首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

The dystrophin gene, which is mutated in Duchenne muscular dystrophy (DMD), encodes a large cytoskeletal protein present in muscle fibers. While dystrophin in skeletal muscle has been extensively studied, the function of dystrophin in vascular smooth muscle is less clear. Here, we have analyzed the role of dystrophin in injury-induced arterial neointima formation.

Methodology/Principal Findings

We detected a down-regulation of dystrophin, dystroglycan and β-sarcoglycan mRNA expression when vascular smooth muscle cells de-differentiate in vitro. To further mimic development of intimal lesions, we performed a collar-induced injury of the carotid artery in the mdx mouse, a model for DMD. As compared with control mice, mdx mice develop larger lesions with increased numbers of proliferating cells. In vitro experiments demonstrate increased migration of vascular smooth muscle cells from mdx mice whereas the rate of proliferation was similar in cells isolated from wild-type and mdx mice.

Conclusions/Significance

These results show that dystrophin deficiency stimulates neointima formation and suggest that expression of dystrophin in vascular smooth muscle cells may protect the artery wall against injury-induced intimal thickening.  相似文献   

2.
3.

Background

Dmdmdx (mdx) mice are used as a genetic and biochemical model of dystrophin deficiency. The long-term consequences of glucocorticoid (GC) treatment on dystrophin-deficient skeletal and heart muscle are not yet known. Here we used systematic phenotyping to assess the long-term consequences of GC treatment in mdx mice. Our investigation addressed not only the effects of GC on the disease phenotype but also the question of whether GCs can be used as a positive control for preclinical drug evaluations.

Methods and Findings

We performed nine pre-clinical efficacy trials (treated N = 129, untreated N = 106) of different durations in 9-to-50-week-old dystrophic mdx mice over a 3-year time period using standardized methods. In all these trials, we used either 1 mg/kg body weight of prednisone or 5 mg/kg body weight of prednisolone as positive controls to compare the efficacy of various test drugs. Data from untreated controls and GC-treated mice in the various trials have been pooled and analyzed to assess the effects of GCs on dystrophin-deficient skeletal and cardiac muscles of mdx mice. Our results indicate that continuous GC treatment results in early (e.g., at 50 days) improvements in normalized parameters such as grip strength, motor coordination and maximal in vitro force contractions on isolated EDL muscle, but these initial benefits are followed by a progressive loss of muscle strength after 100 days. We also found a significant increase in heart fibrosis that is reflected in a significant deterioration in cardiac systolic function after 100 days of treatment.

Conclusion

Continuous administration of prednisone to mdx mice initially improves skeletal muscle strength, but further therapy result in deterioration of muscle strength and cardiac function associated with enhanced cardiac fibrosis. These results suggest that GCs may not serve as an appropriate positive control for long-term mdx mouse preclinical trials.  相似文献   

4.

Background

Akt is a critical mediator of developmental skeletal muscle growth. Treatment with a soluble ActRIIB fusion protein (ActRIIB-mFc) increases skeletal muscle mass and strength by inhibiting myostatin and related peptides. Recent in vitro studies have suggested that Akt signaling is necessary for the ability of ActRIIB inhibition to induce muscle hypertrophy. Thus, we hypothesized that mice deficient in either Akt1 or Akt2 would not respond to in vivo inhibition of ActRIIB with ActRIIB-mFc treatment.

Methodology and Principal Findings

We analyzed body composition and muscle parameters in wild-type C57BL/6J and Akt1 and Akt2 knockout mice, and compared the responses to blockade of ActRIIB signaling via ActRIIB-mFc treatment. Mice lacking Akt1 or Akt2 had reduced muscle mass, grip strength and contractile force. However, deficiency of Akt1 or Akt2 did not prevent the ability of ActRIIB-mFc treatment to induce muscle hypertrophy, or increase grip strength and contractile force. Akt1 and Akt2 deficient mice responded similarly as wild type mice to ActRIIB-mFc treatment by increasing fiber size.

Conclusions and Significance

Akt1 and Akt2 are important for the regulation of skeletal muscle mass and function. However, these Akt isoforms are not essential for the ability of ActRIIB inhibition to regulate muscle size, fiber type, strength or contractile force.  相似文献   

5.

