首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Hidden Markov models (HMMs) have been extensively used in biological sequence analysis. In this paper, we give a tutorial review of HMMs and their applications in a variety of problems in molecular biology. We especially focus on three types of HMMs: the profile-HMMs, pair-HMMs, and context-sensitive HMMs. We show how these HMMs can be used to solve various sequence analysis problems, such as pairwise and multiple sequence alignments, gene annotation, classification, similarity search, and many others.Key Words: Hidden Markov model (HMM), pair-HMM, profile-HMM, context-sensitive HMM (csHMM), profile-csHMM, sequence analysis.  相似文献   

2.
We present a protein fold-recognition method that uses a comprehensive statistical interpretation of structural Hidden Markov Models (HMMs). The structure/fold recognition is done by summing the probabilities of all sequence-to-structure alignments. The optimal alignment can be defined as the most probable, but suboptimal alignments may have comparable probabilities. These suboptimal alignments can be interpreted as optimal alignments to the "other" structures from the ensemble or optimal alignments under minor fluctuations in the scoring function. Summing probabilities for all alignments gives a complete estimate of sequence-model compatibility. In the case of HMMs that produce a sequence, this reflects the fact that due to our indifference to exactly how the HMM produced the sequence, we should sum over all possibilities. We have built a set of structural HMMs for 188 protein structures and have compared two methods for identifying the structure compatible with a sequence: by the optimal alignment probability and by the total probability. Fold recognition by total probability was 40% more accurate than fold recognition by the optimal alignment probability. Proteins 2000;40:451-462.  相似文献   

3.
MOTIVATION: A method for recognizing the three-dimensional fold from the protein amino acid sequence based on a combination of hidden Markov models (HMMs) and secondary structure prediction was recently developed for proteins in the Mainly-Alpha structural class. Here, this methodology is extended to Mainly-Beta and Alpha-Beta class proteins. Compared to other fold recognition methods based on HMMs, this approach is novel in that only secondary structure information is used. Each HMM is trained from known secondary structure sequences of proteins having a similar fold. Secondary structure prediction is performed for the amino acid sequence of a query protein. The predicted fold of a query protein is the fold described by the model fitting the predicted sequence the best. RESULTS: After model cross-validation, the success rate on 44 test proteins covering the three structural classes was found to be 59%. On seven fold predictions performed prior to the publication of experimental structure, the success rate was 71%. In conclusion, this approach manages to capture important information about the fold of a protein embedded in the length and arrangement of the predicted helices, strands and coils along the polypeptide chain. When a more extensive library of HMMs representing the universe of known structural families is available (work in progress), the program will allow rapid screening of genomic databases and sequence annotation when fold similarity is not detectable from the amino acid sequence. AVAILABILITY: FORESST web server at http://absalpha.dcrt.nih.gov:8008/ for the library of HMMs of structural families used in this paper. FORESST web server at http://www.tigr.org/ for a more extensive library of HMMs (work in progress). CONTACT: valedf@tigr.org; munson@helix.nih.gov; garnier@helix.nih.gov  相似文献   

4.
Function prediction by homology is widely used to provide preliminary functional annotations for genes for which experimental evidence of function is unavailable or limited. This approach has been shown to be prone to systematic error, including percolation of annotation errors through sequence databases. Phylogenomic analysis avoids these errors in function prediction but has been difficult to automate for high-throughput application. To address this limitation, we present a computationally efficient pipeline for phylogenomic classification of proteins. This pipeline uses the SCI-PHY (Subfamily Classification in Phylogenomics) algorithm for automatic subfamily identification, followed by subfamily hidden Markov model (HMM) construction. A simple and computationally efficient scoring scheme using family and subfamily HMMs enables classification of novel sequences to protein families and subfamilies. Sequences representing entirely novel subfamilies are differentiated from those that can be classified to subfamilies in the input training set using logistic regression. Subfamily HMM parameters are estimated using an information-sharing protocol, enabling subfamilies containing even a single sequence to benefit from conservation patterns defining the family as a whole or in related subfamilies. SCI-PHY subfamilies correspond closely to functional subtypes defined by experts and to conserved clades found by phylogenetic analysis. Extensive comparisons of subfamily and family HMM performances show that subfamily HMMs dramatically improve the separation between homologous and non-homologous proteins in sequence database searches. Subfamily HMMs also provide extremely high specificity of classification and can be used to predict entirely novel subtypes. The SCI-PHY Web server at http://phylogenomics.berkeley.edu/SCI-PHY/ allows users to upload a multiple sequence alignment for subfamily identification and subfamily HMM construction. Biologists wishing to provide their own subfamily definitions can do so. Source code is available on the Web page. The Berkeley Phylogenomics Group PhyloFacts resource contains pre-calculated subfamily predictions and subfamily HMMs for more than 40,000 protein families and domains at http://phylogenomics.berkeley.edu/phylofacts/.  相似文献   

