首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The UM-X7.1 myopathic and control hamsters at 40, 120 and 280 days of age were employed for the examination of heart sarcolemmal Ca2+-transport activities. Na+-dependent Ca2+ uptake activities were significantly depressed in myopathic animals at 120 and 280 days of age in comparison to the control values. No difference in Na+-induced Ca2+ release activities was found between control and experimental sarcolemmal vesicles. ATP-dependent Ca2+ binding and Ca2+-stimulated, Mg2+ ATPase activities were depressed in the experimental animals at 120 and 280 days of age. Similar alterations in the sarcolemmal Na+-dependent Ca2+ exchange and Ca2+-pump activities were seen upon treating the control hamsters with 40 mg/kg isoproterenol for 24 hr. It is suggested that a depression in the sarcolemmal Ca2+ transport activities may contribute to the development of intracellular Ca2+ overload in the genetically determined cardiomyopathy in hamsters and such a defect may be due to excessive amount circulating catecholamines in these animals.  相似文献   

2.
Although sarcolemmal (SL) Na+/Ca2+ exchanger is known to regulate the intracellular Ca2+ concentration ([Ca2+]i), its involvement in catecholamine-induced increase in [Ca2+]i is not fully understood. To gain some information in this regard, isolated rat cardiomyocytes were treated with different agents, which are known to modify Ca2+ movements, in the absence or presence of a beta-adrenoceptor agonist, isoproterenol, and [Ca2+]i in cardiomyocytes was determined spectrofluorometrically with fura-2 AM. Treatment with isoproterenol did not alter [Ca2+]i in quiescent cardiomyocytes, whereas the ATP (purinergic receptor agonist)-induced increase in [Ca2+]i was significantly potentiated by isoproterenol. Unlike ryanodine and cyclopiazonic acid, which affect the sarcoplasmic reticulum function, SL L-type Ca2+ channel blockers verapamil and diltiazem, as well as a SL Ca2+-pump inhibitor, vanadate, caused a significant depression in the isoproterenol-induced increase in [Ca2+]i. The SL Na+/Ca2+ exchange blockers amiloride, Ni2+, and KB-R7943 also attenuated the isoproterenol-mediated increase in [Ca2+]i. Combination of KB-R7943 and verapamil showed additive inhibitory effects on the isoproterenol-induced increase in [Ca2+]i. The isoproterenol-induced increase in [Ca2+]i in KCl-depolarized cardiomyocytes was augmented by low Na+; this augmentation was significantly depressed by treatment with KB-R7943. The positive inotropic action of isoproterenol in isolated hearts was also reduced by KB-R7943. These data suggest that in addition to SL L-type Ca2+ channels, SL Na+/Ca2+ exchanger seems to play an important role in catecholamine-induced increase in [Ca2+]i in cardiomyocytes.  相似文献   

3.
In order to identify defects in Na+-Ca2+ exchange and Ca2+-pump systems in cardiomyopathic hearts, the activities of sarcolemmal Na+-dependent Ca2+ uptake, Na+-induced Ca2+ release, ATP-dependent Ca2+ uptake and Ca2+-stimulated ATPase were examined by employing cardiomyopathic hamsters (UM-X7.1) and catecholamine-induced cardiomyopathy produced by injecting isoproterenol into rats. The rates of Na+-dependent Ca2+ uptake, ATP-dependent Ca2+ uptake and Ca2+-stimulated ATPase activities of sarcolemmal vesicles from genetically-linked cardiomyopathic as well as catecholamine-induced cardiomyopathic hearts were decreased without any changes in Na+-induced Ca2+-release. Similar results were obtained in Ca2+-paradox when isolated rat hearts were perfused for 5 min with a medium containing 1.25 mM Ca2+ following a 5 min perfusion with Ca2+-free medium. Although a 2 min reperfusion of the Ca2+-free perfused hearts depressed sarcolemmal Ca2+-pump activities without any changes in Na+-induced Ca2+-release, Na+-dependent Ca2+ uptake was increased. These results indicate that alterations in the sarcolemmal Ca2+-efflux mechanisms may play an important role in cardiomyopathies associated with the development of intracellular Ca2+ overload.  相似文献   

