首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 796 毫秒
1.
为研究肿瘤细胞发生多药耐药后蛋白整体水平表达的改变,将K562细胞与阿霉素(ADR)共同培养,逐渐增加药物浓度,最后建立耐阿霉素的细胞K562/ADR株。MTT法检测阿霉素(ADR)、顺铂(DDP)、5-氟尿嘧啶(5-FU)和长春新碱(VCR)对K562和K562/ADR细胞的半数抑制率(IC_(50))。利用蛋白质组学技术,通过双向凝胶电泳分离K562和K562/ADR细胞的总蛋白,银染显色,分析差异蛋白,对部分蛋白点进行胶内酶解,用基质辅助激光解析飞行时间质谱法得肽质量指纹图谱,用AutoMS-Fit软件查询NCBInr数据库鉴定蛋白质。结果表明K562细胞经ADR诱导后出现多药耐药现象,ADR、DDP、5-FU和VCR对K562/ADR细胞的IC_(50)明显高于K562。将K562和K562/ADR的双向电泳图谱进行差异比较,初步鉴定仅在K562/ADR图谱上出现的蛋白是一些与细胞分裂、基因转录有关的蛋白质。这些蛋白的变化与耐药细胞的特性相关,可能与临床化疗的多药耐药现象有联系。  相似文献   

2.
目的探讨转多药耐药基因mdr1的K562/MDR细胞株作为单机制耐药模型的可行性,为进一步研究肿瘤耐药及其逆转奠定基础。方法实验分为3部分:(1)在电子显微镜下观察慢性髓细胞白血病急性红白变敏感细胞系K562,阿霉素(adriamycin,ADM)诱导耐药细胞株K562/ADM和K562/MDR耐药细胞株的生物学行为;同时测定3种细胞系的群体倍增时间;以观察药物诱导和基因转移是否对细胞的生物学行为造成影响。(2)以K562细胞为对照,用MTT法分别测定阿霉素、柔红霉素(daunorubicin,DNR)、长春新碱(vincristine,VCR)对3种细胞的半数致死量(IC50)。(3)多药耐药相关基因与蛋白的检测。免疫细胞化学法观察mdr1基因编码的P-糖蛋白(P-gp)的表达;流式细胞术检测P-gp、bcl-2的表达百分率;生化法测定细胞内谷胱甘肽S-转移酶(GSTs)活性;RT-PCR法检测拓扑异构酶(to-poisomeraseⅡ,topoⅡ)mRNA的表达变化。结果(1)在超微结构上,K562/ADM的细胞器—线粒体出现水肿,K562和K562/MDR未见明显异常;K562的群体倍增时间为19.67±3.10d;K562/MDR为20.40±1.80d;K562/ADM为28.47±1.75d;(2)K562/ADM和K562/MDR细胞对ADM的耐药倍数分别为23.1和1.2倍;对DNR为84.9和14.4倍;对VCR为298.3和10.1倍。(3)与K562比较,K562/ADM细胞的P-gp和Bcl-2蛋白表达率高且topoⅡcDNA片段大小发生变化;K562/MDR仅P-gp表达率高。结论K562/MDR的生物学行为与亲本细胞K562相似,耐药机制单一,可作为单机制耐药模型,对某一耐药基因进行更为深入精确的研究,也可针对该耐药基因准确地筛选相应的逆转剂。  相似文献   

3.
为寻找能有效逆转肿瘤细胞多药耐药性的药物,通过体外细胞实验对Ams-11、Fw-13、Tul-17三种中药制剂逆转肿瘤细胞多药耐药性的作用进行了分析。并用流式细胞仪测定了Tul-17处理细胞后药物累积程度的变化及细胞P糖蛋白表达情况。为进一步研究体外细胞实验筛选出的多药耐药逆转剂在体内的药效学,将其中Fw13用于人白血病K562/ADR裸鼠移植瘤逆转试验。结果:在无细胞毒性的剂量范围内,该三种中药制剂均能明显增强多药耐药细胞对抗癌药物的敏感性,而且其逆转作用呈剂量依赖关系。Tu-17处理后,K562耐药细胞表达的P糖蛋白较对照降低1.5倍,对罗丹明123的累积量是对照的2.5倍。用Fw13治疗人白血病K562/ADR裸鼠移植瘤,可将硫酸长春新碱(VCR)对K562/ADR的抑瘤率从19.79%提高到86.59%,与单独VCR治疗疗效有显著性差异(P<0.05)。结果表明,这三种中药制剂可望成为肿瘤多药耐药逆转剂,在肿瘤化疗中发挥作用。  相似文献   