5.
Many methods have been described to predict the subcellular location of proteins from sequence information. However, most of these methods either rely on global sequence properties or use a set of known protein targeting motifs to predict protein localization. Here, we develop and test a novel method that identifies potential targeting motifs using a discriminative approach based on hidden Markov models (discriminative HMMs). These models search for motifs that are present in a compartment but absent in other, nearby, compartments by utilizing an hierarchical structure that mimics the protein sorting mechanism. We show that both discriminative motif finding and the hierarchical structure improve localization prediction on a benchmark data set of yeast proteins. The motifs identified can be mapped to known targeting motifs and they are more conserved than the average protein sequence. Using our motif-based predictions, we can identify potential annotation errors in public databases for the location of some of the proteins. A software implementation and the data set described in this paper are available from http://murphylab.web.cmu.edu/software/2009_TCBB_motif/.  相似文献   

6.
MOTIVATION: Profile HMMs are a powerful tool for modeling conserved motifs in proteins. These models are widely used by search tools to classify new protein sequences into families based on domain architecture. However, the proliferation of known motifs and new proteomic sequence data poses a computational challenge for search, requiring days of CPU time to annotate an organism's proteome. RESULTS: We use PROSITE-like patterns as a filter to speed up the comparison between protein sequence and profile HMM. A set of patterns is designed starting from the HMM, and only sequences matching one of these patterns are compared to the HMM by full dynamic programming. We give an algorithm to design patterns with maximal sensitivity subject to a bound on the false positive rate. Experiments show that our patterns typically retain at least 90% of the sensitivity of the source HMM while accelerating search by an order of magnitude. AVAILABILITY: Contact the first author at the address below.  相似文献   

7.
Protein-binding microarray (PBM) is a high-throughout platform that can measure the DNA-binding preference of a protein in a comprehensive and unbiased manner. A typical PBM experiment can measure binding signal intensities of a protein to all the possible DNA k-mers (k = 8 ∼10); such comprehensive binding affinity data usually need to be reduced and represented as motif models before they can be further analyzed and applied. Since proteins can often bind to DNA in multiple modes, one of the major challenges is to decompose the comprehensive affinity data into multimodal motif representations. Here, we describe a new algorithm that uses Hidden Markov Models (HMMs) and can derive precise and multimodal motifs using belief propagations. We describe an HMM-based approach using belief propagations (kmerHMM), which accepts and preprocesses PBM probe raw data into median-binding intensities of individual k-mers. The k-mers are ranked and aligned for training an HMM as the underlying motif representation. Multiple motifs are then extracted from the HMM using belief propagations. Comparisons of kmerHMM with other leading methods on several data sets demonstrated its effectiveness and uniqueness. Especially, it achieved the best performance on more than half of the data sets. In addition, the multiple binding modes derived by kmerHMM are biologically meaningful and will be useful in interpreting other genome-wide data such as those generated from ChIP-seq. The executables and source codes are available at the authors’ websites: e.g. http://www.cs.toronto.edu/∼wkc/kmerHMM.  相似文献   

8.
Recent studies have shown that RNA structural motifs play essential roles in RNA folding and interaction with other molecules. Computational identification and analysis of RNA structural motifs remains a challenging task. Existing motif identification methods based on 3D structure may not properly compare motifs with high structural variations. Other structural motif identification methods consider only nested canonical base-pairing structures and cannot be used to identify complex RNA structural motifs that often consist of various non-canonical base pairs due to uncommon hydrogen bond interactions. In this article, we present a novel RNA structural alignment method for RNA structural motif identification, RNAMotifScan, which takes into consideration the isosteric (both canonical and non-canonical) base pairs and multi-pairings in RNA structural motifs. The utility and accuracy of RNAMotifScan is demonstrated by searching for kink-turn, C-loop, sarcin-ricin, reverse kink-turn and E-loop motifs against a 23S rRNA (PDBid: 1S72), which is well characterized for the occurrences of these motifs. Finally, we search these motifs against the RNA structures in the entire Protein Data Bank and the abundances of them are estimated. RNAMotifScan is freely available at our supplementary website (http://genome.ucf.edu/RNAMotifScan).  相似文献   

