首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Understanding decisions about the allocation of resources into colony growth and reproduction in social insects is one of the challenging issues in sociobiology. In their seminal paper, Macevicz and Oster predicted that, for most annual insect colonies, a bang–bang strategy should be favoured by selection, i.e. a strategy characterised by an “ergonomic phase” with exponential colony growth followed by a “reproductive phase” with all resources invested into the production of sexuals. Yet, there is empirical evidence for the simultaneous investment into the production of workers and sexuals in annual colonies (graded control). We, therefore, re-analyse and extend the original model of Macevicz and Oster. Using basic calculus, we can show that sufficiently strong negative correlation between colony size and worker efficiency or increasing mortality of workers with increasing colony size will favour the evolution of graded allocation strategies. By similar reasoning, graded control is predicted for other factors limiting colony productivity (for example, if queens’ egg laying capacity is limited).  相似文献   

2.
Optimal colony size in eusocial insects likely reflects a balance between ecological factors and factors intrinsic to the social group. In a seminal paper Michener (1964) showed for some species of social Hymenoptera that colony production of immature stages (productivity), when transformed to a per-female basis, was inversely related to colony size. He concluded that social patterns exist in the social insects that cause smaller groups to be more efficient than larger groups. This result has come to be known as “Michener’s paradox” because it suggests that selection on efficiency would oppose the evolution of the large and complex societies that are common in the social insects. Michener suggested that large colony size has other advantages, such as improved defense and homeostasis, that are favored by selection. For his analysis of swarm-founding wasps, Michener combined data from colonies of different species and different developmental stages in order to obtain adequate sample sizes; therefore, his study did not make a strong case that efficiency decreases with increasing colony size (across colonies) in these wasps. We tested Michener’s hypothesis on the Neotropical swarm-founding wasp Parachartergus fraternus, while controlling for stage of colony development. We found that small colonies were more variable in percapita productivity relative to larger colonies, but found no evidence for a negative relationship between efficiency and size across colonies. Received 1 February 2006; revised 5 May 2006; accepted 11 May 2006.  相似文献   

3.
Social insects are well-known for their ability to achieve robust collective behaviours even when individuals have limited information. It is often assumed that such behaviours rely on very large group sizes, but many insect colonies start out with only a few workers. Here we investigate the influence of colony size on collective decision-making in the house-hunting of the ant Temnothorax albipennis. In experiments where colony size was manipulated by splitting colonies, we show that worker number has an influence on the speed with which colonies discover new nest sites, but not on the time needed to make a decision (achieve a quorum threshold) or total emigration time. This occurred because split colonies adopted a lower quorum threshold, in fact they adopted the same threshold in proportion to their size as full-size colonies. This indicates that ants may be measuring relative quorum, i.e. population in the new nest relative to that of the old nest, rather than the absolute number. Experimentally reduced colonies also seemed to gain more from experience through repeated emigrations, as they could then reduce nest discovery times to those of larger colonies. In colonies of different sizes collected from the field, total emigration time was also not correlated with colony size. However, quorum threshold was not correlated with colony size, meaning that individuals in larger colonies adopted relatively lower quorum thresholds. Since this is a different result to that from size-manipulated colonies, it strongly suggests that the differences between natural small and large colonies were not caused by worker number alone. Individual ants may have adjusted their behaviour to their colony’s size, or other factors may correlate with colony size in the field. Our study thus shows the importance of experimentally manipulating colony size if the effect of worker number on the emergence of collective behaviour is to be studied. Received 13 December 2005; revised 9 May 2006; accepted 15 May 2006.  相似文献   

4.
Social immunity   总被引:1,自引:0,他引:1  
Social insect colonies have evolved collective immune defences against parasites. These 'social immune systems' result from the cooperation of the individual group members to combat the increased risk of disease transmission that arises from sociality and group living. In this review we illustrate the pathways that parasites can take to infect a social insect colony and use these pathways as a framework to predict colony defence mechanisms and present the existing evidence. We find that the collective defences can be both prophylactic and activated on demand and consist of behavioural, physiological and organisational adaptations of the colony that prevent parasite entrance, establishment and spread. We discuss the regulation of collective immunity, which requires complex integration of information about both the parasites and the internal status of the insect colony. Our review concludes with an examination of the evolution of social immunity, which is based on the consequences of selection at both the individual and the colony level.  相似文献   

