首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Purified rabbit-muscle and -liver glucose phosphate isomerase, free of contaminating enzyme activities that could interfere with the assay procedures, were tested for inhibition by fructose, fructose 1-phosphate and fructose 1,6-diphosphate. 2. Fructose 1-phosphate and fructose 1,6-diphosphate are both competitive with fructose 6-phosphate in the enzymic reaction, the apparent Ki values being 1·37×10−3−1·67×10−3m for fructose 1-phosphate and 7·2×10−3−7·9×10−3m for fructose 1,6-diphosphate; fructose and inorganic phosphate were without effect. 3. The apparent Km values for both liver and muscle enzymes at pH7·4 and 30° were 1·11×10−4−1·29×10−4m for fructose 6-phosphate, determined under the conditions in this paper. 4. In the reverse reaction, fructose, fructose 1-phosphate and fructose 1,6-diphosphate did not significantly inhibit the conversion of glucose 6-phosphate into fructose 6-phosphate. 5. The apparent Km values for glucose 6-phosphate were in the range 5·6×10−4−8·5×10−4m. 6. The competitive inhibition of hepatic glucose phosphate isomerase by fructose 1-phosphate is discussed in relation to the mechanism of fructose-induced hypoglycaemia in hereditary fructose intolerance.  相似文献   

2.
1. The formation of adenosine 5′-phosphate, guanosine 5′-phosphate and inosine 5′-phosphate from [8-14C]adenine, [8-14C]guanine and [8-14C]hypoxanthine respectively in the presence of 5-phosphoribosyl pyrophosphate and an extract from Ehrlich ascites-tumour cells was assayed by a method involving liquid-scintillation counting of the radioactive nucleotides on diethylaminoethylcellulose paper. The results obtained with guanine were confirmed by a spectrophotometric assay which was also used to assay the conversion of 6-mercaptopurine and 5-phosphoribosyl pyrophosphate into 6-thioinosine 5′-phosphate in the presence of 6-mercaptopurine phosphoribosyltransferase from these cells. 2. At pH 7·8 and 25° the Michaelis constants for adenine, guanine and hypoxanthine were 0·9 μm, 2·9 μm and 11·0 μm in the assay with radioactive purines; the Michaelis constant for guanine in the spectrophotometric assay was 2·6 μm. At pH 7·9 the Michaelis constant for 6-mercaptopurine was 10·9 μm. 3. 25 μm-6-Mercaptopurine did not inhibit adenine phosphoribosyltransferase. 6-Mercaptopurine is a competitive inhibitor of guanine phosphoribosyltransferase (Ki 4·7 μm) and hypoxanthine phosphoribosyltransferase (Ki 8·3 μm). Hypoxanthine is a competitive inhibitor of guanine phosphoribosyltransferase (Ki 3·4 μm). 4. Differences in kinetic parameters and in the distribution of phosphoribosyltransferase activities after electrophoresis in starch gel indicate that different enzymes are involved in the conversion of adenine, guanine and hypoxanthine into their nucleotides. 5. From the low values of Ki for 6-mercaptopurine, and from published evidence that ascites-tumour cells require supplies of purines from the host tissues, it is likely that inhibition of hypoxanthine and guanine phosphoribosyltransferases by free 6-mercaptopurine is involved in the biological activity of this drug.  相似文献   

3.
1. An improved method is given for preparation of pyruvate,phosphate dikinase from Bacteroides symbiosus. 2. The bacterial enzyme is stable, free from interfering enzyme activities, and does not require thiol compounds to maintain stability during storage or assay. 3. New direct assays of enzyme activity are based on acid evolution or consumption as measured at constant pH in a pH-stat. 4. The optimum rate of reaction in the direction of pyruvate formation occurs at about pH6.4; in the direction of phosphoenolpyruvate formation, it is at pH7.2–7.8. 5. Newly determined substrate Km values for the enzyme are: AMP, 3.5×10−6m; ATP, 1×10−4m; pyruvate, 8×10−5m; Pi, 6×10−4m. 6. K+ may substitute for NH4+ in activating the reaction catalysed by the B. symbiosus enzyme. 7. In the direction of pyruvate formation the bivalent metal ion requirement of the enzyme is fulfilled by salts of nickel, manganese, magnesium and cobalt. In the other direction only magnesium salts were effective. 8. The nucleotide specificity of the enzyme is strictly limited to the adenine nucleotides. CTP and ITP strongly inhibit the reaction in the direction of phosphoenolpyruvate formation.  相似文献   