9.
SUMMARY: Hidden Markov models (HMMs) are widely used for biological sequence analysis because of their ability to incorporate biological information in their structure. An automatic means of optimizing the structure of HMMs would be highly desirable. However, this raises two important issues; first, the new HMMs should be biologically interpretable, and second, we need to control the complexity of the HMM so that it has good generalization performance on unseen sequences. In this paper, we explore the possibility of using a genetic algorithm (GA) for optimizing the HMM structure. GAs are sufficiently flexible to allow incorporation of other techniques such as Baum-Welch training within their evolutionary cycle. Furthermore, operators that alter the structure of HMMs can be designed to favour interpretable and simple structures. In this paper, a training strategy using GAs is proposed, and it is tested on finding HMM structures for the promoter and coding region of the bacterium Campylobacter jejuni. The proposed GA for hidden Markov models (GA-HMM) allows, HMMs with different numbers of states to evolve. To prevent over-fitting, a separate dataset is used for comparing the performance of the HMMs to that used for the Baum-Welch training. The GA-HMM was capable of finding an HMM comparable to a hand-coded HMM designed for the same task, which has been published previously.  相似文献   

10.
HMMSPECTR is a tool for finding putative structural homologs for proteins with known primary sequences. HMMSPECTR contains four major components: a data warehouse with the hidden Markov models (HMM) and alignment libraries; a search program which compares the initial protein sequences with the libraries of HMMs; a secondary structure prediction and comparison program; and a dominant protein selection program that prepares the set of 10-15 "best" proteins from the chosen HMMs. The data warehouse contains four libraries of HMMs. The first two libraries were constructed using different HHM preparation options of the HAMMER program. The third library contains parts ("partial HMM") of initial alignments. The fourth library contains trained HMMs. We tested our program against all of the protein targets proposed in the CASP4 competition. The data warehouse included libraries of structural alignments and HMMs constructed on the basis of proteins publicly available in the Protein Data Bank before the CASP4 meeting. The newest fully automated versions of HMMSPECTR 1.02 and 1.02ss produced better results than the best result reported at CASP4 either by r.m.s.d. or by length (or both) in 64% (HMMSPECTR 1.02) and 79% (HMMSPECTR 1.02ss) of the cases. The improvement is most notable for the targets with complexity 4 (difficult fold recognition cases).  相似文献   

11.
Profile hidden Markov models (HMMs) based on classical HMMs have been widely applied for protein sequence identification. The formulation of the forward and backward variables in profile HMMs is made under statistical independence assumption of the probability theory. We propose a fuzzy profile HMM to overcome the limitations of that assumption and to achieve an improved alignment for protein sequences belonging to a given family. The proposed model fuzzifies the forward and backward variables by incorporating Sugeno fuzzy measures and Choquet integrals, thus further extends the generalized HMM. Based on the fuzzified forward and backward variables, we propose a fuzzy Baum-Welch parameter estimation algorithm for profiles. The strong correlations and the sequence preference involved in the protein structures make this fuzzy architecture based model as a suitable candidate for building profiles of a given family, since the fuzzy set can handle uncertainties better than classical methods.  相似文献   

12.
Proper subcellular localization is critical for proteins to perform their roles in cellular functions. Proteins are transported by different cellular sorting pathways, some of which take a protein through several intermediate locations until reaching its final destination. The pathway a protein is transported through is determined by carrier proteins that bind to specific sequence motifs. In this article, we present a new method that integrates protein interaction and sequence motif data to model how proteins are sorted through these sorting pathways. We use a hidden Markov model (HMM) to represent protein sorting pathways. The model is able to determine intermediate sorting states and to assign carrier proteins and motifs to the sorting pathways. In simulation studies, we show that the method can accurately recover an underlying sorting model. Using data for yeast, we show that our model leads to accurate prediction of subcellular localization. We also show that the pathways learned by our model recover many known sorting pathways and correctly assign proteins to the path they utilize. The learned model identified new pathways and their putative carriers and motifs and these may represent novel protein sorting mechanisms. Supplementary results and software implementation are available from http://murphylab.web.cmu.edu/software/2010_RECOMB_pathways/.  相似文献   