5.
Founding queens are central to the survival and maintenance of social insect colonies but are often ignored in studies of social insects. We expect the behaviors performed by a newly-mated ant queen to be critical to colony survival and maintenance but what are these behaviors and how do they change over time as colonies grow? The aim of this work was to describe and compare the behavioral repertoire performed by newly mated Atta sexdens queens during both founding and ergonomic stages. Using the Focal Animal Sampling method, 42 behavioral acts were identified and grouped into seven categories, according to their probable biological function. The most frequent behavioral acts were those related to selfgrooming, indicating the potential vulnerability of the colony to parasites at this early stage. Contrary to previous reports, A. sexdens queens feed on the fungus garden when founding new colonies, indicating that, although not exogenous, fungal staphylae, together with trophic eggs, supply the founding queens with a ready energy source they need during the founding stage. The behavioral repertoires of the queens that died during the observational period were compared with those of queens that survived. Before dying, queens performed a behavioral repertoire made almost exclusively of stereotyped behaviors, showing no apparent biological function. Queens that died exhibited lower frequencies of selfgrooming and did not ingest any staphylae, while laying more trophic eggs than the queens that survived. Our results indicate that selfgrooming may be a key behavior for queens to succeed in founding a colony in the absence of worker labor. Further, the behavioral repertoire reported can serve as a foundation for future behavioral work on this important phase in the life of social insects.  相似文献   

6.
Swarm robotics: a review from the swarm engineering perspective   总被引:1,自引:0,他引:1  
Swarm robotics is an approach to collective robotics that takes inspiration from the self-organized behaviors of social animals. Through simple rules and local interactions, swarm robotics aims at designing robust, scalable, and flexible collective behaviors for the coordination of large numbers of robots. In this paper, we analyze the literature from the point of view of swarm engineering: we focus mainly on ideas and concepts that contribute to the advancement of swarm robotics as an engineering field and that could be relevant to tackle real-world applications. Swarm engineering is an emerging discipline that aims at defining systematic and well founded procedures for modeling, designing, realizing, verifying, validating, operating, and maintaining a swarm robotics system. We propose two taxonomies: in the first taxonomy, we classify works that deal with design and analysis methods; in the second taxonomy, we classify works according to the collective behavior studied. We conclude with a discussion of the current limits of swarm robotics as an engineering discipline and with suggestions for future research directions.  相似文献   

7.
Social insects rank among the most invasive of terrestrial species. The success of invasive social insects stems, in part, from the flexibility derived from their social behaviors. We used genetic markers to investigate if the social system of the invasive wasp, Vespula pensylvanica, differed in its introduced and native habitats in order to better understand variation in social phenotype in invasive social species. We found that (1) nestmate workers showed lower levels of relatedness in introduced populations than native populations, (2) introduced colonies contained workers produced by multiple queens whereas native colonies contained workers produced by only a single queen, (3) queen mate number did not differ significantly between introduced and native colonies, and (4) workers from introduced colonies were frequently produced by queens that originated from foreign nests. Thus, overall, native and introduced colonies differed substantially in social phenotype because introduced colonies more frequently contained workers produced by multiple, foreign queens. In addition, the similarity in levels of genetic variation in introduced and native habitats, as well as observed variation in colony social phenotype in native populations, suggest that colony structure in invasive populations may be partially associated with social plasticity. Overall, the differences in social structure observed in invasive V. pensylvanica parallel those in other, distantly related invasive social insects, suggesting that insect societies often develop similar social phenotypes upon introduction into new habitats.  相似文献   

