首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA supercoiling is one of the mechanisms that can help unlinking of newly replicated DNA molecules. Although DNA topoisomerases, which catalyze the strand passing of DNA segments through one another, make the unlinking problem solvable in principle, it remains difficult to complete the process that enables the separation of the sister duplexes. A few different mechanisms were developed by nature to solve the problem. Some of the mechanisms are very intuitive while the others, like topology simplification by type II DNA topoisomerases and DNA supercoiling, are not so evident. A computer simulation and analysis of linked sister plasmids formed in Escherichia coli cells with suppressed topoisomerase IV suggests an insight into the latter mechanism.  相似文献   

2.
3.
The replication of circular DNA faces topological obstacles that need to be overcome to allow the complete duplication and separation of newly replicated molecules. Small bacterial plasmids provide a perfect model system to study the interplay between DNA helicases, polymerases, topoisomerases and the overall architecture of partially replicated molecules. Recent studies have shown that partially replicated circular molecules have an amazing ability to form various types of structures (supercoils, precatenanes, knots and catenanes) that help to accommodate the dynamic interplay between duplex unwinding at the replication fork and DNA unlinking by topoisomerases.  相似文献   

4.
It was found recently that DNA catenanes, formed during replication of circular plasmids, become positively (+) supercoiled, and the unlinking of such catenanes by type IIA topoisomerases proceeds much more efficiently than the unlinking of negatively (−) supercoiled catenanes. In an attempt to explain this striking finding we studied, by computer simulation, conformational properties of supercoiled DNA catenanes. Although the simulation showed that conformational properties of (+) and (−) supercoiled replication catenanes are very different, these properties per se do not give any advantage to (+) supercoiled over (−) supercoiled DNA catenanes for unlinking. An advantage became evident, however, when we took into account the established features of the enzymatic reaction catalyzed by the topoisomerases. The enzymes create a sharp DNA bend in the first bound DNA segment and allow for the transport of the second segment only from inside the bend to its outside. We showed that in (−) supercoiled DNA catenanes this protein-bound bent segment becomes nearly inaccessible for segments of the other linked DNA molecule, inhibiting the unlinking.  相似文献   

5.
A challenge for chromosome segregation in all domains of life is the formation of catenated progeny chromosomes, which arise during replication as a consequence of the interwound strands of the DNA double helix. Topoisomerases play a key role in DNA unlinking both during and at the completion of replication. Here we report that chromosome unlinking can instead be accomplished by multiple rounds of site-specific recombination. We show that step-wise, site-specific recombination by XerCD-dif or Cre-loxP can unlink bacterial chromosomes in vivo, in reactions that require KOPS-guided DNA translocation by FtsK. Furthermore, we show that overexpression of a cytoplasmic FtsK derivative is sufficient to allow chromosome unlinking by XerCD-dif recombination when either subunit of TopoIV is inactivated. We conclude that FtsK acts in vivo to simplify chromosomal topology as Xer recombination interconverts monomeric and dimeric chromosomes.  相似文献   

6.

Background  

The process of DNA replication requires the separation of complementary DNA strands. In this process, the unwinding of circularly closed or long DNA duplices leads to torsional tensions which must be released by topoisomerases. So topoisomerases play an important role in DNA replication. In order to provide more information about topoisomerases in the initiation of mammalian replication, we investigated whether topoisomerases occur close to ORC in the chromatin of cultured human HeLa cells.  相似文献   

7.
The effects of topoisomerases I and II on the replication of SV40 DNA were examined using an in vitro replication system of purified proteins that constitutes the monopolymerase system. In the presence of the two topoisomerases, two distinct nascent DNAs were formed. One product arising from the replication of the leading template strand was approximately half the size of the template DNA, whereas the other product derived from the lagging template strand consisted of short DNAs. These products were synthesized from both SV40 naked DNA and SV40 chromosomes. For the replication of SV40 naked DNA, either topoisomerase I or II maintained replication fork movement and supported complete leading strand synthesis. When SV40 chromosomes were replicated with the same proteins, reactions containing only topoisomerase I produced shorter leading strands. However, mature size DNA products accumulated in reactions supplemented with topoisomerase II, as well as in reactions containing only topoisomerase II. In the presence of crude extracts of HeLa cells, VP-16, a specific inhibitor of topoisomerase II, blocked elongation of the nascent DNA during the replication of SV40 chromosomes. These results indicate that topoisomerase II plays a crucial role as a swivelase in the late stage of SV40 chromosome replication in vitro.  相似文献   