4.
1. The kinetic properties of the soluble and particulate hexokinases from rat heart have been investigated. 2. For both forms of the enzyme, the Km for glucose was 45μm and the Km for ATP 0·5mm. Glucose 6-phosphate was a non-competitive inhibitor with respect to glucose (Ki 0·16mm for the soluble and 0·33mm for the particulate enzyme) and a mixed inhibitor with respect to ATP (Ki 80μm for the soluble and 40μm for the particulate enzyme). ADP and AMP were competitive inhibitors with respect to ATP (Ki for ADP was 0·68mm for the soluble and 0·60mm for the particulate enzyme; Ki for AMP was 0·37mm for the soluble and 0·16mm for the particulate enzyme). Pi reversed glucose 6-phosphate inhibition with both forms at 10mm but not at 2mm, with glucose 6-phosphate concentrations of 0·3mm or less for the soluble and 1mm or less for the particulate enzyme. 3. The total activity of hexokinase in normal hearts and in hearts from alloxan-diabetic rats was 21·5μmoles of glucose phosphorylated/min./g. dry wt. of ventricle at 25°. The temperature coefficient Q10 between 22° and 38·5° was 1·93; the ratio of the soluble to the particulate enzyme was 3:7. 4. The kinetic data have been used to predict rates of glucose phosphorylation in the perfused heart at saturating concentrations of glucose from measured concentrations of ATP, glucose 6-phosphate, ADP and AMP. These have been compared with the rates of glucose phosphorylation measured with precision in a small-volume recirculation perfusion apparatus, which is described. The correlation between predicted and measured rates was highly significant and their ratio was 1·07. 5. These findings are consistent with the control of glucose phosphorylation in the perfused heart by glucose 6-phosphate concentration, subject to certain assumptions that are discussed in detail.  相似文献   

5.
Vessal M  Hassid WZ 《Plant physiology》1973,51(6):1055-1060
d-Glucosamine-6-P N-acetyltransferase (EC 2.3.1.4) from mung bean seeds (Phaseolus aureus) was purified 313-fold by protamine sulfate and isoelectric precipitation, ammonium sulfate and acetone fractionation, and CM Sephadex column chromatography. The partially purified enzyme was highly specific for d-glucosamine-6-P. Neither d-glucosamine nor d-galactosamine could replace this substrate. The partially purified enzyme preparation was inhibited up to 50% by 2 × 10−2m EDTA, indicating the requirement of a divalent cation. Among divalent metal ions tested, Mg2+ was required for maximum activity of the enzyme. Mn2+ and Zn2+ were inhibitory, while Co2+ had no effect on the enzyme activity. The pH optimum of the enzyme in sodium acetate and sodium citrate buffers was found to be 5.2. The effect of Mg2+ on the enzyme in sodium acetate and sodium citrate buffers was particularly noticeable in the range of optimum pH. Km values of 15.1 × 10−4m and 7.1 × 10−4m were obtained for d-glucosamine-6-P and acetyl CoA, respectively. The enzyme was completely inhibited by 1 × 10−4mp-hydroxymercuribenzoate, and this inhibition was partially reversed by l-cysteine; indicating the presence of sulfhydryl groups at or near the active site of the enzyme.  相似文献   

6.
Enzymes in cancer: Asparaginase from chicken liver   总被引:2,自引:1,他引:1  
1. A procedure for partial purification of asparaginase from chicken liver is presented. 2. The bulk of the enzyme is located in the soluble fraction of chicken liver. 3. Molecular weights of chicken-liver asparaginase and of the guinea-pig serum enzyme, estimated by gel filtration, were 306000 and 210000 respectively. The Michaelis constants (Km) at 37° and pH8·5 were 6·0×10−5m and 7·2×10−5m respectively. 4. At 50° the chicken-liver enzyme was moderately stable, some activity being lost by aggregation; in dilute electrolyte solutions the activity rapidly diminished. 5. The anti-lymphoma effect of guinea-pig serum in mice carrying the 6C3HED tumour was confirmed. Chicken-liver asparaginase also showed an effect but in this case the enzyme preparation had to be administered repeatedly. 6. Guinea-pig serum asparaginase was stable for several days in mouse blood, after intraperitoneal injection, whereas chicken-liver asparaginase rapidly disappeared. 7. Aspartic acid β-hydrazide was shown to be a competitive inhibitor of chicken-liver asparaginase with Ki approx. 5·6×10−4m. In mice it produced an anti-lymphoma effect, as reported previously.  相似文献   

