect of La3+ could be overcome by increasing the Ins(1,4,5)P3 concentration. Ins(1,4,5)P3-mediated Ca2+ release showed a requirement for permeant cations in the incubation medium. Optimal release was observed with potassium gluconate. Other monovalent cations, with the exception of Li+, can substitute for K+. Permeant anions, at concentrations above 40 mM, inhibited Ca2+ release produced by Ins(1,4,5)P3. Cl-, Br-, I-, and SO2-4 were equally effective as inhibitors. Ins(1,4,5)P3 also caused the release of 54Mn2+ and 85Sr2+ accumulated by the permeabilized hepatocytes. Our results are consistent with Ins(1,4,5)P3 promoting the membrane translocation of divalent cations through an ion channel rather than an ion carrier. The translocation of positive charge through this channel is balanced by ancillary movements of monovalent cations and anions across the reticular membranes. The transport systems responsible for these compensatory ion movements may represent a potential site for the regulation of the hormone-mediated Ca2+ signal.  相似文献   

9.
The effects of the expression of the protein tyrosine kinase pp60v-src on endothelin- and thrombin-stimulated inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) production and calcium responses were investigated in Rat-1 fibroblasts. The ability of endothelin-1 to induce the accumulation of these second messengers was dramatically amplified by v-src transformation, with 6- and 3-fold enhancements of the peak Ins(1,4,5)P3 and peak calcium responses, respectively. In contrast, thrombin-dependent responses were slightly reduced following v-src transformation, demonstrating that the augmentation of endothelin-stimulated signal transduction is a selective effect. The magnitude of the stimulated accumulation of Ins(1,4,5)P3 presumably depends upon both the functional activation of phospholipase C to produce Ins(1,4,5)P3, and the activity of the enzymes that metabolize Ins(1,4,5)P3. Although the metabolism of Ins(1,4,5)P3 was strikingly altered by expression of pp60v-src, with a bias towards the production of higher inositol polyphosphates that is consistent with an activated Ins(1,4,5)P3 3-kinase, this change could not account for the marked increase in endothelin-stimulated signaling induced by v-src transformation. This suggests that an effect of pp60v-src is expressed at the level of the plasma membrane, through an interaction with one or more components in the receptor/guanine nucleotide binding protein (G protein)/phospholipase C system that transduces the endothelin signal into Ins(1,4,5)P3 production. Preparation of membranes from normal and v-src-transformed cells showed that, while there was no change in the number of high-affinity endothelin binding sites, the release of Ins(1,4,5)P3 in response to guanine nucleotides and endothelin-1 was significantly increased following v-src transformation. In contrast, the Ins(1,4,5)P3 responses to thrombin and high Ca2+ concentrations were unaffected by transformation. Thus the selective interactions within the G protein system that couples the endothelin receptor to phospholipase C are potential sites at which the v-src transformation process may act to amplify endothelin-dependent Ins(1,4,5)P3 production.  相似文献   

10.
NIH 3T3 fibroblasts were stably transfected with rat brain inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) 3-kinase to explore the relationship between increased production of Ins(1,3,4,5)P4 and the formation of InsP5 and InsP6. Mass measurements of InsP5 and InsP6 revealed no significant difference between kinase- and vector-transfected fibroblasts. However, such 3-kinase-transfected cells, when labeled with [3H]inositol for 48-72 h, showed lower levels of [3H]InsP5 and [3H]InsP6, as well as [3H]Ins(1,3,4,6)P4 and D/L[3H]Ins(1,4,5,6)P4, than their vector-transfected counterparts. Because Ins(1,4,5)P3 3-kinase-transfected cells grew less rapidly than vector-transfected controls, we determined whether the synthesis of InsP5 and InsP6 was related to a specific phase of the cell cycle. When NIH 3T3 cells prelabeled with [3H]inositol were synchronized by serum deprivation followed by stimulation with platelet-derived growth factor (PDGF), the amounts of labeled InsP5 and InsP6 began to increase only after 12 h of stimulation, when cells entered the S-phase as indicated by increased [3H]thymidine incorporation. The enhanced synthesis of these inositol polyphosphates was preceded by an early increase in Ins(1,4,5)P3 and its metabolites that was no longer evident by the fifth hour of PDGF action. There was also a prominent and biphasic increase in the level of D/L-Ins(1,4,5,6)P4 with an early peak at approximately 3 h and a second rise that paralleled the increases in InsP5 and InsP6. These results indicate that the formation of highly phosphorylated inositols is not tightly coupled to the receptor-mediated formation of Ins(1,4,5)P3 and its metabolites but is mainly determined by other factors that operate at specific points of the cell cycle.  相似文献   