4.
白血病耐药细胞系U937/ADR的建立及其生物学性状   总被引:1,自引:0,他引:1  
目的:建立白血病耐药细胞系U937/ADR模型,并检测其多药耐药相关基因及其生物学性状的改变。方法:以大剂量阿霉素(IC50浓度),短时间(2h)暴露法诱导人白血病细胞系U937细胞的阿霉素耐药性。检测细胞的生长曲线,计算阿霉素耐药倍数,流式细胞术分析细胞周期分布;罗丹明123检测药物外排功能;荧光定量PCR(FQ-PCR)检测MDR1、MRP1、NF-Κb、Bcl-2、Bax mRNA水平变化;Western blot 检测Akt、p-Akt、P65、P-gp、MRP1和Bcl-2蛋白水平变化。结果:成功构建耐阿霉素U937/ADR细胞系,对阿霉素耐药指数为亲代U937细胞的11倍,U937/ADR群体倍增时间为43.6h,高于亲代细胞8.9h;流式细胞分析显示与U937细胞相比,U937/ADR的G0/G1期细胞增多,而G2/M期细胞减少。并对多种化疗药物产生交叉耐药性。罗丹明123外排试验显示,U937/ADR细胞外排明显增加。U937/ADR细胞MDR1、NF-Κb、Bcl-2 mRNA表达水平明显增加,P-gp及p-Akt、P65表达水平增加。结论:成功构建的U937/ADR细胞系其生物学特性明显不同与亲代U937细胞,对多种化疗药物产生多药耐药,高表达多药耐药蛋白P-gp,同时激活p-Akt及NF-Kb。  相似文献   

5.
目的:研究胃癌耐药细胞及其亲本细胞中长链非编码RNA UCA1的表达差异,探讨UCA1在胃癌多药耐药中的作用。方法:通过实时荧光定量PCR(q RT-PCR)检测胃癌耐药细胞SGC7901/ADR、SGC7901/VCR及其亲本细胞SGC7901中UCA1的表达差异;通过si RNA转染降低SGC7901/ADR中UCA1表达,MTT法检测细胞半数抑制浓度(IC50)的变化,流式细胞仪检测细胞凋亡变化。结果:QRT-PCR结果显示,UCA1在SGC7901/ADR和SGC7901/VCR胃癌耐药细胞表达显著高于SGC7901胃癌亲本细胞;MTT实验表明,干扰UCA1的SGC7901/ADR相对于阴性对照(NC)组的IC50显著降低;凋亡检测结果显示,在相同剂量化疗药物作用下,干扰UCA1后SGC7901/ADR凋亡率显著高于NC组;Western blot证实,干扰UCA1表达可显著降低BCL-2蛋白表达。结论:长链非编码RNA UCA1在胃癌耐药细胞表达显著升高,干扰UCA1表达可明显逆转胃癌耐药,UCA1可作为治疗胃癌耐药的重要分子靶标。  相似文献   

6.
应用蛋白质组学技术筛选胃癌耐药相关蛋白质   总被引:4,自引:1,他引:3  
胃癌多药耐药性是临床胃癌化疗失败最主要的原因之一,但其分子机制仍然不太清楚.为了寻找新的胃癌耐药相关的蛋白质,揭示胃癌多药耐药的分子机制,以胃癌细胞SGC7901和长春新碱诱导的耐药胃癌细胞SGC7901/VCR为研究对象,应用二维凝胶电泳(two-dimensionalelectrophoresis,2-DE)技术分离两种细胞的总蛋白质,图像分析识别差异表达的蛋白质点,基质辅助激光解吸电离飞行时间质谱(matrix-assistedlaserdesorption/ionizationtimeofflightmassspectrometry,MALDI-TOF-MS)及电喷雾电离串联质谱(electrosprayionizationtandemmassspectrometry,ESI-Q-TOF)对差异表达的蛋白质点进行鉴定,蛋白质印迹和实时RT-PCR验证部分差异蛋白质在两株细胞中的表达水平,反义核酸转染技术分析HSP27(heatshockprotein27,HSP27)高表达与SGC7901/VCR耐药的相关性.得到了分辨率较高、重复性较好的两株细胞系的二维凝胶电泳图谱,质谱分析共鉴定了24个差异蛋白质点,蛋白质印迹和实时RT-PCR验证了部分差异蛋白的表达水平,反义寡核苷酸抑制HSP27表达能增加SGC7901/VCR对长春新碱的敏感性.研究结果不仅提示这些差异蛋白质如HSP27,Sorcin等可能与胃癌的多药耐药相关,而且为揭示胃癌细胞的多药耐药性产生机制提供了线索.  相似文献   