13.
MOTIVATION: Hidden Markov models (HMMs) and generalized HMMs been successfully applied to many problems, but the standard Viterbi algorithm for computing the most probable interpretation of an input sequence (known as decoding) requires memory proportional to the length of the sequence, which can be prohibitive. Existing approaches to reducing memory usage either sacrifice optimality or trade increased running time for reduced memory. RESULTS: We developed two novel decoding algorithms, Treeterbi and Parallel Treeterbi, and implemented them in the TWINSCAN/N-SCAN gene-prediction system. The worst case asymptotic space and time are the same as for standard Viterbi, but in practice, Treeterbi optimally decodes arbitrarily long sequences with generalized HMMs in bounded memory without increasing running time. Parallel Treeterbi uses the same ideas to split optimal decoding across processors, dividing latency to completion by approximately the number of available processors with constant average overhead per processor. Using these algorithms, we were able to optimally decode all human chromosomes with N-SCAN, which increased its accuracy relative to heuristic solutions. We also implemented Treeterbi for Pairagon, our pair HMM based cDNA-to-genome aligner. AVAILABILITY: The TWINSCAN/N-SCAN/PAIRAGON open source software package is available from http://genes.cse.wustl.edu.  相似文献   

14.
We have compared a novel sequence-structure matching technique, FORESST, for detecting remote homologs to three existing sequence based methods, including local amino acid sequence similarity by BLASTP, hidden Markov models (HMMs) of sequences of protein families using SAM, HMMs based on sequence motifs identified using meta-MEME. FORESST compares predicted secondary structures to a library of structural families of proteins, using HMMs. Altogether 45 proteins from nine structural families in the database CATH were used in a cross-validated test of the fold assignment accuracy of each method. Local sequence similarity of a query sequence to a protein family is measured by the highest segment pair (HSP) score. Each of the HMM-based approaches (FORESST, MEME, amino acid sequence-based HMM) yielded log-odds score for the query sequence. In order to make a fair comparison among these methods, the scores for each method were converted to Z-scores in a uniform way by comparing the raw scores of a query protein with the corresponding scores for a set of unrelated proteins. Z-Scores were analyzed as a function of the maximum pairwise sequence identity (MPSID) of the query sequence to sequences used in training the model. For MPSID above 20%, the Z-scores increase linearly with MPSID for the sequence-based methods but remain roughly constant for FORESST. Below 15%, average Z-scores are close to zero for the sequence-based methods, whereas the FORESST method yielded average Z-scores of 1.8 and 1.1, using observed and predicted secondary structures, respectively. This demonstrates the advantage of the sequence-structure method for detecting remote homologs.  相似文献   

15.
Accelerated Profile HMM Searches   总被引:4,自引:0,他引:4  
Profile hidden Markov models (profile HMMs) and probabilistic inference methods have made important contributions to the theory of sequence database homology search. However, practical use of profile HMM methods has been hindered by the computational expense of existing software implementations. Here I describe an acceleration heuristic for profile HMMs, the "multiple segment Viterbi" (MSV) algorithm. The MSV algorithm computes an optimal sum of multiple ungapped local alignment segments using a striped vector-parallel approach previously described for fast Smith/Waterman alignment. MSV scores follow the same statistical distribution as gapped optimal local alignment scores, allowing rapid evaluation of significance of an MSV score and thus facilitating its use as a heuristic filter. I also describe a 20-fold acceleration of the standard profile HMM Forward/Backward algorithms using a method I call "sparse rescaling". These methods are assembled in a pipeline in which high-scoring MSV hits are passed on for reanalysis with the full HMM Forward/Backward algorithm. This accelerated pipeline is implemented in the freely available HMMER3 software package. Performance benchmarks show that the use of the heuristic MSV filter sacrifices negligible sensitivity compared to unaccelerated profile HMM searches. HMMER3 is substantially more sensitive and 100- to 1000-fold faster than HMMER2. HMMER3 is now about as fast as BLAST for protein searches.  相似文献   

16.
In this work, we analyse the potential for using structural knowledge to improve the detection of the DNA-binding helix–turn–helix (HTH) motif from sequence. Starting from a set of DNA-binding protein structures that include a functional HTH motif and have no apparent sequence similarity to each other, two different libraries of hidden Markov models (HMMs) were built. One library included sequence models of whole DNA-binding domains, which incorporate the HTH motif, the second library included shorter models of ‘partial’ domains, representing only the fraction of the domain that corresponds to the functionally relevant HTH motif itself. The libraries were scanned against a dataset of protein sequences, some containing the HTH motifs, others not. HMM predictions were compared with the results obtained from a previously published structure-based method and subsequently combined with it. The combined method proved more effective than either of the single-featured approaches, showing that information carried by motif sequences and motif structures are to some extent complementary and can successfully be used together for the detection of DNA-binding HTHs in proteins of unknown function.  相似文献   