11.
Saponin-treated liver cells and a microsomal fraction were used to characterize the mechanism of the Ca2+ release induced by different bile acids. The saponin-treated cells accumulated 0.8-1 nmol/mg of protein of the medium Ca2+ in a nonmitochondrial, high affinity, and inositol (1,4,5)-trisphosphate (Ins(1,4,5)P3)-sensitive Ca2+ pool. Three of five bile acids tested, lithocholate and the conjugates taurolithocholate and taurolithocholate sulfate, released 85% of the Ca2+ pool within 45-60 s and with ED50 from 16 to 28 microM. Ins(1,4,5)P3 released 80% from the same Ca2+ pool with an ED50 of 0.3 microM. The Ca2+-Mg2+-ATPase inhibitor vanadate (1 mM) had no effect on the Ca2+ released by the bile acids and Ins(1,4,5)P3. The Ins(1,4,5)P3-binding antibiotic neomycin (1 mM) and the receptor competitor heparin (16 micrograms/ml) abolished the releasing effect of Ins(1,4,5)P3 but had no effect on the bile acid-mediated Ca2+ release. The 45Ca2+ accumulated by the microsomal fraction (8 nmol of 45Ca2+/mg of protein) was released by the bile acids within 45-90 s and with an ED50 of 17 microM. In contrast, the bile acids had no effect on the Ca2+ permeability of other natural and artificial membranes. The resting 45Ca2+ influx of intact cells (0.45 nmol/mg of protein/min), the 45Ca2+ accumulated by mitochondria (2-13 nmol of 45Ca2+/mg of protein), and the 45Ca2+ trapped in sonicated phosphatidylcholine vesicles (5 mM 45Ca2+) were not altered by the different bile acids. These results suggest that the Ca2+ release initiated by lithocholate and its conjugates results from a direct action on the Ca2+ permeability of the Ins(1,4,5)P3-sensitive pool. It is not mediated by Ins(1,4,5)P3 or via activation of the Ins(1,4,5)P3 receptor, and it is specific for the membrane of the internal pool.  相似文献   

12.
To investigate the mechanisms by which inositol phosphates regulate cytosolic free Ca2+ concentration ([Ca2+]c), we injected Xenopus oocytes with inositol phosphates and measured Ca2+-activated Cl- currents as an assay of [Ca2+]c. Inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) injection (0.1-10.0 pmol) induced an initial transient Cl- current (I1) followed by a second more prolonged Cl- current (I2). Both currents were Ca2+-dependent, but the source of Ca2+ was different. Release of intracellular Ca2+ stores produced I1, whereas influx of extracellular Ca2+ produced I2; Ca2+-free bathing media and inorganic calcium channel blockers (Mn2+, Co2+) did not alter I1 but completely and reversibly inhibited I2. Injection of the Ins(1,4,5)P3 metabolite, inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4) (0.2-10.0 pmol) generated a Ca2+-dependent Cl- current with superimposed current oscillations that resulted from release of intracellular Ca2+, not Ca2+ influx. Injection of the Ins(1,3,4,5)P4 metabolite, inositol 1,3,4-trisphosphate (10.0 pmol), or the synthetic inositol trisphosphate isomer, inositol 2,4,5-trisphosphate (1.0-10.0 pmol), mimicked the effect of Ins(1,4,5)P3, stimulating an I1 resulting from release of intracellular Ca2+ and an I2 resulting from influx of extracellular Ca2+. The results indicate that several inositol trisphosphate isomers stimulate both release of intracellular Ca2+ and influx of extracellular Ca2+. Ins(1,3,4,5)P4 also stimulated release of intracellular Ca2+, but it was neither sufficient nor required for Ca2+ influx.  相似文献   