8.
A number of large extrachromosomal elements encode prokaryotic type I topoisomerases of unknown functions. Here, we analysed the topoisomerase Topβ encoded by the Gram-positive broad-host-range plasmid pAMβ1. We show that this enzyme possesses the DNA relaxation activity of type I topoisomerases. Interestingly, it is active only on plasmids that use DNA polymerase I to initiate replication, such as pAMβ1, and depends on the activity of this polymerase. This is the first example, to our knowledge, of prokaryotic type I topoisomerase that is specific for a given type of replicon. During pAMβ1 replication in Bacillus subtilis cells, Topβ promotes premature arrest of DNA polymerase I, ≈190 bp downstream of the replication initiation point. We propose that Topβ acts on the early replication intermediates of pAMβ1, which contain D-loops formed by DNA polymerase I-mediated strand displacement. The possible role of the resulting DNA Pol I arrest in plasmid replication is discussed.  相似文献   

9.
A type-2 topoisomerase cleaves a DNA strand, passes another through the break, and then rejoins the severed ends. Because it appears that this action is as likely to increase as to decrease entanglements, the question is: how are entanglements removed? We argue that type-2 topoisomerases have evolved to act at "hooked" juxtapositions of strands (where the strands are curved toward each other). This type of juxtaposition is a natural consequence of entangled long strands. Our model accounts for the observed preference for unlinking and unknotting of short DNA plasmids by type-2 topoisomerases and well explains experimental observations.  相似文献   

10.
The ability to visualise specific genes and proteins within bacterial cells is revolutionising knowledge of chromosome segregation. The essential elements appear to be the driving force behind DNA replication, which occurs at fixed cellular positions, the condensation of newly replicated DNA by a chromosome condensation machine located at the cell 1/4 and 3/4 positions, and molecular machines that act at midcell to allow chromosome separation after replication and movement of the sister chromosomes away from the division septum prior to cell division. This review attempts to provide a perspective on current views of the bacterial chromosome segregation mechanism and how it relates to other cellular processes.  相似文献   

11.
12.
FtsK translocates dsDNA directionally at >5 kb/s, even under strong forces. In vivo, the action of FtsK at the bacterial division septum is required to complete the final stages of chromosome unlinking and segregation. Despite the availability of translocase structures, the mechanism by which ATP hydrolysis is coupled to DNA translocation is not understood. Here, we use covalently linked translocase subunits to gain insight into the DNA translocation mechanism. Covalent trimers of wild‐type subunits dimerized efficiently to form hexamers with high translocation activity and an ability to activate XerCD‐dif chromosome unlinking. Covalent trimers with a catalytic mutation in the central subunit formed hexamers with two mutated subunits that had robust ATPase activity. They showed wild‐type translocation velocity in single‐molecule experiments, activated translocation‐dependent chromosome unlinking, but had an impaired ability to displace either a triplex oligonucleotide, or streptavidin linked to biotin‐DNA, during translocation along DNA. This separation of translocation velocity and ability to displace roadblocks is more consistent with a sequential escort mechanism than stochastic, hand‐off, or concerted mechanisms.  相似文献   

13.
Five distinct DNA replicating intermediates have been separated from lysates of bacteriophage G4-infected cells pulse-labelled during the period of replicative form synthesis using propidium diiodide/caesium chloride gradients. These are a partially single-stranded theta structure that is labelled in both the viral and complementary DNA strands; partially single-stranded circles, some with an unfinished viral DNA strand (25%) and some with an unfinished complementary DNA strand (75%); replicative form II(RFII) and replicative form I(RFI) DNA labelled only in the complementary DNA strand. To explain the pulse-label data a model is proposed in which G4 replicative form replication takes place by a displacement mechanism in which synthesis of the new viral DNA strand displaces the old viral DNA strand as a single-stranded DNA loop (D-loop) and when the displacement reaches half way round the molecule (the origin of synthesis of the G4 viral and complementary DNA strands are on opposite sides of the genome, Martin &; Godson 1977) synthesis of the complementary DNA strand starts, but in the opposite direction. Strand separation of the parent helix runs ahead of DNA synthesis, releasing two partially single-stranded circles from the replicating structure which then complete their replication as free single-stranded DNA circles. No evidence was found to support a rolling circle displacement mechanism of G4 replicative form synthesis.  相似文献   