8.
In most species of social insects, when a queen departs from her parental nest to found a new colony, she leaves on her own. In some species, however, the departing queen leaves accompanied by a portion of the parental colony’s workers and there is a permanent fissioning of the worker force. Little is known about how the adult workers in colonies of fissioning species distribute themselves between the old and the new colonies. We examined this problem, building on Bulmer’s (J Theor Biol 100: 329–339, 1983) model for the optimal splitting of a colony’s adult workforce during colony reproduction. We first created an inclusive fitness model of optimal colony fissioning that applies to species in which fissioning gives rise to two autonomous colonies. The model predicts the optimal “swarm fraction”, which we define as the proportion of the adult workers in a fissioning colony that join the departing queen. We then tested the model by comparing the predicted and observed swarm fractions in honey bees. We found a close match between predicted (0.76–0.77) and observed (0.72 ± 0.04) swarm fractions. Evidently, worker honey bees distribute themselves between the old and new colonies in a way that jointly maximizes the inclusive fitness of each worker. We conclude by discussing additional ways to test the model.  相似文献   

9.
Basic elements of cognition have been identified in the behaviour displayed by animal collectives, ranging from honeybee swarms to human societies. For example, an insect swarm is often considered a ??super-organism?? that appears to exhibit cognitive behaviour as a result of the interactions among the individual insects and between the insects and the environment. Progress in disciplines such as neurosciences, cognitive psychology, social ethology and swarm intelligence has allowed researchers to recognise and model the distributed basis of cognition and to draw parallels between the behaviour of social insects and brain dynamics. In this paper, we discuss the theoretical premises and the biological basis of Swarm Cognition, a novel approach to the study of cognition as a distributed self-organising phenomenon, and we point to novel fascinating directions for future work.  相似文献   

10.
Information processing in social insect networks   总被引:1,自引:0,他引:1  
JS Waters  JH Fewell 《PloS one》2012,7(7):e40337
Investigating local-scale interactions within a network makes it possible to test hypotheses about the mechanisms of global network connectivity and to ask whether there are general rules underlying network function across systems. Here we use motif analysis to determine whether the interactions within social insect colonies resemble the patterns exhibited by other animal associations or if they exhibit characteristics of biological regulatory systems. Colonies exhibit a predominance of feed-forward interaction motifs, in contrast to the densely interconnected clique patterns that characterize human interaction and animal social networks. The regulatory motif signature supports the hypothesis that social insect colonies are shaped by selection for network patterns that integrate colony functionality at the group rather than individual level, and demonstrates the utility of this approach for analysis of selection effects on complex systems across biological levels of organization.  相似文献   

11.
The significance of multiple mating in the social wasp Vespula maculifrons   总被引:1,自引:0,他引:1  
The evolution of the complex societies displayed by social insects depended partly on high relatedness among interacting group members. Therefore, behaviors that depress group relatedness, such as multiple mating by reproductive females (polyandry), are unexpected in social insects. Nevertheless, the queens of several social insect species mate multiply, suggesting that polyandry provides some benefits that counteract the costs. However, few studies have obtained evidence for links between rates of polyandry and fitness in naturally occurring social insect populations. We investigated if polyandry was beneficial in the social wasp Vespula maculifrons. We used genetic markers to estimate queen mate number in V. maculifrons colonies and assessed colony fitness by counting the number of cells that colonies produced. Our results indicated that queen mate number was directly, strongly, and significantly correlated with the number of queen cells produced by colonies. Because V. maculifrons queens are necessarily reared in queen cells, our results demonstrate that high levels of polyandry are associated with colonies capable of producing many new queens. These data are consistent with the explanation that polyandry is adaptive in V. maculifrons because it provides a fitness advantage to queens. Our research may provide a rare example of an association between polyandry and fitness in a natural social insect population and help explain why queens in this taxon mate multiply.  相似文献   

12.
Social insect colonies are complex systems in which the interactions of many individuals lead to colony-level collective behaviors such as foraging. However, the emergent properties of collective behaviors may not necessarily be adaptive. Here, we examine symmetry breaking, an emergent pattern exhibited by some social insects that can lead colonies to focus their foraging effort on only one of several available food patches. Symmetry breaking has been reported to occur in several ant species. However, it is not clear whether it arises as an unavoidable epiphenomenon of pheromone recruitment, or whether it is an adaptive behavior that can be controlled through modification of the individual behavior of workers. In this paper, we used a simulation model to test how symmetry breaking is affected by the degree of non-linearity of recruitment, the specific mechanism used by individuals to choose between patches, patch size, and forager number. The model shows that foraging intensity on different trails becomes increasingly asymmetric as the recruitment response of individuals varies from linear to highly non-linear, supporting the predictions of previous work. Surprisingly, we also found that the direction of the relationship between forager number (i.e., colony size) and asymmetry varied depending on the specific details of the decision rule used by individuals. Limiting the size of the resource produced a damping effect on asymmetry, but only at high forager numbers. Variation in the rule used by individual ants to choose trails is a likely mechanism that could cause variation among the foraging behaviors of species, and is a behavior upon which selection could act.  相似文献   