13.
Inositol 1,4,5-trisphosphate (Ins(1,4,5)P3), which mobilizes intracellular Ca2+, is metabolized either by dephosphorylation to inositol 1,4-bisphosphate(Ins-(1,4)P2) or by phosphorylation to inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4). It has been shown in vitro that Ins(1,3,4,5)P4 is also dephosphorylated by a 5-phosphomonoesterase to inositol 1,3,4-trisphosphate. However, we have found that exogenous Ins(1,3,4,5)P4 is dephosphorylated to predominantly Ins(1,4,5)P3 in saponin-permeabilized platelets in the presence of KCl (40-160 mM). This inositol polyphosphate 3-phosphomonoesterase activity is independent of Ca2+ (0.1-100 microM), and it was also observed when the ionic strength of the incubation medium was increased with Na+. The action of KCl appears to be due to activation of a 3-phosphomonoesterase as well as an inhibition of the 5-phosphomonoesterase, because the dephosphorylation of Ins(1,4,5)P3 to Ins(1,4)P2 was completely inhibited by KCl. The 3-phosphomonoesterase may be regulated by a protein kinase C, since both thrombin and phorbol dibutyrate increase 3-phosphomonoesterase activity and this is inhibited by staurosporine. The formation of Ins(1,4,5)P3 from Ins(1,3,4,5)P4 reported here provides an additional pathway for the formation of the Ca2+-mobilizing second messenger in stimulated cells.  相似文献   

14.
The effect of inositol 1,4,5-trisphosphate [Ins-(1,4,5)P3] and caffeine on Ca2+ release from digitonin-permeabilised bovine adrenal chromaffin cells was examined by using the Ca2+ indicator fura-2 to monitor [Ca2+]. Permeabilised cells accumulated Ca2+ in the presence of ATP and addition of either Ins(1,4,5)P3 or caffeine released 17% or 40-50%, respectively, of the accumulated Ca2+, indicated by sustained rises in [Ca2+] in the cell suspension. Prior addition of Ins(1,4,5)P3 had no effect on the magnitude of the response to a subsequent addition of caffeine. The response to Ins(1,4,5)P3 was prevented by prior addition of caffeine or CaCl2, indicating that the Ins(1,4,5)P3 response was blocked by elevated [Ca2+]. The responses were essentially identical in the presence of the proton ionophore carbonyl cyanide m-chlorophenylhydrazone, indicating that the Ca2+ release was not from mitochondria or secretory granules and that a proton gradient was not required for Ca2+ accumulation into the Ins(1,4,5)P3- or caffeine-sensitive stores. Ca2+ release from the caffeine-sensitive store was selectively blocked by ryanodine. The Ins(1,4,5)P3-sensitive store was emptied by thapsigargin, which had no effect on caffeine responses. These data suggest that permeabilised chromaffin cells possess two distinct nonoverlapping Ca2+ stores sensitive to either Ins(1,4,5)P3 or caffeine and support previous conclusions that these stores possess different Ca2(+)-ATPases.  相似文献   