4.
Although it is generally accepted that the efficacy of imidapril, an angiotensin-converting enzyme inhibitor, in congestive heart failure (CHF) is due to improvement of hemodynamic parameters, the significance of its effect on gene expression for sarcolemma (SL) and sarcoplasmic reticulum (SR) proteins has not been fully understood. In this study, we examined the effects of long-term treatment of imidapril on mortality, cardiac function, and gene expression for SL Na+/K+ ATPase and Na+ -Ca2+ exchanger as well as SR Ca2+ pump ATPase, Ca2+ release channel (ryanodine receptor), phospholamban, and calsequestrin in CHF due to myocardial infarction. Heart failure subsequent to myocardial infarction was induced by occluding the left coronary artery in rats, and treatment with imidapril (1 mg.kg(-1).day(-1)) was started orally at the end of 3 weeks after surgery and continued for 37 weeks. The animals were assessed hemodynamically and the heart and lung were examined morphologically. Some hearts were immediately frozen at -70 degrees C for the isolation of RNA as well as SL and SR membranes. The mortality of imidapril-treated animals due to heart failure was 31% whereas that of the untreated heart failure group was 64%. Imidapril treatment improved cardiac performance, attenuated cardiac remodeling, and reduced morphological changes in the heart and lung. The depressed SL Na+/K+ ATPase and increased SL Na+-Ca2+ exchange activities as well as reduced SR Ca2+ pump and SR Ca2+ release activities in the failing hearts were partially prevented by imidapril. Although changes in gene expression for SL Na+/K+ ATPase isoforms as well as Na+-Ca2+ exchanger and SR phospholamban were attenuated by treatments with imidapril, no alterations in mRNA levels for SR Ca2+ pump proteins and Ca2+ release channels were seen in the untreated or treated rats with heart failure. These results suggest that the beneficial effects of imidapril in CHF may be due to improvements in cardiac performance and changes in SL gene expression.  相似文献   

5.
Stimulation of Na+-Ca2+ exchange in heart sarcolemma by insulin   总被引:1,自引:0,他引:1  
Insulin was found to stimulate Na+-dependent Ca2+ uptake in dog heart sarcolemma in a concentration dependent manner (0.001 to 1 milliunits/ml). Maximal stimulation (160 to 170%) was seen at 0.1 to 1 milliunits/ml of insulin. Unlike Na+-dependent Ca2+ uptake, ATP-dependent Ca2+ uptake was unaltered by 1 microunit/ml of insulin. However, high concentrations of insulin (0.01 to 1 milliunits/ml) significantly increased the ATP-dependent Ca2+ uptake activity of heart sarcolemma; maximal increase (60%) was observed at 1 milliunit/ml of insulin. The Na+ K+-ATPase activity did not change upon incubating sarcolemma with insulin. The membrane preparation exhibited specific insulin binding characteristics. The Scatchard plot analysis of the data indicated two binding sites for insulin; the association constants for the high and low affinity sites were 2 X 10(9) M-1 and 4.4 X 10(8) M-1, respectively. These results support the view regarding the presence of insulin receptors in the heart cell membrane and indicate a dramatic effect of insulin on the sarcolemmal Ca2+ transport systems.  相似文献   

6.
1. Sodium-free contractures were studied in myocardial strips from R. pipiens with extracellular sodium (Na+o) replaced by choline chloride and extracellular calcium (Ca2+o) varied with EGTA-buffer. Normal myocardium was compared with that damaged by adrenaline (ADR) or isoproterenol (ISO). 2. Frog myocardium, damaged by in vivo injections of catecholamines, remained relaxed when exposed to Na+/Ca2+-free solutions. Only in 2 out of 18 experiments were small contractures observed after several hours. 3. Addition of KCN to the Na+/Ca2+-free solution caused small contractures after several hours in 7 out of 10 experiments. 4. The time to maximum Na+-free contractures was correlated to Ca2+o in a dose-dependent manner, but not influenced by catecholamine-induced myocardial damage. 5. Cell injury in the frog heart after in vivo injections of catecholamines does not affect the sarcolemmal Na+/Ca2+-exchange and is not associated with passive leakage of Ca2+ from the extracellular to the intracellular space.  相似文献   