13.
While self-assembly is a fairly active area of research in swarm intelligence, relatively little attention has been paid to the issues surrounding the construction of network structures. In this paper we extend methods developed previously for controlling collective movements of agent teams to serve as the basis for self-assembly or “growth” of networks, using neural networks as a concrete application to evaluate our approach. Our central innovation is having network connections arise as persistent “trails” left behind moving agents, trails that are reminiscent of pheromone deposits made by agents in ant colony optimization models. The resulting network connections are thus essentially a record of agent movements. We demonstrate our model’s effectiveness by using it to produce two large networks that support subsequent learning of topographic and feature maps. Improvements produced by the incorporation of collective movements are also examined through computational experiments. These results indicate that methods for directing collective movements can be adopted to facilitate network self-assembly.  相似文献   

14.
In socially living animals, individuals interact through complex networks of contact that may influence the spread of disease. Whereas traditional epidemiological models typically assume no social structure, network theory suggests that an individual’s location in the network determines its risk of infection. Empirical, especially experimental, studies of disease spread on networks are lacking, however, largely due to a shortage of amenable study systems. We used automated video-tracking to quantify networks of physical contact among individuals within colonies of the social bumble bee Bombus impatiens. We explored the effects of network structure on pathogen transmission in naturally and artificially infected hives. We show for the first time that contact network structure determines the spread of a contagious pathogen (Crithidia bombi) in social insect colonies. Differences in rates of infection among colonies resulted largely from differences in network density among hives. Within colonies, a bee’s rate of contact with infected nestmates emerged as the only significant predictor of infection risk. The activity of bees, in terms of their movement rates and division of labour (e.g., brood care, nest care, foraging), did not influence risk of infection. Our results suggest that contact networks may have an important influence on the transmission of pathogens in social insects and, possibly, other social animals.  相似文献   

15.
Chemical recognition cues are used to discriminate among species, con‐specifics, and potentially between patrilines in social insect colonies. There is an ongoing debate about the possible persistence of patriline cues despite evidence for the mixing of colony odors via a “gestalt” mechanism in social insects, because patriline recognition could lead to nepotism. We analyzed the variation in recognition cues (cuticular hydrocarbons) with different mating frequencies or queen numbers in 688 Formica exsecta ants from 76 colonies. We found no increase in the profile variance as genetic diversity increased, indicating that patriline effects were absent or possibly obscured by a gestalt mechanism. We then demonstrated that an isolated individual's profile changed considerably relative to their colony profile, before stabilizing after 5 days. We used these isolated individuals to eliminate the masking effects of the gestalt mechanism, and we detected a weak but statistically significant patriline effect in isolated adult workers and also in newly emerged callow workers. Thus, our evidence suggests that genetic variation in the cuticular hydrocarbon profile of F. exsecta ants (n‐alkanes and alkenes) resulted in differences among patrilines, but they were obscured in the colony environment, thereby avoiding costly nepotistic behaviors.  相似文献   

16.
Queen promiscuity lowers disease within honeybee colonies   总被引:2,自引:0,他引:2  
Most species of social insects have singly mated queens, but in some species each queen mates with numerous males to create a colony with a genetically diverse worker force. The adaptive significance of polyandry by social insect queens remains an evolutionary puzzle. Using the honeybee (Apis mellifera), we tested the hypothesis that polyandry improves a colony's resistance to disease. We established colonies headed by queens that had been artificially inseminated by either one or 10 drones. Later, we inoculated these colonies with spores of Paenibacillus larvae, the bacterium that causes a highly virulent disease of honeybee larvae (American foulbrood). We found that, on average, colonies headed by multiple-drone inseminated queens had markedly lower disease intensity and higher colony strength at the end of the summer relative to colonies headed by single-drone inseminated queens. These findings support the hypothesis that polyandry by social insect queens is an adaptation to counter disease within their colonies.  相似文献   