15.
The ability of epidermal growth factor (EGF) and angiotensin II to stimulate production of inositol trisphosphate and mobilize intracellular Ca2+ in hepatocytes was compared using quin2 fluorescence to monitor changes in Ca2+ levels and high performance liquid chromatography to resolve the inositol trisphosphate (InsP3) isomers. Both EGF and angiotensin II stimulated an increase in free intracellular Ca2+ concentration ([Ca2+]i) as well as a rapid increase in the production of inositol 1,4,5-trisphosphate (Ins(1,4,5)P3). Concentrations of angiotensin II which gave a rise in [Ca2+]i equivalent to that seen with maximal doses of EGF produced an equivalent increase in Ins(1,4,5)P3 formation. Both EGF and angiotensin II stimulated the formation of the Ins(1,3,4)P3 and inositol 1,3,4,5-tetrakisphosphate isomers. The formation of the Ins(1,3,4)P3 isomer lagged behind production of Ins(1,4,5)P3 but eventually reached higher levels in the cell. The initial rise in [Ca2+]i and InsP3 levels stimulated by EGF and angiotensin II was not affected by reducing the external Ca2+ concentration below 30 nM with an excess of [ethylenebis(oxyethylenenitrilo)] tetraacetic acid. Treatment of hepatocytes for 30-180 s with 1 micrograms/ml phorbol 12-myristate 13-acetate prior to the addition of EGF blocked the EGF-stimulated production of Ins(1,4,5)P3 and the increase in [Ca2+]i. Phorbol 12-myristate 13-acetate attenuated the production of Ins(1,4,5)P3 generated by angiotensin II over the concentration range of 10(-10) to 10(-8) M; however, the Ca2+ signal was only inhibited at the 10(-10) M dose of angiotensin II. Treatment of rats with pertussis toxin for 72 h prior to isolating hepatocytes blocked the ability of EGF to increase Ins(1,4,5)P3 and Ins(1,3,4)P3 but did not inhibit the ability of any concentration of angiotensin II to stimulate formation of InsP3 or inositol tetrakisphosphate. The observation that pertussis toxin selectively abolishes EGF-stimulated inositol lipid breakdown suggests that EGF and angiotensin II use different mechanisms to activate phospholipase C in hepatocytes.  相似文献   

16.
The ability of D-6-deoxy-myo-inositol 1,4,5-trisphosphate [6-deoxy-Ins(1,4,5)P3], a synthetic analogue of the second messenger D-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P3], to mobilise intracellular Ca2+ stores in permeabilised SH-SY5Y neuroblastoma cells was investigated. 6-Deoxy-Ins(1,4,5)P3 was a full agonist (EC50 = 6.4 microM), but was some 70-fold less potent than Ins (1,4,5)P3 (EC50 = 0.09 microM), indicating that the 6-hydroxyl group of Ins(1,4,5)P3 is important for receptor binding and stimulation of Ca2+ release, but is not an essential structural feature. 6-Deoxy-Ins(1,4,5)P3 was not a substrate for Ins (1,4,5)P3 5-phosphatase, but inhibited both the hydrolysis of 5-[32P]+ Ins (1,4,5)P3 (Ki 76 microM) and the phosphorylation of [3H]Ins(1,4,5)P3 (apparent Ki 5.7 microM). 6-Deoxy-Ins (1,4,5)P3 mobilized Ca2+ with different kinetics to Ins(1,4,5)P3, indicating that it is probably a substrate for Ins (1,4,5)P3 3-kinase.  相似文献   

17.
Permeabilized rat hepatocytes were used to study the effects of inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) and GTP on Ca2+ uptake and release by ATP-dependent intracellular Ca2+ storage pools. Under conditions where these Ca2+ pools were completely filled, maximal doses of Ins(1,4,5)P3 released only 25-30% of the sequestered Ca2+. The residual Ca2+ was freely releasable with the Ca2+ ionophore ionomycin. Addition of GTP in the absence of Ins(1,4,5)P3 did not cause Ca2+ release and had no effect on the steady-state level of Ca2+ accumulation by intracellular storage pools. However, after a 3-4-min treatment with GTP the size of the Ins(1,4,5)P3-releasable Ca2+ pool was increased by about 2-fold, with a proportional decrease in the residual Ca2+ available for release by ionomycin. In contrast to the situation with freshly permeabilized cells, permeabilized hepatocytes from which cytosolic components had been washed out exhibited direct Ca2+ release in response to GTP addition. The potentiation of Ins(1,4,5)P3-induced Ca2+ release by GTP in permeabilized hepatocytes was concentration-dependent with half-maximal effects at about 5 microM GTP. The dose response to Ins(1,4,5)P3 was not shifted by GTP; instead GTP increased the amount of Ca2+ released at all Ins(1,4,5)P3 concentrations. The effects of GTP were not mimicked by other nucleotides or nonhydrolyzable GTP analogues. In fact, guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) inhibited the actions of GTP. However, this inhibition only occurred when GTP gamma S was added prior to GTP, suggesting that the GTP effect is not readily reversible once the cells have been permeabilized. Experiments using vanadate to inhibit the ATP-dependent Ca2+ uptake pump showed that Ins(1,4,5)P3 releases all of the Ca2+ within the Ins(1,4,5)P3-sensitive Ca2+ pool even in the absence of GTP. The increase of Ins(1,4,5)P3-induced Ca2+ release brought about by GTP was also unaffected by vanadate. It is concluded that GTP increases the proportion of the sequestered Ca2+ which is available for release by Ins(1,4,5)P3, either by unmasking latent Ins(1,4,5)P3-sensitive Ca2+ release sites or by allowing direct Ca2+ movement between Ins(1,4,5)P3-sensitive and Ins(1,4,5)P3-insensitive Ca2+ storage pools.  相似文献   