Background

In Duchenne muscular dystrophy (DMD), loss of the membrane stabilizing protein dystrophin results in myofiber damage. Microinjury to dystrophic myofibers also causes secondary imbalances in sarcolemmic ion permeability and resting membrane potential, which modifies excitation-contraction coupling and increases proinflammatory/apoptotic signaling cascades. Although glucocorticoids remain the standard of care for the treatment of DMD, there is a need to investigate the efficacy of other pharmacological agents targeting the involvement of imbalances in ion flux on dystrophic pathology.

Methodology/Principal Findings

We designed a preclinical trial to investigate the effects of lansoprazole (LANZO) administration, a proton pump inhibitor, on the dystrophic muscle phenotype in dystrophin deficient (mdx) mice. Eight to ten week-old female mice were assigned to one of four treatment groups (n = 12 per group): (1) vehicle control; (2) 5 mg/kg/day LANZO; (3) 5 mg/kg/day prednisolone; and (4) combined treatment of 5 mg/kg/day prednisolone (PRED) and 5 mg/kg/day LANZO. Treatment was administered orally 5 d/wk for 3 months. At the end of the study, behavioral (Digiscan) and functional outcomes (grip strength and Rotarod) were assessed prior to sacrifice. After sacrifice, body, tissue and organ masses, muscle histology, in vitro muscle force, and creatine kinase levels were measured. Mice in the combined treatment groups displayed significant reductions in the number of degenerating muscle fibers and number of inflammatory foci per muscle field relative to vehicle control. Additionally, mice in the combined treatment group displayed less of a decline in normalized forelimb and hindlimb grip strength and declines in in vitro EDL force after repeated eccentric contractions.

Conclusions/Significance

Together our findings suggest that combined treatment of LANZO and prednisolone attenuates some components of dystrophic pathology in mdx mice. Our findings warrant future investigation of the clinical efficacy of LANZO and prednisolone combined treatment regimens in dystrophic pathology.  相似文献   

6.

Objective

Tools to better evaluate the impact of therapy on nerve and muscle disease are needed. Electrical impedance myography (EIM) is sensitive to neuromuscular disease progression as well as to therapeutic interventions including myostatin inhibition and antisense oligonucleotide-based treatments. Whether the technique identifies the impact of electrical muscle stimulation (EMS) is unknown.

Methods

Ten wild-type (wt) C57B6 mice and 10 dystrophin-deficient (mdx) mice underwent 2 weeks of 20 min/day EMS on left gastrocnemius and sham stimulation on the right gastrocnemius. Multifrequency EIM data and limb girth were obtained before and at the conclusion of the protocol. Muscle weight, in situ force measurements, and muscle fiber histology were also assessed at the conclusion of the study.

Results

At the time of sacrifice, muscle weight was greater on the EMS-treated side than on the sham-stimulated side (p = 0.018 for wt and p = 0.007 for mdx). Similarly, in wt animals, EIM parameters changed significantly compared to baseline (resistance (p = 0.009), reactance (p = 0.0003) and phase (p = 0.002); these changes were due in part to reductions in the EIM values on the EMS-treated side and elevations on the sham-simulated side. Mdx animals showed analogous but non-significant changes (p = 0.083, p = 0.064, and p = 0.57 for resistance, reactance and phase, respectively). Maximal isometric force trended higher on the stimulated side in wt animals only (p = 0.06). Myofiber sizes in wt animals were also larger on the stimulated side than on the sham-stimulated side (p = 0.034); no significant difference was found in the mdx mice (p = 0.79).

Conclusion

EIM is sensitive to stimulation-induced muscle alterations in wt animals; similar trends are also present in mdx mice. The mechanisms by which these EIM changes develop, however, remains uncertain. Possible explanations include longer-term trophic effects and shorter-term osmotic effects.  相似文献   

7.

Background

The number of promising therapeutic interventions for Duchenne Muscular Dystrophy (DMD) is increasing rapidly. One of the proposed strategies is to use drugs that are known to act by multiple different mechanisms including inducing of homologous fetal form of adult genes, for example utrophin in place of dystrophin.

Methodology/Principal Findings

In this study, we have treated mdx mice with arginine butyrate, prednisone, or a combination of arginine butyrate and prednisone for 6 months, beginning at 3 months of age, and have comprehensively evaluated the functional, biochemical, histological, and molecular effects of the treatments in this DMD model. Arginine butyrate treatment improved grip strength and decreased fibrosis in the gastrocnemius muscle, but did not produce significant improvement in muscle and cardiac histology, heart function, behavioral measurements, or serum creatine kinase levels. In contrast, 6 months of chronic continuous prednisone treatment resulted in deterioration in functional, histological, and biochemical measures. Arginine butyrate-treated mice gene expression profiling experiments revealed that several genes that control cell proliferation, growth and differentiation are differentially expressed consistent with its histone deacetylase inhibitory activity when compared to control (saline-treated) mdx mice. Prednisone and combination treated groups showed alterations in the expression of genes that control fibrosis, inflammation, myogenesis and atrophy.