7.
Treatment of bovine pulmonary artery smooth muscle microsomes with peroxynitrite (ONOO-) (100 microM) markedly stimulated matrix metalloproteinase-2 (MMP-2) activity and also enhanced Ca2+ATPase activity and ATP-dependent Ca2+ uptake. Pretreatment of the microsomes with vitamin E (1 mM) and TIMP-2 (50 microg/ml) preserved the increase in MMP-2 activity, Ca2+ATPase activity and also ATP-dependent Ca2+ uptake in the microsomes. In contrast, Na(+)-dependent Ca2+ uptake in the microsomes was inhibited by ONOO- and this was found to be reversed by vitamin E (1 mM) and TIMP-2 (50 microg/ml). However, changes caused by ONOO- in MMP-2 activity, ATP-dependent Ca2+ uptake and Na(+)-dependent Ca2+ uptake were not reversed upon pretreatment of the microsomes with a low concentration of 5 microg/ml of TIMP-2 which, on the contrary, reversed MMP-2 (1 microg/ml)-mediated alteration on these parameters. The inhibition of Na(+)-dependent Ca2+ uptake by ONOO- and MMP-2 overpowered the stimulation of ATP-dependent Ca2+ uptake in the microsomes. Treatment with ONOO- abolished the inhibitory effect of TIMP-2 (5 microg/ml) on MMP-2 (1 microg/ml) causing 14C-gelatin degradation. Overall, the present study suggests that ONOO- inactivated TIMP-2, the ambient inhibitor of MMP-2, leading to activation of the ambient proteinase, MMP-2, and subsequently stimulated Ca2+ATPase activity and ATP-dependent Ca2+ uptake, but inhibited Na(+)-dependent Ca2+ uptake, resulting in a marked decrease in Ca2+ uptake in microsomes of bovine pulmonary artery smooth muscle.  相似文献   

8.
1. Taurine, but not GABA, beta-alanine and glycine, inhibited Na(+)-dependent Ca2+ uptake in bovine cardiac sarcolemmal membrane vesicles in a dose-dependent manner. 2. The inhibition of Na(+)-dependent Ca2+ uptake was noncompetitive with respect to Ca2+ concentration. 3. The inhibitory effect of taurine on the exchange was also observed in cardiac sarcolemmal vesicles prepared from guinea pig, but not from rat. 4. Taurine did not affect Na(+)-dependent Ca2+ efflux nor ATP-dependent Ca2+ uptake in the bovine cardiac membranes.  相似文献   

9.
Treatment of microsomes (preferably enriched with endoplasmic reticulum) isolated from bovine pulmonary artery smooth muscle tissue with the O2*- -generating system (hypoxanthine (HPX) plus xanthine oxidase (XO)), markedly stimulated matrix metalloproteinase-2 (MMP-2) activity and also enhanced Ca2+ ATPase activity and ATP-dependent Ca2+ uptake. Pretreatment with superoxide dismutase (SOD) and tissue inhibitor of metalloproteinase (TIMP-2) (50 microg ml(-1)), preserved the increase in MMP-2 activity, Ca2+ ATPase activity and also ATP-dependent Ca2+ uptake in the microsomes. In contrast, Na+-dependent Ca2+ uptake in the microsomes was found to be inhibited by the O2*- - generating system. Additionally, O2*- -induced inhibition of Na+-dependent Ca2+ uptake was reversed by SOD and TIMP-2 (50 microg ml(-1)). Electron microscopy revealed that treatment with the O2*- -generating system did not cause any noticeable damage to the microsomes. O2*- -induced changes in MMP-2 activity, ATP-dependent Ca2+ uptake and Na+-dependent Ca2+ uptake, were not reversed upon pretreatment of the microsomes with a low dose (5 microg ml(-1)) of TIMP-2 which, on the contrary, reversed MMP-2 (1 microg ml(-1))-mediated alteration on these parameters. The inhibition of Na+-dependent Ca2+ uptake by O2*- and MMP-2, overpowered the stimulation of ATP-dependent Ca2+ uptake in the microsomes. Treatment of TIMP-2 (5 microg ml(-1)) with the O2*- -generating system abolished the inhibitory effect of TIMP-2 (5 microg ml(-1)) on MMP-2 (1 microg ml(-1)) (measured by (14)C-gelatin degradation). Overall, the present study suggests that O2*- inactivated TIMP-2, the ambient inhibitor of MMP-2, leading to activation of the ambient proteinase, MMP-2, which subsequently stimulated Ca2+ ATPase activity and ATP-dependent Ca2+ uptake, but inhibited Na+-dependent Ca2+ uptake, resulting in a marked decrease in Ca2+ uptake in the smooth muscle microsomes.  相似文献   

