首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 88 毫秒
1.
A 1.5-kilobase-pair SalI-HindIII (SH) restriction fragment from the region of Saccharomyces cerevisiae chromosome XIV immediately adjacent to the centromere appears to contain sequences that act as a hot spot for mitotic recombination. The presence of SH DNA on an autonomously replicating plasmid stimulates homologous genetic exchange between yeast genomic sequences and those present on the plasmid. In all recombinants characterized, exchange occurs in plasmid yeast sequences adjacent to rather than within the SH DNA. Hybridization analyses reveal that SH-containing plasmids are present in linear as well as circular form in S. cerevisiae and that linear forms are generated by cleavage at specific sites. Presumably, it is the linear form of the plasmid that is responsible for the stimulation of genetic exchange. Based on these observations, it is proposed that this DNA fragment contains a centromere-linked recombination hot spot and that SH-stimulated recombination occurs via a mechanism similar to double-strand-gap repair (J. W. Szostak, T. Orr-Weaver, J. Rothstein, and F. Stahl, Cell 33:25-35 1983).  相似文献   

2.
Majewski J  Cohan FM 《Genetics》1999,153(4):1525-1533
Gene transfer in bacteria is notoriously promiscuous. Genetic material is known to be transferred between groups as distantly related as the Gram positives and Gram negatives. However, the frequency of homologous recombination decreases sharply with the level of relatedness between the donor and recipient. Several studies show that this sexual isolation is an exponential function of DNA sequence divergence between recombining substrates. The two major factors implicated in producing the recombinational barrier are the mismatch repair system and the requirement for a short region of sequence identity to initiate strand exchange. Here we demonstrate that sexual isolation in Bacillus transformation results almost exclusively from the need for regions of identity at both the 5' and 3' ends of the donor DNA strand. We show that, by providing the essential identity, we can effectively eliminate sexual isolation between highly divergent sequences. We also present evidence that the potential of a donor sequence to act as a recombinogenic, invasive end is determined by the stability (melting point) of the donor-recipient complex. These results explain the exponential relationship between sexual isolation and sequence divergence observed in bacteria. They also suggest a model for rapid spread of novel adaptations, such as antibiotic resistance genes, among related species.  相似文献   

3.
Bacterial recombination is believed to be a major factor explaining the prevalence of multi-drug-resistance (MDR) among pathogenic bacteria. Despite extensive evidence for exchange of resistance genes from retrospective sequence analyses, experimental evidence for the evolutionary benefits of bacterial recombination is scarce. We compared the evolution of MDR between populations of Acinetobacter baylyi in which we manipulated both the recombination rate and the initial diversity of strains with resistance to single drugs. In populations lacking recombination, the initial presence of multiple strains resistant to different antibiotics inhibits the evolution of MDR. However, in populations with recombination, the inhibitory effect of standing diversity is alleviated and MDR evolves rapidly. Moreover, only the presence of DNA harbouring resistance genes promotes the evolution of resistance, ruling out other proposed benefits for recombination. Together, these results provide direct evidence for the fitness benefits of bacterial recombination and show that this occurs by mitigation of functional interference between genotypes resistant to single antibiotics. Although analogous to previously described mechanisms of clonal interference among alternative beneficial mutations, our results actually highlight a different mechanism by which interactions among co-occurring strains determine the benefits of recombination for bacterial evolution.  相似文献   

4.
DNA acquisition promotes the spread of resistance to antibiotics and virulence among bacteria. It is also linked to several natural phenomena including recombination, genome dynamics, adaptation and speciation. Horizontal DNA transfer between bacteria occurs via conjugation, transduction or competence for natural transformation by DNA uptake. Among these, competence is the only mechanism of transformation initiated and entirely controlled by the chromosome of the recipient bacteria. While the molecular mechanisms allowing the uptake of extracellular DNA are increasingly characterized, the function of competence for natural transformation by DNA uptake, the selective advantage maintaining it and the reasons why bacteria take up DNA in the first place are still debated. In this synthesis, I review some of the literature and discuss the four hypotheses on how and why do bacteria take up DNA. I argue that DNA uptake by bacteria is an accidental by-product of bacterial adhesion and twitching motility. Adhesion and motility are generally increased in stressful conditions, which may explain why bacteria increase DNA uptake in these conditions. In addition to its fundamental scientific relevance, the new hypothesis suggested here has significant clinical implications and finds further support from the fact that antibiotics sometimes fail to eliminate the targeted bacterium while inevitably causing stress to others. The widespread misuse of antibiotics may thus not only be selecting for resistant strains, but may also be causing bacteria to take up more DNA with the consequent increase in the chances of acquiring drug resistance and virulence—a scenario in full concordance with the previously reported induction of competence genes by antibiotics in Streptococcus pneumoniae and Legionella pneumophila.  相似文献   