7.
目的:研究miR-17-92在白血病L1210/DDP细胞多药耐药形成中的作用.方法:首先构建L1210/DDP耐药细胞系,运用real-time PCR方法检测miR-17-92在L1210/DDP细胞与L1210细胞中的表达差异.利用脂质体Lipofectamine 2000将miR-17-92抑制物(miR-17-92sponge)及阴性对照(sponge vector)转染L1210/DDP细胞,构建miR-17-92表达下调的L1210/DDP细胞系.用MTS法检测转染后耐药细胞对顺铂和阿霉素体外药物敏感性.结果:miRNA-17-92在L1210/DDP耐药细胞系中高表达,上调倍数为(1.61±0.01)倍.体外药物敏感性实验表明,转染miR-17-92抑制物的实验组对顺铂和阿霉素的IC50分别为(3.29±0.51)、(1.35±0.13)g/ml,而转染阴性对照组对上述药物的IC50分别为(6.73± 0.82)、(2.66±0.42)g/ml,在耐药株中抑制miR-17-92在L1210/DDP细胞中的表达,显著增加细胞对顺铂和阿霉素的敏感性.结论:miR-17-92在白血病耐顺铂L1210/DDP细胞中高表达.抑制miR-17-92的表达可增加白血病L1210/DDP细胞对顺铂和阿霉素化疗药物的敏感性,部分逆转耐药.  相似文献   

8.
目的:观察高温对人胃癌耐药细胞多药耐药性的逆转作用.方法:对人胃癌耐药细胞株SGC7901/ADM予高温43℃处理,用MTT试验检测高温对ADM、5-FU、DDP、TAX作用下细胞生存率和IC50,并以人胃癌敏感细胞株SG-C7901为对照.结果:实验发现人胃癌耐药株sGc7901/ADM细胞除了对诱导耐药的ADM耐受,对CDDP、5-FU、TAX也有交叉耐药.加温至43℃,耐药株SGC7901/ADM细胞的耐药指数明显下降,而且对ADM组、CDDP组、TAX组人胃癌耐药株SGC7901/ADM细胞耐药逆转倍数分别为3.77、2.24、6.25,但对5-FU组SGC7901/ADM细胞的耐药逆转指数较低,为1.11.结论:高温可以增加耐药株SGC7901/ADM细胞对化疗药物ADM、DDP、TAX的敏感性,一定程度逆转细胞的多药耐药性.  相似文献   

9.
川芎嗪与β-榄香烯联合应用对K562/ADM细胞的生长抑制作用   总被引:1,自引:0,他引:1  
目的:探讨川芎嗪与β-榄香烯联合应用对K562/ADM的生长抑制作用。方法:以耐阿霉素细胞株K562/ADM为实验模型。结果:1.两者对K562/ADM及K562细胞的IC50接近,即耐药细胞K562/ADM对两种中药制剂不具有耐药性。2.非细胞毒性剂量的川芎嗪(TMP350μg/ml)及β-榄香精(β-elemene 4.0μg/ml)可显著降低ADM对K562/ADM细胞的IC50(P<0.01),提高细胞对ADM的敏感性,抗药性逆转分别为2.03倍及2.18倍。3.进一步将上述两种药物联合应用,发现其对ADM的抗药性逆转为4.65倍,明显高于二者单独应用,而且也高于两者单独应用之和,并且其对升高该细胞内ADM的浓度也具有协同作用。结论:川芭嗪与β-榄香烯联合应用能够抑制K562/ADM的的生长,并且具有协同性。  相似文献   