Conclusions/Significance

These data indicate that 6 months treatment with arginine butyrate can produce modest beneficial effects on dystrophic pathology in mdx mice by reducing fibrosis and promoting muscle function while chronic continuous treatment with prednisone showed deleterious effects to skeletal and cardiac muscle. Our results clearly indicate the usefulness of multiple assays systems to monitor both beneficial and toxic effects of drugs with broad range of in vivo activity.  相似文献   

8.

Aims

Myostatin is a negative regulator of skeletal muscle mass and may also modulate energy metabolism secondarily. We aim to investigate the relationship between serum myostatin and the metabolic variables in diabetic (DM) and non-diabetic subjects.

Materials and Methods

A cross-sectional study recruiting 246 consecutive DM patients and 82 age- and gender-matched non-diabetic individuals at a medical center was conducted. The variables of anthropometry and blood chemistry were obtained. Serum myostatin level was measured with enzyme immunoassay.

Results

DM group had lower serum myostatin compared with non-diabetics (7.82 versus 9.28 ng/ml, p<0.01). Sixty-two percent of the recruited individuals had metabolic syndrome (MetS). The patients with MetS had significantly lower serum myostatin than those without (7.39 versus 9.49 ng/ml, p<0.001). The serum myostatin level decreased with increasing numbers of the MetS components (p for trend<0.001). The patients with higher body mass index, larger abdominal girth, lower high-density lipoprotein cholesterol (HDL-C), and higher triglycerides had lower serum myostatin than those without. The serum myostatin level was independently negatively related to larger abdominal girth, higher triglycerides, and lower HDL-C after adjustment. The odds ratios for MetS, central obesity, low HDL-C, high triglycerides, and DM were 0.85, 0.88, 0.89, 0.85, and 0.92, respectively, when serum myostatin increased per 1 ng/mL, in the binary logistic regression models.

Conclusions

Lower serum myostatin independently associated with MetS, central obesity, low HDL-C, and high triglycerides after adjustment. Higher serum myostatin is associated with favorable metabolic profiles.  相似文献   

9.

Background

The onset of cachexia is a frequent feature in cancer patients. Prominent characteristic of this syndrome is the loss of body and muscle weight, this latter being mainly supported by increased protein breakdown rates. While the signaling pathways dependent on IGF-1 or myostatin were causally involved in muscle atrophy, the role of the Mitogen-Activated-Protein-Kinases is still largely debated. The present study investigated this point on mice bearing the C26 colon adenocarcinoma.

Methodology/Principal Findings

C26-bearing mice display a marked loss of body weight and muscle mass, this latter associated with increased phosphorylated (p)-ERK. Administration of the ERK inhibitor PD98059 to tumor bearers attenuates muscle depletion and weakness, while restoring normal atrogin-1 expression. In C26 hosts, muscle wasting is also associated with increased Pax7 expression and reduced myogenin levels. Such pattern, suggestive of impaired myogenesis, is reversed by PD98059. Increased p-ERK and reduced myosin heavy chain content can be observed in TNFα-treated C2C12 myotubes, while decreased myogenin and MyoD levels occur in differentiating myoblasts exposed to the cytokine. All these changes are prevented by PD98059.

Conclusions/Significance

These results demonstrate that ERK is involved in the pathogenesis of muscle wasting in cancer cachexia and could thus be proposed as a therapeutic target.  相似文献   

10.

Background

The loss of dystrophin compromises muscle cell membrane stability and causes Duchenne muscular dystrophy and/or various forms of cardiomyopathy. Increased expression of the dystrophin homolog utrophin by gene delivery or pharmacologic up-regulation has been demonstrated to restore membrane integrity and improve the phenotype in the dystrophin-deficient mdx mouse. However, the lack of a viable therapy in humans predicates the need to explore alternative methods to combat dystrophin deficiency. We investigated whether systemic administration of recombinant full-length utrophin (Utr) or ΔR4-21 “micro” utrophin (μUtr) protein modified with the cell-penetrating TAT protein transduction domain could attenuate the phenotype of mdx mice.