17.
Designing Patterns and Profiles for Faster HMM Search   总被引:1,自引:0,他引:1  
Profile HMMs are powerful tools for modeling conserved motifs in proteins. They are widely used by search tools to classify new protein sequences into families based on domain architecture. However, the proliferation of known motifs and new proteomic sequence data poses a computational challenge for search, requiring days of CPU time to annotate an organism's proteome. It is highly desirable to speed up HMM search in large databases. We design PROSITE-like patterns and short profiles that are used as filters to rapidly eliminate protein-motif pairs for which a full profile HMM comparison does not yield a significant match. The design of the pattern-based filters is formulated as a multichoice knapsack problem. Profile-based filters with high sensitivity are extracted from a profile HMM based on their theoretical sensitivity and false positive rate. Experiments show that our profile-based filters achieve high sensitivity (near 100 percent) while keeping around 20times speedup with respect to the unfiltered search program. Pattern-based filters typically retain at least 90 percent of the sensitivity of the source HMM with 30-40times speedup. The profile-based filters have sensitivity comparable to the multistage filtering strategy HMMERHEAD and are faster in most of our experiments.  相似文献   

18.

Background

With the development of sequencing technologies, more and more sequence variants are available for investigation. Different classes of variants in the human genome have been identified, including single nucleotide substitutions, insertion and deletion, and large structural variations such as duplications and deletions. Insertion and deletion (indel) variants comprise a major proportion of human genetic variation. However, little is known about their effects on humans. The absence of understanding is largely due to the lack of both biological data and computational resources.

Results

This paper presents a new indel functional prediction method HMMvar based on HMM profiles, which capture the conservation information in sequences. The results demonstrate that a scoring strategy based on HMM profiles can achieve good performance in identifying deleterious or neutral variants for different data sets, and can predict the protein functional effects of both single and multiple mutations.

Conclusions

This paper proposed a quantitative prediction method, HMMvar, to predict the effect of genetic variation using hidden Markov models. The HMM based pipeline program implementing the method HMMvar is freely available at https://bioinformatics.cs.vt.edu/zhanglab/hmm.  相似文献   

19.
BLMT     
Statistical analysis of amino acid and nucleotide sequences, especially sequence alignment, is one of the most commonly performed tasks in modern molecular biology. However, for many tasks in bioinformatics, the requirement for the features in an alignment to be consecutive is restrictive and "n-grams" (aka k-tuples) have been used as features instead. N-grams are usually short nucleotide or amino acid sequences of length n, but the unit for a gram may be chosen arbitrarily. The n-gram concept is borrowed from language technologies where n-grams of words form the fundamental units in statistical language models. Despite the demonstrated utility of n-gram statistics for the biology domain, there is currently no publicly accessible generic tool for the efficient calculation of such statistics. Most sequence analysis tools will disregard matches because of the lack of statistical significance in finding short sequences. This article presents the integrated Biological Language Modeling Toolkit (BLMT) that allows efficient calculation of n-gram statistics for arbitrary sequence datasets. AVAILABILITY: BLMT can be downloaded from http://www.cs.cmu.edu/~blmt/source and installed for standalone use on any Unix platform or Unix shell emulation such as Cygwin on the Windows platform. Specific tools and usage details are described in a "readme" file. The n-gram computations carried out by the BLMT are part of a broader set of tools borrowed from language technologies and modified for statistical analysis of biological sequences; these are available at http://flan.blm.cs.cmu.edu/.  相似文献   

20.
Beta-barrel membrane proteins are found in the outer membrane of gram-negative bacteria, mitochondria, and chloroplasts. Although sequence motifs have been studied in alpha-helical membrane proteins and have been shown to play important roles in their assembly, it is not clear whether over-represented motifs and under-represented anti-motifs exist in beta-barrel membrane proteins. We have developed probabilistic models to identify sequence motifs of residue pairs on the same strand separated by an arbitrary number of residues. A rigorous statistical model is essential for this study because of the difficulty associated with the short length of the strands and the small amount of structural data. By comparing to the null model of exhaustive permutation of residues within the same beta-strand, propensity values of sequence patterns of two residues and p-values measuring statistical significance are calculated exactly by several analytical formulae we have developed or by enumeration. We find that there are characteristic sequence motifs and antimotifs in transmembrane (TM) beta-strands. The amino acid Tyr plays an important role in several such motifs. We find a general dichotomy consisting of favorable Aliphatic-Tyr sequence motifs and unfavorable Tyr-Aliphatic antimotifs. Tyr is also part of a terminal motif, YxF, which is likely to be important for chaperone binding. Our results also suggest several experiments that can help to elucidate the mechanisms of in vitro and in vivo folding of beta-barrel membrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号