5.
Understanding the soil bacterial resistome is essential to understanding the evolution and development of antibiotic resistance, and its spread between species and biomes. We have identified and characterized multi-drug resistance (MDR) mechanisms in the culturable soil antibiotic resistome and linked the resistance profiles to bacterial species. We isolated 412 antibiotic resistant bacteria from agricultural, urban and pristine soils. All isolates were multi-drug resistant, of which greater than 80% were resistant to 16–23 antibiotics, comprising almost all classes of antibiotic. The mobile resistance genes investigated, (ESBL, bla NDM-1, and plasmid mediated quinolone resistance (PMQR) resistance genes) were not responsible for the respective resistance phenotypes nor were they present in the extracted soil DNA. Efflux was demonstrated to play an important role in MDR and many resistance phenotypes. Clinically relevant Burkholderia species are intrinsically resistant to ciprofloxacin but the soil Burkholderia species were not intrinsically resistant to ciprofloxacin. Using a phenotypic enzyme assay we identified the antibiotic specific inactivation of trimethoprim in 21 bacteria from different soils. The results of this study identified the importance of the efflux mechanism in the soil resistome and variations between the intrinsic resistance profiles of clinical and soil bacteria of the same family.  相似文献   

6.
In addition to their role in DNA repair, recombination events are associated with processes aimed at providing the genetic variability needed for adaptation and evolution of a population. In bacteria, recombination is involved in the appearance of new variants by allowing the incorporation of exogenous DNA or the reshuffling of endogenous sequences. Here we show that HpMutS2, a protein belonging to the MutS2 family in Helicobacter pylori, is not involved in mismatch repair but inhibits homologous and homeologous recombination. Disruption of HpmutS2 leads to an increased efficiency of exogenous DNA incorporation. HpMutS2 has a selective affinity for DNA structures mimicking recombination intermediates with no specificity for homoduplex DNA or mismatches. The purified protein has an ATPase activity stimulated by the same DNA structures. Finally, we show that HpMutS2 inhibits DNA strand exchange reactions in vitro. Thus, MutS2 proteins are candidates for controlling recombination and therefore genetic diversity in bacteria.  相似文献   

7.
Uncultured soil bacteria are a reservoir of new antibiotic resistance genes   总被引:11,自引:0,他引:11  
Antibiotic resistance genes are typically isolated by cloning from cultured bacteria or by polymerase chain reaction (PCR) amplification from environmental samples. These methods do not access the potential reservoir of undiscovered antibiotic resistance genes harboured by soil bacteria because most soil bacteria are not cultured readily, and PCR detection of antibiotic resistance genes depends on primers that are based on known genes. To explore this reservoir, we isolated DNA directly from soil samples, cloned the DNA and selected for clones that expressed antibiotic resistance in Escherichia coli. We constructed four libraries that collectively contain 4.1 gigabases of cloned soil DNA. From these and two previously reported libraries, we identified nine clones expressing resistance to aminoglycoside antibiotics and one expressing tetracycline resistance. Based on the predicted amino acid sequences of the resistance genes, the resistance mechanisms include efflux of tetracycline and inactivation of aminoglycoside antibiotics by phosphorylation and acetylation. With one exception, all the sequences are considerably different from previously reported sequences. The results indicate that soil bacteria are a reservoir of antibiotic resistance genes with greater genetic diversity than previously accounted for, and that the diversity can be surveyed by a culture-independent method.  相似文献   