Methods and Findings

Recombinant TAT-Utr and TAT-μUtr proteins were expressed using the baculovirus system and purified using FLAG-affinity chromatography. Age-matched mdx mice received six twice-weekly intraperitoneal injections of either recombinant protein or PBS. Three days after the final injection, mice were analyzed for several phenotypic parameters of dystrophin deficiency. Injected TAT-μUtr transduced all tissues examined, integrated with members of the dystrophin complex, reduced serum levels of creatine kinase (11,290±920 U versus 5,950±1,120 U; PBS versus TAT), the prevalence of muscle degeneration/regeneration (54%±5% versus 37%±4% of centrally nucleated fibers; PBS versus TAT), the susceptibility to eccentric contraction-induced force drop (72%±5% versus 40%±8% drop; PBS versus TAT), and increased specific force production (9.7±1.1 N/cm2 versus 12.8±0.9 N/cm2; PBS versus TAT).

Conclusions

These results are, to our knowledge, the first to establish the efficacy and feasibility of TAT-utrophin-based constructs as a novel direct protein-replacement therapy for the treatment of skeletal and cardiac muscle diseases caused by loss of dystrophin.  相似文献   

11.

Objective

We evaluated the postmortem changes of striated muscle by comparing computed tomography (CT) images obtained postmortem and antemortem in the same patients.

Materials and Methods

We studied 33 consecutive patients who underwent antemortem CT, postmortem CT, and pathological autopsy in our tertiary care hospital between April 2009 and December 2010. Postmortem CT was performed within 20 h after death and was followed by pathological autopsy. Pathological autopsy confirmed the absence of muscular diseases such as amyotrophic lateral sclerosis, muscular dystrophy, myositis, and myasthenia, in all of the patients. The CT attenuation values of four cardiac muscle sites (anterior wall of the left ventricle, left ventricular free wall, posterior wall of the left ventricle, and the ventricular septum) and two skeletal muscle sites (the pectoralis major muscle and the erector spinae muscle) were compared between antemortem and postmortem CT using paired t test.

Results

Striated muscle had significantly greater attenuation on postmortem CT than on antemortem CT (P<0.001) in all six tissue sites. No significant association was found between postmortem change in the CT attenuation of striated muscle and gender, age, or elapsed time since death.

Conclusion

This is the first longitudinal study to show hyperattenuation of striated muscle on postmortem CT images compared with antemortem CT images in the same patients.  相似文献   

12.

Objective

Myostatin and insulin-like growth factor 1 (IGF-1) are serum markers for muscle growth and regeneration. However, their value in the clinical monitoring of Pompe disease – a muscle glycogen storage disease – is not known. In order to evaluate their possible utility for disease monitoring, we assessed the levels of these serum markers in Pompe disease patients receiving enzyme replacement therapy (ERT).

Design

A case-control study that included 10 patients with Pompe disease and 10 gender- and age-matched non-Pompe disease control subjects was performed in a referral medical center. Average follow-up duration after ERT for Pompe disease patients was 11.7 months (range: 6–23 months). Measurements of serum myostatin, IGF-1, and creatine kinase levels were obtained, and examinations of muscle pathology were undertaken before and after ERT in the patient group.

Results

Compared with control subjects, Pompe disease patients prior to undergoing ERT had significantly lower serum IGF-1 levels (98.6 ng/ml vs. 307.9 ng/ml, p = 0.010) and lower myostatin levels that bordered on significance (1.38 ng/ml vs. 3.32 ng/ml, p = 0.075). After ERT, respective myostatin and IGF-1 levels in Pompe disease patients increased significantly by 129% (from 1.38 ng/ml to 3.16 ng/ml, p = 0.047) and 74% (from 98.6 ng/ml to 171.1 ng/ml, p = 0.013); these values fall within age-matched normal ranges. In contrast, myostatin and IGF-1 serum markers did not increase in age-matched controls. Follistatin, a control marker unrelated to muscle, increased in both Pompe disease patients and control subjects. At the same time, the percentage of muscle fibers containing intracytoplasmic vacuoles decreased from 80.0±26.4% to 31.6±45.3%.

Conclusion

The increase in myostatin and IGF-1 levels in Pompe disease patients may reflect muscle regeneration after ERT. The role of these molecules as potential therapeutic biomarkers in Pompe disease and other neuromuscular diseases warrants further study.  相似文献   

13.