10.
目的:探讨脉冲磁场(pulsedmagnetic fields,PMF)对白血病细胞HL60/ADR多药耐药的逆转效果及其可能的分子机制.方法:生长曲线法检测PMF的细胞毒性;MTT法测定HL60、HL60/ADR的IC50及经不同参数PMF作用后HL60/ADR的IC50,计算耐药倍数和逆转倍数;流式细胞术检测PMF作用前后HL60/ADR细胞内药物蓄积变化及多药耐药相关蛋白(Multidrug Rcsistance Related Protcinl MRPI)阳性表达率的变化;RT-PCR法检测MRPI基因表达的变化.结果:单独PMF对HL60/ADR细胞的生长没有明显抑制作用,不同参数(频率为150Hz和250Hz,场强均为40mT,照射时间30min和1 h)的PMF均能有效逆转HL60/ADR的多药耐药,150 Hz/1 h作用最为明显,逆转倍数为5.891倍.PMF作用后Rh123在HL60/ADR细胞内的蓄积增加了近8.0%,而MRPl基因表达下调了68.3%,蛋白阳性表达率下调23.6%.结论:PMF能够通过下调MRPl基因和蛋白的表达.进而增加Rh123在细胞内的蓄积,功能性部分逆转白血病细胞的多药耐药.  相似文献   

11.
Correlations of disease phenotypes with glycosylation changes have been analyzed intensively in tumor biology field. In this study we describe glycomic alterations of multidrug resistance in human leukemia cell lines. Using multiple glycan profiling tools: real-time PCR for quantification of glycogenes, FITC-lectin binding for glycan profiling, and mass spectrometry for glycan composition, we compared the glycomics of drug-resistant K562/ADR cells with parental K562 line. The results showed that the expression of glycogenes, glycan profiling and N-glycan composition were different in K562/ADR cells, as compared with those in K562 cells, whereas O-glycans of the two cell lines showed no different mass spectra. Further analysis of the N-glycan regulation by way of tunicamycin application or PNGase F treatment in K562/ADR cells showed partial inhibition of biosynthesis and increased sensitivity to chemotherapeutic drugs in vitro. We targeted glycogene B3GNT8 and ST8SIA4, which were over-expressed in K562/ADR cells, and silenced the expression levels of two glycogenes after using RNA interference approach. The results showed that the silencing of B3GNT8 or ST8SIA4 in K562/ADR cells resulted in increased chemosensitivity to anti-tumor drugs. In conclusion, glycomic alterations are responsible for the overcoming multidrug resistance in human leukemia therapy and the N-linked oligosaccharides are associated with the drug resistance of cancer cells.  相似文献   

12.
Multidrug resistance (MDR) has become the major cause of failure chemotherapy for leukemia and high mortality of leukemia. The study aimed to investigate whether the let-7f mediate the Adriamycin (ADR) resistance of leukemia, and to explore the potential molecular mechanism. Cell proliferation was examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and the soft agar clone formation assay. Flow cytometry was performed to detected cell cycle and apoptosis. The targeted regulationship was analyzed by dual-luciferase assay. Real-time polymerase chain reaction and Western blot were used to measure the expressions of let-7f, ABCC5, ABCC10, cell cycle-related proteins, and apoptosis-related proteins. The xenograft mouse model was used to conduct the tumor formation assay in vivo. The results demonstrated that the expression of let-7f was lower in multidrug-resistant K562/A02 cell lines compared to that in K562, while ABCC5 and ABCC10 were upregulated. Overexpression of let-7f in K562/A02 cell lines downregulated the ABCC5 and ABCC10 expression, enhanced cell sensitivity to ADR, promoted cell apoptosis, and inhibited cell proliferation. let-7f was proved to negatively regulate ABCC5 and ABCC10. Tumor formation assay further determined that let-7f overexpression increased sensitivity to ADR. Taken together, the let-7f downregulation induced the ADR resistance of leukemia by upregulating ABCC5 and ABCC10 expression. Our study provided a novel perspective to study the mechanism of MDR and a new target for the reversal of MDR.  相似文献   