8.
9.
10.
Conjugative transfer of bacterial plasmids is the most efficient way of horizontal gene spread, and it is therefore considered one of the major reasons for the increase in the number of bacteria exhibiting multiple-antibiotic resistance. Thus, conjugation and spread of antibiotic resistance represents a severe problem in antibiotic treatment, especially of immunosuppressed patients and in intensive care units. While conjugation in gram-negative bacteria has been studied in great detail over the last decades, the transfer mechanisms of antibiotic resistance plasmids in gram-positive bacteria remained obscure. In the last few years, the entire nucleotide sequences of several large conjugative plasmids from gram-positive bacteria have been determined. Sequence analyses and data bank comparisons of their putative transfer (tra) regions have revealed significant similarities to tra regions of plasmids from gram-negative bacteria with regard to the respective DNA relaxases and their targets, the origins of transfer (oriT), and putative nucleoside triphosphatases NTP-ases with homologies to type IV secretion systems. In contrast, a single gene encoding a septal DNA translocator protein is involved in plasmid transfer between micelle-forming streptomycetes. Based on these clues, we propose the existence of two fundamentally different plasmid-mediated conjugative mechanisms in gram-positive microorganisms, namely, the mechanism taking place in unicellular gram-positive bacteria, which is functionally similar to that in gram-negative bacteria, and a second type that occurs in multicellular gram-positive bacteria, which seems to be characterized by double-stranded DNA transfer.  相似文献   

11.
Transfer of antibiotic resistance genes by conjugation is thought to play an important role in the spread of resistance. Yet virtually no information is available about the extent to which such horizontal transfers occur in natural settings. In this paper, we show that conjugal gene transfer has made a major contribution to increased antibiotic resistance in Bacteroides species, a numerically predominant group of human colonic bacteria. Over the past 3 decades, carriage of the tetracycline resistance gene, tetQ, has increased from about 30% to more than 80% of strains. Alleles of tetQ in different Bacteroides species, with one exception, were 96 to 100% identical at the DNA sequence level, as expected if horizontal gene transfer was responsible for their spread. Southern blot analyses showed further that transfer of tetQ was mediated by a conjugative transposon (CTn) of the CTnDOT type. Carriage of two erythromycin resistance genes, ermF and ermG, rose from <2 to 23% and accounted for about 70% of the total erythromycin resistances observed. Carriage of tetQ and the erm genes was the same in isolates taken from healthy people with no recent history of antibiotic use as in isolates obtained from patients with Bacteroides infections. This finding indicates that resistance transfer is occurring in the community and not just in clinical environments. The high percentage of strains that are carrying these resistance genes in people who are not taking antibiotics is consistent with the hypothesis that once acquired, these resistance genes are stably maintained in the absence of antibiotic selection. Six recently isolated strains carried ermB genes. Two were identical to erm(B)-P from Clostridium perfringens, and the other four had only one to three mismatches. The nine strains with ermG genes had DNA sequences that were more than 99% identical to the ermG of Bacillus sphaericus. Evidently, there is a genetic conduit open between gram-positive bacteria, including bacteria that only pass through the human colon, and the gram-negative Bacteroides species. Our results support the hypothesis that extensive gene transfer occurs among bacteria in the human colon, both within the genus Bacteroides and among Bacteroides species and gram-positive bacteria.  相似文献   

12.
目的:分析我院的抗生素的使用频率以及细菌耐药率的变化,为规范临床用药提供参考资料。方法:采用回顾性分析的方法对我院2009年3月-2013年3月收治的8000例住院患者的抗生素使用情况进行调查,并对我院临床上常见革兰阴性菌和阳性菌的耐药率变化进行比较,分析抗生素的使用频率与细菌耐药率变化之间的关系。结果:临床上抗生素的使用频率最大的是β-内酰胺酶抑制剂以及头孢菌素类。金葡菌对环丙沙星的耐药率与青霉素类抗生素的DDDs呈正相关,大肠埃希菌对亚胺培南的耐药率与头孢菌素类抗生素的DDDs呈负相关。结论:抗生素的用药频率与病原菌对抗生素的耐药率有相关性,并且,单一的抗生素并不能引起病原菌的耐药性,而会同时影响其他类型的抗生素的耐药情况。  相似文献   