Background

Belgian Blue cattle are famous for their exceptional muscular development or “double-muscling”. This defining feature emerged following the fixation of a loss-of-function variant in the myostatin gene in the eighties. Since then, sustained selection has further increased muscle mass of Belgian Blue animals to a comparable extent. In the present paper, we study the genetic determinants of this second wave of muscle growth.

Results

A scan for selective sweeps did not reveal the recent fixation of another allele with major effect on muscularity. However, a genome-wide association study identified two genome-wide significant and three suggestive quantitative trait loci (QTL) affecting specific muscle groups and jointly explaining 8-21% of the heritability. The top two QTL are caused by presumably recent mutations on unique haplotypes that have rapidly risen in frequency in the population. While one appears on its way to fixation, the ascent of the other is compromised as the likely underlying MRC2 mutation causes crooked tail syndrome in homozygotes. Genomic prediction models indicate that the residual additive variance is largely polygenic.

Conclusions

Contrary to complex traits in humans which have a near-exclusive polygenic architecture, muscle mass in beef cattle (as other production traits under directional selection), appears to be controlled by (i) a handful of recent mutations with large effect that rapidly sweep through the population, and (ii) a large number of presumably older variants with very small effects that rise slowly in the population (polygenic adaptation).

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-796) contains supplementary material, which is available to authorized users.  相似文献   

14.

Objectives

We examined whether arginase inhibition influences hepatic metabolic pathways and whole body adiposity in diet-induced obesity.

Methods and Results

After obesity induction by a high fat diet (HFD), mice were fed either the HFD or the HFD with an arginase inhibitor, Nω-hydroxy-nor-L-arginine (nor-NOHA). Nor-NOHA significantly prevented HFD-induced increases in body, liver, and visceral fat tissue weight, and ameliorated abnormal lipid profiles. Furthermore, nor-NOHA treatment reduced lipid accumulation in oleic acid-induced hepatic steatosis in vitro. Arginase inhibition increased hepatic nitric oxide (NO) in HFD-fed mice and HepG2 cells, and reversed the elevated mRNA expression of hepatic genes in lipid metabolism. Expression of phosphorylated 5′ AMPK-activated protein kinase α was increased by arginase inhibition in the mouse livers and HepG2 cells.

Conclusions

Arginase inhibition ameliorated obesity-induced hepatic lipid abnormalities and whole body adiposity, possibly as a result of increased hepatic NO production and subsequent activation of metabolic pathways involved in hepatic triglyceride metabolism and mitochondrial function.  相似文献   

15.
16.

Objectives

Oxidative stress plays an important role in the pathogenesis of multiple sclerosis (MS). Though reactive oxygen species (ROS) are produced by various mechanisms, xanthine oxidase (XO) is a major enzyme generating ROS in the context of inflammation. The objectives of this study were to investigate the involvement of XO in the pathogenesis of MS and to develop a potent new therapy for MS based on the inhibition of ROS.

Methods

XO were assessed in a model of MS: experimental autoimmune encephalomyelitis (EAE). The contribution of XO-generated ROS to the pathogenesis of EAE was assessed by treating EAE mice with a novel XO inhibitor, febuxostat. The efficacy of febuxostat was also examined in in vitro studies.

Results

We showed for the first time that the expression and the activity of XO were increased dramatically within the central nervous system of EAE mice as compared to naïve mice. Furthermore, prophylactic administration of febuxostat, a XO inhibitor, markedly reduced the clinical signs of EAE. Both in vivo and in vitro studies showed infiltrating macrophages and microglia as the major sources of excess XO production, and febuxostat significantly suppressed ROS generation from these cells. Inflammatory cellular infiltration and glial activation in the spinal cord of EAE mice were inhibited by the treatment with febuxostat. Importantly, therapeutic efficacy was observed not only in mice with relapsing-remitting EAE but also in mice with secondary progressive EAE by preventing axonal loss and demyelination.

Conclusion

These results highlight the implication of XO in EAE pathogenesis and suggest XO as a target for MS treatment and febuxostat as a promising therapeutic option for MS neuropathology.  相似文献   

17.
18.

Background

Although muscular dystrophy causes muscle weakness and muscle loss, the role of exercise in the management of this disease remains controversial.

Objective

The purpose of this systematic review is to evaluate the role of exercise interventions on muscle strength in patients with muscular dystrophy.