10.
The uptake of 22Na+ and secretion of catecholamines by primary cultures of adrenal medulla cells under the influence of a variety of agonists and antagonists were determined. Veratridine, batrachotoxin, scorpion venom, and nicotine caused a parallel increase in 22Na+ uptake and Ca2+-dependent catecholamine secretion. Ba2+, depolarizing concentrations of K+, and the Ca2+ ionophore Ionomycin stimulated secretion of catecholamines but did not increase the uptake of 22Na+. Tetrodotoxin inhibited both 22Na+ uptake and catecholamine secretion evoked by veratridine, batrachotoxin, and scorpion venom, but had no effect on 22Na+ uptake and catecholamine secretion caused by nicotine. On the other hand, histrionicotoxin, which blocks the acetylcholine receptor-linked ion conductance channel, blocked nicotine-stimulated 22Na+ uptake and catecholamine secretion, but only partially inhibited veratridine-stimulated catecholamine secretion and had no effect on veratridine-stimulated 22Na+ uptake. The combination of veratridine plus tetrodotoxin, which has been shown to prevent nicotine-stimulated secretion of catecholamines by adrenal medulla cells, also prevented nicotine-stimulated 22Na+ uptake by the primary cultures. These studies demonstrate the presence of tetrodotoxin-sensitive Na+ channels in adrenal medulla cells which are functionally linked to Ca2+-dependent catecholamine secretion. However, These channels are not utilized for Na+ entry upon activation of nicotinic receptors; in this case Na+ entry occurs through the receptor-associated ion conductance channel.  相似文献   

11.
Monoclonal antibodies 44D7 and 4F2 inhibited specifically the Na+-dependent Ca2+ fluxes characteristic of the Na+/Ca2+ exchanger in cardiac and skeletal muscle sarcolemmal vesicles. Preincubation of membrane vesicles with monoclonal antibody 44D7 inhibited 90% of the Na+-dependent Ca2+ uptake measured in the first 10 s of the reaction and 50% of that measured after 60 s. Ca2+/calmodulin-dependent ATPase activity and ATP-dependent Ca2+ uptake by sarcolemmal vesicles were not affected by monoclonal antibody 44D7 whereas the Na+-dependent release of accumulated Ca2+ was inhibited. In the presence of the 44D7 antigen isolated from human kidney, monoclonal antibody 44D7 could no longer inhibit Na+-dependent Ca2+ fluxes. The distribution of 4F2 antigenic activity in the isolated muscle membrane fractions correlated with that of Na+/Ca2+ exchanger activity; cardiac and skeletal muscle sarcolemmal vesicles expressed higher levels of the antigen than skeletal muscle transverse tubule membrane, while no antigen could be detected in sarcoplasmic reticulum membranes. Our results suggest that monoclonal antibodies 44D7 and 4F2 interact either directly with the Na+/Ca2+ exchanger molecules or with some other protein(s) responsible for the regulation of this activity in the heart and skeletal muscle.  相似文献   

12.
Heart failure is common among the elderly and an alteration in myocardial Ca2+ transport is believed to be involved in its depressed contractile performance. Although ATP-dependent sarcoplasmic reticular (SR) Ca2+ transport has been reported to decrease in old hearts, virtually nothing appears to be known about the Ca2+ pump activity of SR in aging myocardium in the presence of calmodulin, one of its endogenous activators. In this study, the activity of the Ca2+ pump of aging cardiac SR was assessed in the presence of this endogenous stimulator. This assessment was therefore designed to give additional information about the status of this enzyme in old hearts. Male Sprague-Dawley rats were used and were divided into 3 groups: young (4-6 months old); middle-aged (15-17 months old) and old age (24-25 months old). Purified SR membranes were isolated from ventricular tissues. ATP-dependent Ca2+ accumulation by membrane vesicles of middle-aged and old hearts was significantly depressed in comparison to young hearts at all Ca2+ concentrations employed in the absence and presence of calmodulin. The activity of this Ca2+ transporter was similar in middle-aged and old hearts even in the presence of calmodulin. These results suggest that the activity of the Ca2+ pump in SR of aging hearts is depressed even in the presence of calmodulin.  相似文献   