13.
The release of holocytochrome c (cyt c) from mitochondria into the cytosol is reportedly a landmark of the execution phase of apoptosis. As shown here, the P-glycoprotein- (P-gp) expressing K562/ADR cell line (but not the parental K562 cell line) exhibits both cytosolic and mitochondrial cyt c in the absence of any signs of apoptosis. K562/ADR cells were found to be relatively resistant to a variety of different inducers of apoptosis, and blocking the P-gp did not reverse this resistance. The release of cyt c in non-apoptotic K562/ADR cells was not accompanied by that of any other mitochondrial apoptogenic protein, such as AIF or Smac/DIABLO, and was inhibited by Bcl-2 over expression. In addition, using a cell-free system, we show that mitochondria isolated from K562/ADR cells spontaneously released cyt c. These data suggest that cyt c release may be compatible with the preservation of mitochondrial integrity and function, as well as cell proliferation.  相似文献   

14.
The alpha(5)beta(1) integrin is one of the major fibronectin receptors which plays an essential role in the adhesion of normal and tumor cells to extracellular matrix. Here, we describe the isolation and characterization of a novel dimeric metalloproteinase/disintegrin, which is an inhibitor of fibronectin binding to the alpha(5)beta(1) integrin. This protein (BaG) was isolated from the venom of the South American snake Bothrops alternatus by gelatin-Sepharose affinity and anion exchange chromatography. The molecular mass of BaG was approximately 130 kDa under non-reducing conditions and 55 kDa under reducing conditions by SDS-PAGE. BaG shows proteolytic activity on casein that was inhibited by EDTA. 1,10-phenanthroline-treated BaG (BaG-I) inhibits ADP-induced platelet aggregation with an IC(50) of 190 nM. BaG-I inhibits fibronectin-mediated K562 cell adhesion with an IC(50) of 3.75 microM. K562 cells bind to BaG-I probably through interaction with alpha(5)beta(1) integrin, since anti-alpha(5)beta(1) antibodies inhibited K562 cell adhesion to BaG-I. In addition, BaG-I induces the detachment of K562 cells that were bound to fibronectin. In summary, we have purified a novel, dimeric snake venom metalloproteinase/disintegrin that binds to the alpha(5)beta(1) integrin.  相似文献   

15.
Bauer KM  Lambert PA  Hummon AB 《Proteomics》2012,12(12):1928-1937
A label-free mass spectrometric strategy was used to examine the effect of 5-fluorouracil (5-FU) on the primary and metastatic colon carcinoma cell lines, SW480 and SW620, with and without treatment. 5-FU is the most common chemotherapeutic treatment for colon cancer. Pooled biological replicates were analyzed by nanoLC-MS/MS and protein quantification was determined via spectral counting. Phenotypic and proteomic changes were evident and often similar in both cell lines. The SW620 cells were more resistant to 5-FU treatment, with an IC(50) 2.7-fold higher than that for SW480. In addition, both cell lines showed pronounced abundance changes in pathways relating to antioxidative stress response and cell adhesion remodeling due to 5-FU treatment. For example, the detoxification enzyme NQO1 was increased with treatment in both cell lines, while disparate members of the peroxiredoxin family, PRDX2 or PRDX5 and PRDX6, were elevated with 5-FU exposure in either SW480 or SW620, respectively. Cell adhesion-associated proteins CTNNB1 and RhoA showed decreased expression with 5-FU treatment in both cell lines. The differential quantitative response in the proteomes of these patient-matched cell lines to drug treatment underscores the subtle molecular differences separating primary and metastatic cancer cells.  相似文献   

16.
The stereoselective uptake of propranolol enantiomers was investigated by using the K562 and K562 adriamycin‐resistant cell line (K562/ADR) as a model. An enantioselective RP‐HPLC method was applied to determine the accumulation of propranolol (PPL) stereoisomers in K562 and K562/ADR cells. The concentration, time and temperature dependent studies showed that the accumulation of S‐(?)‐PPL was higher than R‐(+)‐PPL in K562 cells and uptake of R‐(+)‐PPL was significantly higher than that of S‐(?)‐PPL in K562/ADR cells. The results indicate the enantioselective accumulation of propranolol enantiomers in K562 and K562 / ADR cells. Chirality 25:361–364, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
Withaphysalins are C(28)-steroidal lactones structurally based on the ergostane skeleton that possess antiproliferative activity against tumor cell lines. In the present study, the antileukemic actvity of withaphysalin O (1), M (2), and N (3) isolated from Acnistus arborescens, against two leukemic cell lines, HL-60 and K562, was evaluated, and the cytotoxicity compared with the effects on peripheral blood mononuclear cells (PBMC). All tested compounds reduced the number of viable cells of the tumor cell lines after 24 h of exposure, except for compound 2 against the K562 cell line. The reduction was time-and concentration-dependent, and the IC(50) values ranged from 0.7 to 3.5 microM after 72 h of incubation. In addition to the growth inhibitory properties, the drugs decreased DNA synthesis after 24 h of drug exposure evaluated by the 5-bromo-2 -deoxyuridine incorporation method. None of the tested compounds reduced the number of PBMC (IC(50)>20 microM) after 72 h of incubation, in contrast to doxorubicin that decreased viable cells and increased non-viable cells even after 24 h of incubation. Morphological analysis of treated cells using hematoxylin/eosin staining indicated the presence of necrotic cells for all tested compounds in HL-60, confirmed by the use of acridine orange/ethidium bromide staining. In addition to necrotic cells, K562 cells showed morphological alterations consistent with apoptosis.  相似文献   