Methods

We performed systematic electronic searches in Medline, Embase, Web of Science, Scopus and Pedro as well as a list of reference literature. We included trials assessing muscle exercise in patients with muscular dystrophy. Two reviewers independently abstracted data and appraised risk of bias.

Results

We identified five small (two controlled and three randomized clinical) trials comprising 242 patients and two ongoing randomized controlled trials. We were able to perform two meta-analyses. We found an absence of evidence for a difference in muscle strength (MD 4.18, 95% CIs - 2.03 to 10.39; p = 0.91) and in endurance (MD −0.53, 95% CIs –1.11 to 0.05; p = 0.26). In both, the direction of effects favored muscle exercise.

Conclusions

The first included trial about the efficacy of muscular exercise was published in 1978. Even though some benefits of muscle exercise were consistently reported across studies, the benefits might be due to the small size of studies and other biases. Detrimental effects are still possible. After several decades of research, doctors cannot give advice and patients are, thus, denied basic information. A multi-center randomized trial investigating the strength of muscles, fatigue, and functional limitations is needed.  相似文献   

19.

Background

Duchenne muscular dystrophy is a highly complex multi-system disease caused by primary abnormalities in the membrane cytoskeletal protein dystrophin. Besides progressive skeletal muscle degeneration, this neuromuscular disorder is also associated with pathophysiological perturbations in many other organs including the liver. To determine potential proteome-wide alterations in liver tissue, we have used a comparative and mass spectrometry-based approach to study the dystrophic mdx-4cv mouse model of dystrophinopathy.

Methods

The comparative proteomic profiling of mdx-4cv versus wild type liver extracts was carried out with an Orbitrap Fusion Tribrid mass spectrometer. The distribution of identified liver proteins within protein families and potential protein interaction patterns were analysed by systems bioinformatics. Key findings on fatty acid binding proteins were confirmed by immunoblot analysis and immunofluorescence microscopy.

Results

The proteomic analysis revealed changes in a variety of protein families, affecting especially fatty acid, carbohydrate and amino acid metabolism, biotransformation, the cellular stress response and ion handling in the mdx-4cv liver. Drastically increased protein species were identified as fatty acid binding protein FABP5, ferritin and calumenin. Decreased liver proteins included phosphoglycerate kinase, apolipoprotein and perilipin. The drastic change in FABP5 was independently verified by immunoblotting and immunofluorescence microscopy.

Conclusions

The proteomic results presented here indicate that the intricate and multifaceted pathogenesis of the mdx-4cv model of dystrophinopathy is associated with secondary alterations in the liver affecting especially fatty acid transportation. Since FABP5 levels were also shown to be elevated in serum from dystrophic mice, this protein might be a useful indicator for monitoring liver changes in X-linked muscular dystrophy.
  相似文献   

20.

Background

Remodeling of lung tissues during the process of granuloma formation requires significant restructuring of the extra-cellular matrix and cathepsins K, L and S are among the strongest extra-cellular matrix degrading enzymes. Cathepsin K is highly expressed in various pathological granulomatous infiltrates and all three enzymes in their active form are detected in bronchoalveolar lavage fluids from patients with sarcoidosis. Granulomatous inflammation is driven by T-cell response and cathepsins S and L are actively involved in the regulation of antigen presentation and T-cell selection. Here, we show that the disruption of the activities of cathepsins K, L, or S affects the development of lung granulomas in a mouse model of sarcoidosis.

Methods

Apolipoprotein E-deficient mice lacking cathepsin K or L were fed Paigen diet for 16 weeks and lungs were analyzed and compared with their cathepsin-expressing littermates. The role of cathepsin S in the development of granulomas was evaluated using mice treated for 8 weeks with a potent and selective cathepsin S inhibitor.

Results

When compared to wild-type litters, more cathepsin K-deficient mice had lung granulomas, but individually affected mice developed smaller granulomas that were present in lower numbers. The absence of cathepsin K increased the number of multinucleated giant cells and the collagen content in granulomas. Cathepsin L deficiency resulted in decreased size and number of lung granulomas. Apoe-/- mice treated with a selective cathepsin S inhibitor did not develop lung granulomas and only individual epithelioid cells were observed.

Conclusions

Cathepsin K deficiency affected mostly the occurrence and composition of lung granulomas, whereas cathepsin L deficiency significantly reduced their number and cathepsin S inhibition prevented the formation of granulomas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号