13.
Conjugative Plasmid Transfer in Gram-Positive Bacteria   总被引:24,自引:0,他引:24       下载免费PDF全文
Conjugative transfer of bacterial plasmids is the most efficient way of horizontal gene spread, and it is therefore considered one of the major reasons for the increase in the number of bacteria exhibiting multiple-antibiotic resistance. Thus, conjugation and spread of antibiotic resistance represents a severe problem in antibiotic treatment, especially of immunosuppressed patients and in intensive care units. While conjugation in gram-negative bacteria has been studied in great detail over the last decades, the transfer mechanisms of antibiotic resistance plasmids in gram-positive bacteria remained obscure. In the last few years, the entire nucleotide sequences of several large conjugative plasmids from gram-positive bacteria have been determined. Sequence analyses and data bank comparisons of their putative transfer (tra) regions have revealed significant similarities to tra regions of plasmids from gram-negative bacteria with regard to the respective DNA relaxases and their targets, the origins of transfer (oriT), and putative nucleoside triphosphatases NTP-ases with homologies to type IV secretion systems. In contrast, a single gene encoding a septal DNA translocator protein is involved in plasmid transfer between micelle-forming streptomycetes. Based on these clues, we propose the existence of two fundamentally different plasmid-mediated conjugative mechanisms in gram-positive microorganisms, namely, the mechanism taking place in unicellular gram-positive bacteria, which is functionally similar to that in gram-negative bacteria, and a second type that occurs in multicellular gram-positive bacteria, which seems to be characterized by double-stranded DNA transfer.  相似文献   

14.
W P Wahls  L J Wallace  P D Moore 《Cell》1990,60(1):95-103
Hypervariable minisatellite DNA sequences are short tandemly repeated sequences that are present throughout the human genome and are implicated to enhance recombination. We have constructed a consensus hypervariable minisatellite sequence and analyzed its effect on homologous recombination in human cells in culture. The consensus sequence d(AGAGGTGGGCAGGTGG)6.5 is shown to stimulate homologous recombination up to 13.5-fold. The stimulation occurs at a distance and in both directions but does show a quantitative directionality. Stimulation occurs in a codominant manner, and the sequence is inherited equally in the products. Enhancement is maintained, but at a reduced level, when double-strand breaks are introduced into the substrates. Multiple unselected recombination events are promoted, and preferential stimulation of reciprocal exchange events is demonstrated.  相似文献   

15.
16.
Modifications of the bacterial ribosome regulate the function of the ribosome and modulate its susceptibility to antibiotics. By modifying a highly conserved adenosine A2503 in 23S rRNA, methylating enzyme Cfr confers resistance to a range of ribosome-targeting antibiotics. The same adenosine is also methylated by RlmN, an enzyme widely distributed among bacteria. While RlmN modifies C2, Cfr modifies the C8 position of A2503. Shared nucleotide substrate and phylogenetic relationship between RlmN and Cfr prompted us to investigate evolutionary origin of antibiotic resistance in this enzyme family. Using directed evolution of RlmN under antibiotic selection, we obtained RlmN variants that mediate low-level resistance. Surprisingly, these variants confer resistance not through the Cfr-like C8 methylation, but via inhibition of the endogenous RlmN C2 methylation of A2503. Detection of RlmN inactivating mutations in clinical resistance isolates suggests that the mechanism used by the in vitro evolved variants is also relevant in a clinical setting. Additionally, as indicated by a phylogenetic analysis, it appears that Cfr did not diverge from the RlmN family but from another distinct family of predicted radical SAM methylating enzymes whose function remains unknown.  相似文献   

17.
Plasmid DNA substrates were X-irradiated and injected into the nuclei of Xenopus laevis oocytes. After incubation for 20 h, DNA was recovered from the oocytes and analyzed simultaneously for repair and for intermolecular homologous recombination by electrophoresis and bacterial transformation. Oocyte-mediated repair of DNA strand breaks was observed with both methods. Using a repair-deficient mutant Escherichia coli strain and its repair-proficient parent as hosts for the transformation assay, we also demonstrated that oocytes repaired oxidative-type DNA base damage induced by X-rays. X-irradiation of a circular DNA stimulated its potential to recombine with a homologous linear partner. Recombination products were detected directly by Southern blot hybridization and as bacterial transformant clones expressing two antibiotic resistance markers originally carried separately on the two substrates. The increase in recombination was dependent on X-ray dose. There is some suggestion that lesions other than double-strand breaks contribute to the stimulation of oocyte-mediated homologous recombination. In summary, oocytes have considerable capacity to repair X-ray-induced damage, and some X-ray lesions stimulate homologous recombination in these cells.  相似文献   