17.
Social insects are premier models for studying the evolution of self-organization in animal societies. Primitively social species may be informative about the early stages of social evolution and transitions in self-organization. Previous worker removal studies in Polistes instabilis paper wasps suggested that dominant but non-egglaying workers play an important role in regulating rates of task performance by inducing foraging in subordinates. We extend previous worker removal studies by quantifying changes in individuals’ behavior following removals, and by measuring associations between behavioral change and individuals’ reproductive capacity (ovary development). Workers changed their rates of aggressive behaviors more than queens following the dominant worker removals. Increases in worker’s rates of aggressive behaviors were correlated with decreases in their foraging rates. Changes in individual rates of social aggression were associated with their reproductive capacity: worker females with well-developed ovaries increased their rates of aggression. Further changes in rates of aggression after the dominant workers were returned also depended on ovary development. These patterns suggest that task performance and potential fecundity are linked in workers, and that worker interactions play a strong role in regulating task performance. We conclude that worker reproductive competition may have influenced the evolution of colony organization in social insects. Received 6 June 2008; revised 11 August 2008; accepted 12 August 2008.  相似文献   

18.
Social insects deploy numerous strategies against pathogens including behavioural, biochemical and immunological responses. While past research has revealed that adult social insects can generate immunity, few studies have focused on the immune function during an insect''s early life stages. We hypothesized that larvae of the black carpenter ant Camponotus pennsylvanicus vaccinated with heat-killed Serratia marcescens should be less susceptible to a challenge with an active and otherwise lethal dose of the bacterium. We compared the in vivo benefits of prior vaccination of young larvae relative to naive and ringer injected controls. Regardless of colony of origin, survival parameters of vaccinated individuals following a challenge were significantly higher than those of the other two treatments. Results support the hypothesis that ant larvae exhibit immune-priming. Based on these results, we can infer that brood care by workers does not eliminate the need for individual-level immunological responses. Focusing on these early stages of development within social insect colonies can start addressing the complex dynamics between physiological (individual level) and social (collective) immunity.  相似文献   

19.
The production of male sexual offspring by social insect colonies is often strongly seasonal or resource-dependent. In stingless bees, males are produced in smaller numbers under conditions of low colony food reserves; whether such males are negatively affected in traits related to reproductive success is not known. We compared body size, sperm production and sexual maturity in Melipona beecheii males reared with experimentally supplemented or reduced pollen reserves, but with otherwise equal numbers of workers and equal quantities of honey reserves. We also studied the same traits in males collected from non-manipulated colonies with pollen reserves intermediate between the supplemented or reduced groups but with more workers and honey reserves. Males reared under experimentally reduced pollen reserves had significantly smaller bodies and lower sperm counts compared to those reared in colonies with experimentally supplemented pollen reserves. There was also a significantly positive relationship between the number of sperm and body size in males across all colony treatments. The maximum number of sperm in seminal vesicles was recorded 2 days later in males from colonies with reduced pollen compared to males from colonies with supplementary pollen. Males from non-manipulated colonies were intermediate in size, sperm count and speed of maturation. Our study documents for the first time the existence of large size variation in males of stingless bees that is related with the amount of pollen reserves in their natal colony. We conclude that a colony’s pollen reserves have a major impact on male body size, sperm production and speed of sexual maturity in this stingless bee, which may be the case in other social insects. Stingless bees are a good model system to study the balance between colony-level selection and individual-level selection on male sexually selected traits such as body size.  相似文献   

20.
Process algebras are widely used in the analysis of distributed computer systems. They allow formal reasoning about how the various components of a system contribute to its overall behaviour. In this paper we show how process algebras can be usefully applied to understanding social insect biology, in particular to studying the relationship between algorithmic behaviour of individual insects and the dynamical behaviour of their colony. We argue that process algebras provide a useful formalism for understanding this relationship, since they combine computer simulation, Markov chain analysis and mean-field methods of analysis. Indeed, process algebras can provide a framework for relating these three methods of analysis to each other and to experiments. We illustrate our approach with a series of graded examples of modelling activity in ant colonies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号