13.
This study tests the hypothesis that a decrease of the free energy of ATP hydrolysis (Delta GATP) below a threshold value will inhibit Na+-K+-ATPase (Na+ pump) activity and result in an increase of intracellular Na+ concentration ([Na+]i) in the heart. Conditions were designed in which hearts were solely dependent on ATP derived from oxidative phosphorylation. The only substrate supplied was the fatty acid butyrate (Bu) at either low, 0.1 mM (LowBu), or high, 4 mM (HighBu), concentrations. Escalating work demand reduced the Delta GATP of the LowBu hearts. 31P, 23Na, and 87Rb NMR spectroscopy measured high-energy phosphate metabolites, [Na+]i, and Rb+ uptake. Rb+ uptake was used to estimate Na+ pump activity. To measure [Na+]i using a shift reagent for cations, extracellular Ca2+ was reduced to 0.85 mM, which eliminated work demand Delta GATP reductions. Increasing extracellular Na+ (Nae+) to 200 mM restored work demand Delta GATP reductions. In response to higher [Na+]e, [Na+]i increased equally in LowBu and HighBu hearts to approximately 8.6 mM, but Delta GATP decreased only in LowBu hearts. At lowest work demand the LowBu heart Delta GATP was -53 kJ/mol, Rb+ uptake was similar to that of HighBu hearts, and [Na+]i was constant. At highest work demand the LowBu heart Delta GATP decreased to -48 kJ/mol, the [Na+]i increased to 25 mM, and Rb+ uptake was 56% of that in HighBu hearts. At the highest work demand the HighBu heart Delta GATP was -54 kJ/mol and [Na+]i increased only approximately 10%. We conclude that a Delta GATP below -50 kJ/mol limits the Na+ pump and prevents maintenance of [Na+]i homeostasis.  相似文献   

14.
Mitochondria isolated from rat hearts perfused with adrenaline, and from hearts excised from adrenaline-treated rats, showed an enhanced rate of respiration-dependent Ca2+ uptake. Adrenaline pretreatment did not change the activity of the Na+/Ca2+-antiporter of isolated heart mitochondria. Simultaneous measurements of the membrane potential revealed that perfusion with adrenaline has no significant effect on this parameter during Ca2+ accumulation. The activation of Ca2+ uptake was induced also by the alpha-adrenergic agonist, methoxamine, but not by the beta-adrenergic agonist, isoprenaline. Methoxamine pretreatment also increased the sensitivity of alpha-oxoglutarate dehydrogenase in intact mitochondria to 10 nM--300 nM extramitochondrial Ca2+ during steady-state Ca2+ recycling across the inner membrane. Possible implications of these data for the adrenergic regulation of oxidative metabolism are discussed.  相似文献   

15.
Ca2+ transport was studied by using basolateral plasma membrane vesicles from rat parotid gland prepared by a Percoll gradient centrifugation method. In these membrane vesicles, there were two Ca2+ transport systems; Na+/Ca2+ exchange and ATP-dependent Ca2+ transport. An outwardly directed Na+ gradient increased Ca2+ uptake. Ca2+ efflux from Ca2+-preloaded vesicles was stimulated by an inwardly directed Na+ gradient. However, Na+/Ca2+ exchange did not show any 'uphill' transport of Ca2+ against its own gradient. ATP-dependent Ca2+ transport exhibited 'uphill' transport. An inwardly directed Na+ gradient also decreased Ca2+ accumulation by ATP-dependent Ca2+ uptake. The inhibition of Ca2+ accumulation was proportional to the external Na+ level. Na+/Ca2+ exchange was inhibited by monensin, tetracaine and chlorpromazine, whereas ATP-dependent Ca2+ transport was inhibited by orthovanadate, tetracaine and chlorpromazine. Oligomycin had no effect on either system. These results suggest that in the parotid gland cellular free Ca2+ is extruded mainly by an ATP-dependent Ca2+ transport system, and Na+/Ca2+ exchange may modify the efficacy of that system.  相似文献   