18.
The role of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3]-sensitive Ca2+ pools in secretion, induced by muscarinic agonists in porcine adrenal chromaffin cells, was studied. Activation of muscarinic receptors, as in other species, was found to increase inositol phosphate production including that of Ins(1,4,5)P3. Treatment of cells with thapsigargin, which is known to deplete Ins(1,4,5)P3-sensitive Ca2+ pools, eliminated the initial transient component of increases in the cytosolic free Ca2+ concentration ([Ca2+]in) induced by the muscarinic agonist, methacholine, in both the presence and the absence of extracellular Ca2+. Thapsigargin treatment also decreased methacholine-induced secretion by about 30% in the presence of extracellular Ca2+ and essentially eliminated secretion that occurred independently of extracellular Ca2+ (which was about 30% of the secretory response that occurred in the presence of extracellular Ca2+). Thapsigargin itself had no effect on inositol phosphate production. These results indicate that about 30% of muscarinic agonist-induced secretion is mediated by the release of Ca2+ from Ins(1,4,5)P3- and thapsigargin-sensitive intracellular Ca2+ pools. These results also suggest that Ca2+ influx activated by muscarinic agonists is not due to depletion of intracellular Ca2+ pools, as prior depletion of these pools had no effect on the portion of the methacholine-induced secretory response and [Ca2+]in signal that was dependent on extracellular Ca2+.  相似文献   

19.
Both phytohaemagglutinin and antibodies to the CD3 molecule induced proliferation and phosphoinositide hydrolysis in human peripheral-blood T lymphocytes, but the magnitude of the inositol phosphate response was small and the rate of accumulation slow [significant increases in Ins(1,4,5)P3 were observed only after 10 min]. Hence this response differs from the well-characterized Ins(1,4,5)P3 responses of many other systems. This slow response, its abrogation in Ca2+-depleted medium, the slow and maintained increase in Ca2+ as measured by Quin-2, and the ability of the Ca2+ ionophore A23187 to stimulate Ins(1,4,5)P3 accumulation all suggest that the increase in Ins(1,4,5)P3 occurs, at least in part, as a result of receptor-mediated Ca2+ influx in mitogen-stimulated T lymphocytes.  相似文献   

20.
In Dictyostelium discoideum extracellular cAMP stimulates guanylyl cyclase and phospholipase C; the latter enzyme produces Ins(1,4,5)P3 which releases Ca2+ from internal stores. The following data indicate that intracellular Ca2+ ions inhibit guanylyl cyclase activity. 1) In vitro, Ca2+ inhibits guanylyl cyclase with IC50 = 41 nM Ca2+ and Hill-coefficient of 2.1. 2) Extracellular Ca2+ does not affect basal cGMP levels of intact cells. In electro-permeabilized cells, however, cGMP levels are reduced by 85% within 45 s after addition of 10(-6) M Ca2+ to the medium; halfmaximal reduction occurs at 200 nM extracellular Ca2+. 3) Receptor-stimulated activation of guanylyl cyclase in electro-permeabilized cells is also inhibited by extracellular Ca2+ with half-maximal effect at 200 nM Ca2+. 4) In several mutants an inverse correlation exists between receptor-stimulated Ins(1,4,5)P3 production and cGMP formation. We conclude that receptor-stimulated cytosolic Ca2+ elevation is a negative regulator of receptor-stimulated guanylyl cyclase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号