14.
RECQ1 is the most abundant of the five human RecQ helicases, but little is known about its biological significance. Recent studies indicate that RECQ1 is associated with origins of replication, suggesting a possible role in DNA replication. However, the functional role of RECQ1 at damaged or stalled replication forks is still unknown. Here, for the first time, we show that RECQ1 promotes strand exchange on synthetic stalled replication fork-mimicking structures and comparatively analyze RECQ1 with the other human RecQ helicases. RECQ1 actively unwinds the leading strand of the fork, similar to WRN, while RECQ4 and RECQ5β can only unwind the lagging strand of the replication fork. Human replication protein A modulates the strand exchange activity of RECQ1 and shifts the equilibrium more to the unwinding mode, an effect also observed for WRN. Stable depletion of RECQ1 affects cell proliferation and renders human cells sensitive to various DNA damaging agents that directly or indirectly block DNA replication fork progression. Consequently, loss of RECQ1 activates DNA damage response signaling, leads to hyper-phosphorylation of RPA32 and activation of CHK1, indicating replication stress. Furthermore, depletion of RECQ1 leads to chromosomal condensation defects and accumulation of under-condensed chromosomes. Collectively, our observations provide a new insight into the role of RECQ1 in replication fork stabilization and its role in the DNA damage response to maintain genomic stability.  相似文献   

15.
The seminal papers by Watson and Crick in 1953 on the structure and function of DNA clearly enunciated the challenge their model presented of how the intertwined strands of DNA are unwound and separated for replication to occur. We first give a historical overview of the major discoveries in the past 50 years that address this challenge. We then describe in more detail the cellular mechanisms responsible for the unlinking of DNA. No single strategy on its own accounts for the complete unlinking of chromosomes required for DNA segregation to proceed. Rather, it is the combined effects of topoisomerase action, chromosome organization and DNA-condensing proteins that allow the successful partitioning of chromosomes into dividing cells. Finally, we propose a model of chromosome structure, consistent with recent findings, that explains how the problem of unlinking is alleviated by the division of chromosomal DNA into manageably sized domains.  相似文献   

16.
RECQ1 is the most abundant of the five human RecQ helicases, but little is known about its biological significance. Recent studies indicate that RECQ1 is associated with origins of replication, suggesting a possible role in DNA replication. However, the functional role of RECQ1 at damaged or stalled replication forks is still unknown. Here, for the first time, we show that RECQ1 promotes strand exchange on synthetic stalled replication fork-mimicking structures and comparatively analyze RECQ1 with the other human RecQ helicases. RECQ1 actively unwinds the leading strand of the fork, similar to WRN, while RECQ4 and RECQ5β can only unwind the lagging strand of the replication fork. Human replication protein A modulates the strand exchange activity of RECQ1 and shifts the equilibrium more to the unwinding mode, an effect also observed for WRN. Stable depletion of RECQ1 affects cell proliferation and renders human cells sensitive to various DNA damaging agents that directly or indirectly block DNA replication fork progression. Consequently, loss of RECQ1 activates DNA damage response signaling, leads to hyper-phosphorylation of RPA32 and activation of CHK1, indicating replication stress. Furthermore, depletion of RECQ1 leads to chromosomal condensation defects and accumulation of under-condensed chromosomes. Collectively, our observations provide a new insight into the role of RECQ1 in replication fork stabilization and its role in the DNA damage response to maintain genomic stability.  相似文献   

17.
Germe T  Hyrien O 《EMBO reports》2005,6(8):729-735
DNA topoisomerase II (topo II) is involved in unlinking replicating DNA and organizing mitotic chromosomes. Topo II is the target of many antitumour drugs. Topo II inhibition results in extensive catenation of newly replicated DNA and may potentially perturb chromatin assembly. Here, we show that the topo II inhibitor ICRF-193 does not prevent the bulk of nucleosome deposition, but perturbs nucleosome spacing in Xenopus egg extracts. This is due to the trapping of topo II-closed clamps on the DNA rather than increased DNA catenation. Inhibition of replicative DNA decatenation has in itself little or no effect on nucleosome deposition and spacing, suggesting that DNA can easily accommodate the sharp bending constraints imposed by the co-habitation of nucleosomes and catenane nodes. Chromatin perturbation by topo II clamps may explain some dominant cellular effects of ICRF-193. Nucleosome-driven bending of precatenane nodes may facilitate their unlinking by topo II during unperturbed replication.  相似文献   

18.
19.
FtsK is a multifunctional, multidomain protein that acts to co-ordinate chromosome unlinking, segregation and cell division. In this issue of Molecular Microbiology, the report by Dubarry et al. reveals new insight into the surprisingly complex relationship between the different activities of FtsK. The new study makes extensive use of fusion proteins to highlight the role of the FtsK 'linker' domain in helping to co-ordinate these processes. This, taken together with previous studies, suggests that FtsK is intimately involved in septum constriction, physically contacting several other divisome proteins. Further, it is attractive to speculate that FtsK can regulate the late stages of septation to act as a checkpoint to ensure DNA is fully cleared from the septum before it is allowed to close, as well as being the driving force to unlink the chromosomes and segregate the DNA away from the septum.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号