18.
Recombination is a major force for generating human immunodeficiency virus type 1 (HIV-1) diversity and produces numerous recombinants circulating in the human population. We previously established a cell-based system using green fluorescent protein gene (gfp) as a reporter to study the mechanisms of HIV-1 recombination. We now report an improved system capable of detecting recombination using authentic viral sequences. Frameshift mutations were introduced into the gag gene so that parental viruses do not express full-length Gag; however, recombination can generate a progeny virus that expresses a functional Gag. We demonstrate that this Gag reconstitution assay can be used to detect recombination between two group M HIV-1 variants of the same or of different subtypes. Using both gfp and gag assays, we found that, similar to group M viruses, group O viruses also recombine frequently. When recombination between a group M virus and a group O virus was examined, we found three distinct barriers for intergroup recombination. First, similar to recombination within group M viruses, intergroup recombination is affected by the identity of the dimerization initiation signal (DIS); variants with the same DIS recombined at a higher rate than those with different DIS. Second, using the gfp recombination assay, we showed that intergroup recombination occurs much less frequently than intragroup recombination, even though the gfp target sequence is identical in all viruses. Finally, Gag reconstitution between variants from different groups is further reduced compared with green fluorescent protein, indicating that sequence divergence interferes with recombination efficiency in the gag gene. Compared with identical sequences, we estimate that recombination rates are reduced by 3-fold and by 10- to 13-fold when the target regions in gag contain 91% and 72-73% sequence identities, respectively. These results show that there are at least three distinct mechanisms preventing exchange of genetic information between divergent HIV-1 variants from different groups.  相似文献   

19.
Using functional metagenomics to study the resistomes of bacterial communities isolated from different layers of the Canadian high Arctic permafrost, we show that microbial communities harbored diverse resistance mechanisms at least 5,000 years ago. Among bacteria sampled from the ancient layers of a permafrost core, we isolated eight genes conferring clinical levels of resistance against aminoglycoside, β-lactam and tetracycline antibiotics that are naturally produced by microorganisms. Among these resistance genes, four also conferred resistance against amikacin, a modern semi-synthetic antibiotic that does not naturally occur in microorganisms. In bacteria sampled from the overlaying active layer, we isolated ten different genes conferring resistance to all six antibiotics tested in this study, including aminoglycoside, β-lactam and tetracycline variants that are naturally produced by microorganisms as well as semi-synthetic variants produced in the laboratory. On average, we found that resistance genes found in permafrost bacteria conferred lower levels of resistance against clinically relevant antibiotics than resistance genes sampled from the active layer. Our results demonstrate that antibiotic resistance genes were functionally diverse prior to the anthropogenic use of antibiotics, contributing to the evolution of natural reservoirs of resistance genes.  相似文献   

20.
Antibiotics were one of the great discoveries of the 20th century. However, resistance appeared even in the earliest years of the antibiotic era. Antibiotic resistance continues to become worse, despite the ever-increasing resources devoted to combat the problem. One of the most important factors in the development of resistance to antibiotics is the remarkable ability of bacteria to share genetic resources via Lateral Gene Transfer (LGT). LGT occurs on a global scale, such that in theory, any gene in any organism anywhere in the microbial biosphere might be mobilized and spread. With sufficiently strong selection, any gene may spread to a point where it establishes a global presence. From an antibiotic resistance perspective, this means that a resistance phenotype can appear in a diverse range of infections around the globe nearly simultaneously. We discuss the forces and agents that make this LGT possible and argue that the problem of resistance can ultimately only be managed by understanding the problem from a broad ecological and evolutionary perspective. We also argue that human activities are exacerbating the problem by increasing the tempo of LGT and bacterial evolution for many traits that are important to humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号