16.
The significance of altered Ca2+ influx and efflux pathways on contractile abnormalities of myocytes isolated from rat hearts 3 wk after myocardial infarction (MI) was investigated by varying extracellular Ca2+ concentration ([Ca2+]o, 0.6-5.0 mM) and pacing frequency (0.1-5.0 Hz). Myocytes isolated from 3-wk MI hearts were significantly longer than those from sham-treated (Sham) hearts (125 +/- 1 vs. 114 +/- 1 micrometer, P < 0.0001). At high [Ca2+]o and low pacing frequency, conditions that preferentially favored Ca2+ influx over efflux, Sham myocytes shortened to a greater extent than 3-wk MI myocytes. Conversely, under conditions that favored Ca2+ efflux (low [Ca2+]o and high pacing frequency), MI myocytes shortened more than Sham myocytes. At intermediate [Ca2+]o and pacing frequencies, differences in steady-state contraction amplitudes between Sham and MI myocytes were no longer significant. Collectively, the interpretation of these data was that Ca2+ influx and efflux pathways were subnormal in MI myocytes and that they contributed to abnormal cellular contractile behavior. Because Na+/Ca2+ exchange activity, but not whole cell Ca2+ current, was depressed in 3-wk MI rat myocytes, our results on steady-state contraction are consistent with, but not proof of, the hypothesis that depressed Na+/Ca2+ exchange accounted for abnormal contractility in MI myocytes. The effects of depressed Na+/Ca2+ exchange on MI myocyte mechanical activity were further evaluated in relaxation from caffeine-induced contractures. Because Ca2+ uptake by sarcoplasmic reticulum was inhibited by caffeine and with the assumption that intracellular Na+ and membrane potential were similar between Sham and MI myocytes, myocyte relaxation from caffeine-induced contracture can be taken as an estimate of Ca2+ extrusion by Na+/Ca2+ exchange. In MI myocytes, in which Na+/Ca2+ exchange activity was depressed, the half time of relaxation (1.54 +/- 0.14 s) was significantly (P < 0.02) prolonged compared with that measured in Sham myocytes (1.10 +/- 0.10 s).  相似文献   

17.
The plasma membrane ATP-dependent Ca2+ pump and the Na+/Ca2+ exchanger (NCX) are the major means of Ca2+ extrusion in smooth muscle. However, little is known regarding distribution and function of the NCX in guinea pig gastric smooth muscle. The expression pattern and distribution of NCX isoforms suggest a role as a regulator of Ca2+ transport in cells. Na+ pump inhibition and the consequent to removal of K+ caused gradual contraction in fundus. In contrast, the response was significantly less in antrum. Western blotting analysis revealed that NCX1 and NCX2 are the predominant NCX isoforms expressed in stomach, the former was expressed strongly in antrum, whereas the latter displayed greater expression in fundus. Isolated plasma membrane fractions derived from gastric fundus smooth muscle were also investigated to clarify the relationship between NCX protein expression and function. Na+-dependent Ca2+ uptake increased directly with Ca2+ concentration. Ca2+ uptake in Na+-loaded vesicles was markedly elevated in comparison with K+-loaded vesicles. Additionally, Ca2+ uptake by the Na+- or K+-loaded vesicles was substantially higher in the presence of A23187 than in its absence. The result can be explained based on the assumption that Na+ gradients facilitate downhill movement of Ca2+. Na+-dependent Ca2+ uptake was abolished by the monovalent cationic ionophore, monensin. NaCl enhanced Ca2+ efflux from vesicles, and this efflux was significantly inhibited by gramicidin. Results documented evidence that NCX2 isoform functionally contributes to Ca2+ extrusion and maintenance of contraction-relaxation cycle in gastric fundus smooth muscle.  相似文献   