18.
Hyperforin is an abundant phloroglucinol-type constituent isolated from the extract of the flowering upper portion of the plant Hypericum perforatum L. The dicyclohexylammonium salt of hyperforin (DCHA-HF) has exhibited antitumor and antiangiogenic activities in various cancer cells. Here, the antitumor effects of DCHA-HF on the chronic myeloid leukemia K562 cell line were investigated for the first time. DCHA-HF exhibited dose- and time-dependent inhibitory activities against K562 cells, with IC(50) values of 8.6 and 3.2 μM for 48 h and 72 h of treatment, respectively, which was more effective than that of the hyperforin. In contrast, little cytotoxic activity was observed with DCHA-HF on HUVECs. DCHA-HF treatment resulted in induction of apoptosis as evidenced from DNA fragmentation, nuclear condensation and increase of early apoptotic cells by DAPI staining analysis, TUNEL assay and Annexin V-FITC/PI double-labeled staining analysis, respectively. Moreover, DCHA-HF elicited dissipation of mitochondrial transmembrane potential that commenced with the release of cytochrome c through down-regulation of expression of anti-apoptotic proteins and up-regulation of expression of pro-apoptotic proteins. DCHA-HF treatment induced activation of the caspase 3, 8, and 9 cascade and subsequent PARP cleavage, and DCHA-HF-induced apoptosis was significantly inhibited by caspase inhibitors. Treated cells were arrested at the G1 phase of the cell cycle and the expression of p53 and p27(Kip1), two key regulators related to cell cycle and apoptosis, was up-regulated. These results suggest that DCHA-HF inhibits K562 cell growth by inducing caspase-dependent apoptosis mediated by a mitochondrial pathway and arresting the cell cycle at the G1 phase. Therefore, DCHA-HF is a potential chemotherapeutic antitumor drug for chronic myeloid leukemia therapy.  相似文献   

19.
The aim of this study was to investigate the effect of long noncoding RNA (lncRNA) urogenital carcinoma antigen 1 (UCA1) on drug resistance in A549/DDP cell and explore its underlying mechanism. The inhibition rate and IC 50 of DDP were detected in A549 and A549/DDP cells by 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide assay. The expression of lncRNA UCA1 was measured in A549 and A549/DDP cells by quantitative real-time polymerase chain reaction. The expressions of N-cadherin, E-cadherin, vimentin, and Snail were detected in A549 and A549/DDP cells by Western blot analysis. Results showed that the IC 50 of DDP was 16.20 ± 2.27 μmol/L and 69.72 ± 4.83 μmol/L in A549 and A549/ DDP cells, respectively. Compared with the A549 group, the expressions of N-cadherin, vimentin, and Snail was significantly upregulated in A549/DDP group, but E-cadherin was significantly downregulated. Compared with the shCon group, the abundance of N-cadherin, vimentin, and Snail was significantly downregulated in short hairpin RNA UCA1 (shUCA1) group, while E-cadherin was significantly upregulated. Cell migration and invasion were significantly suppressed and IC 50 was reversed to 16.20 ± 2.27 μmol/L in the shUCA1 group. Silencing lncRNA UCA1 inhibited the migration and invasion of A549/DDP cells and reversed the resistance of A549/DDP cells to DDP. The mechanism might be related to downregulation of epithelial-mesenchymal transition, which will provide a new direction for the treatment of non–small-cell lung cancer with cisplatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号