18.
ATP-dependent Na+ transport in cardiac sarcolemmal vesicles   总被引:3,自引:0,他引:3  
Although the enzyme (Na+ + K+)-ATPase has been extensively characterized, few studies of its major role, ATP-dependent Na+ pumping, have been reported in vesicular preparations. This is because it is extremely difficult to determine fluxes of isotopic Na+ accurately in most isolated membrane systems. Using highly purified cardiac sarcolemmal vesicles, we have developed a new technique to detect relative rates of ATP-dependent Na+ transport sensitively. This technique relies on the presence of Na+-Ca2+ exchange and ATP-driven Na+ pump activities on the same inside-out sarcolemmal vesicles. ATP-dependent Na+ uptake is monitored by a subsequent Nai+-dependent Ca2+ uptake reaction (Na+-Ca2+ exchange) using 45Ca2+. We present evidence that the Na+-Ca2+ exchange will be linearly related to the prior active Na+ uptake. Although this method is indirect, it is much more sensitive than a direct approach using Na+ isotopes. Applying this method, we measure cardiac ATP-dependent Na+ transport and (Na+ + K+)-ATPase activities in identical ionic media. We find that the (Na+ + K+)-ATPase and the Na+ pump have identical dependencies on both Na+ and ATP. The dependence on [Na+] is sigmoidal, with a Hill coefficient of 2.8. Na+ pumping is half-maximal at [Na+] = 9 mM. The Km for ATP is 0.21 mM. ADP competitively inhibits ATP-dependent Na+ pumping. This approach should allow other new investigations on ATP-dependent Na+ transport across cardiac sarcolemma.  相似文献   

19.
Post-quiescent potentiation (PQP), an enhanced contraction following a long pause that occurs as a result of increased Ca2+ release from intracellular stores, and post-stimulation potentiation (PSP), an enhanced contraction following a rapid series of contractions that is believed to be related to increased Ca2+ influx, were measured in streptozotocin-treated Wistar, spontaneously hypertensive (SHR), and Wistar-Kyoto (WKY) diabetic heart tissues. Decreased PQP values were found in Wistar and SHR diabetic papillary muscles (PM) in comparison with the same strain controls, which suggests a diminished degree of releasable Ca2+ from sarcoplasmic reticulum (SR) in these tissues. Decreased PSP was found in SHR diabetic PM, which may be related primarily to a depressed sarcolemmal (SL) Na(+)-Ca2+ exchange in this tissue. PSP was not decreased in diabetic Wistar or WKY cardiac preparations, indicating that Ca2+ entry via channels must be involved in the PSP mechanism. Ryanodine depressed PQP in Wistar and SHR PM, and SHR left atria in both control and diabetic tissues. It abolished PQP and SHR diabetic tissues but had no effect on WKY control and diabetic tissues. The data suggest that the ryanodine effect differs in the various strains of rat. These differences may be due to differences in the SR sensitivity to ryanodine among the strains. Diabetic SR with impaired Ca2+ uptake may contribute to these phenomena. Ryanodine depressed PSP of Wistar and SHR diabetic PM but had no effects on tissues from controls. The influence of ryanodine on diabetic SL Na(+)-Ca2+ exchange requires further investigation.  相似文献   

20.
Pantothenic acid transport was studied in the isolated perfused rat heart and isolated sheep cardiac sarcolemmal vesicles. In the perfused heart, pantothenic acid transport was significantly greater if hearts were perfused as working hearts rather than Langendorff hearts, but was unaffected by the perfusion substrates used (11 mM glucose or 1.2 mM palmitate). Uptake rates of pantothenic acid in working hearts are dependent on perfusate concentrations of pantothenic acid (a Vmax of 418 nmol/g dry weight/30 min and a Km for pantothenic acid of 10.7 mircoM were obtained). Reduction in perfusate Na+ concentration from 145 to 105 mM (the Na+ was replaced with 40 mM choline) resulted in a small but significant decrease in pantothenic acid uptake. At 145 mM Na+, addition of a mixture of amino acids, whose uptake is Na+-dependent, resulted in a significant decrease in pantothenic acid uptake by the heart (173 +/- 5 to 132 +/- 12 nmol/g dry weight). If an inward Na+ gradient in isolated, purified sarcolemmal vesicles, was imposed, a rapid uptake of pantothenic acid was observed. Uptake rates are markedly reduced if Na+ was replaced by equimolar concentrations of K+ or if external Na+ was reduced below 40 mM. In the presence of Na+, increasing pantothenic acid concentrations resulted in an increase in pantothenic acid uptake by the vesicles. Combined, these data demonstrate that pantothenic acid is transported across the myocardial sarcolemmal membrane by a Na+-dependent mechanism, which may be common to a number of small molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号