7.
We isolated oryctin, a 66-residue peptide, from the hemolymph of the coconut rhinoceros beetle Oryctes rhinoceros and cloned its cDNA. Oryctin is dissimilar to any other known peptides in amino acid sequence, and its function has been unknown. To reveal that function, we determined the solution structure of recombinant 13C,15N-labeled oryctin by heteronuclear NMR spectroscopy. Oryctin exhibits a fold similar to that of Kazal-type serine protease inhibitors but has a unique additional C-terminal α-helix. We performed protease inhibition assays of oryctin against several bacterial and eukaryotic proteases. Oryctin does inhibit the following serine proteases: α-chymotrypsin, endopeptidase K, subtilisin Carlsberg, and leukocyte elastase, with Ki values of 3.9 × 10−10 m, 6.2 × 10−10 m, 1.4 × 10−9 m, and 1.2 × 10−8 m, respectively. Although the target molecule of oryctin in the beetle hemolymph remains obscure, our results showed that oryctin is a novel single domain Kazal-type inhibitor and could play a key role in protecting against bacterial infections.  相似文献   

8.
Cytoglobin (Cygb) was investigated for its capacity to function as a NO dioxygenase (NOD) in vitro and in hepatocytes. Ascorbate and cytochrome b5 were found to support a high NOD activity. Cygb-NOD activity shows respective Km values for ascorbate, cytochrome b5, NO, and O2 of 0.25 mm, 0.3 μm, 40 nm, and ∼20 μm and achieves a kcat of 0.5 s−1. Ascorbate and cytochrome b5 reduce the oxidized Cygb-NOD intermediate with apparent second order rate constants of 1000 m−1 s−1 and 3 × 106 m−1 s−1, respectively. In rat hepatocytes engineered to express human Cygb, Cygb-NOD activity shows a similar kcat of 1.2 s−1, a Km(NO) of 40 nm, and a kcat/Km(NO) (kNOD) value of 3 × 107 m−1 s−1, demonstrating the efficiency of catalysis. NO inhibits the activity at [NO]/[O2] ratios >1:500 and limits catalytic turnover. The activity is competitively inhibited by CO, is slowly inactivated by cyanide, and is distinct from the microsomal NOD activity. Cygb-NOD provides protection to the NO-sensitive aconitase. The results define the NOD function of Cygb and demonstrate roles for ascorbate and cytochrome b5 as reductants.  相似文献   

9.
ATP-sulfurylase (ATP-sulfate adenyltransferase, EC 2.7.7.4) was found in nonparticulate fractions of both roots and leaves of Zea mays L. seedlings using two detection methods. Addition of exogenous pyrophosphatase was essential for maximum rates of conversion of 35SO42− to labeled adenosine phosphosulfate in unpurified root extracts, but not in unpurified leaf extracts. In the presence of exogenous pyrophosphatase, the enzyme from roots exhibited specific activities as high as those obtained with the leaf enzyme. The root enzyme was purified 33-fold by centrifugation and column chromatography procedures. Its molecular weight obtained by Sephadex gel filtration was about 42,000. Its Km for pyrophosphate was 7 μm, while for adenosine phosphosulfate, the Km was 1.35 μm. None of the enzyme fractions studied converted adenosine phosphosulfate into detectable amounts of 3′-phosphoadenosine-5′-phosphosulfate. ATP-sulfurylase was also found in roots of corn seedlings grown aseptically. The data suggest that at least the first reaction in sulfate reduction might proceed as effectively in roots as in shoots.  相似文献   

10.
Accumulation of d-leucine, d-allo-isoleucine, and d-valine was observed in the growth medium of a lactic acid bacterium, Lactobacillus otakiensis JCM 15040, and the racemase responsible was purified from the cells and identified. The N-terminal amino acid sequence of the purified enzyme was GKLDKASKLI, which is consistent with that of a putative γ-aminobutyrate aminotransferase from Lactobacillus buchneri. The putative γ-aminobutyrate aminotransferase gene from L. buchneri JCM 1115 was expressed in recombinant Escherichia coli and then purified to homogeneity. The enzyme catalyzed the racemization of a broad spectrum of nonpolar amino acids. In particular, it catalyzed at high rates the epimerization of l-isoleucine to d-allo-isoleucine and d-allo-isoleucine to l-isoleucine. In contrast, the enzyme showed no γ-aminobutyrate aminotransferase activity. The relative molecular masses of the subunit and native enzyme were estimated to be about 49 kDa and 200 kDa, respectively, indicating that the enzyme was composed of four subunits of equal molecular masses. The Km and Vmax values of the enzyme for l-isoleucine were 5.00 mM and 153 μmol·min−1·mg−1, respectively, and those for d-allo-isoleucine were 13.2 mM and 286 μmol·min−1·mg−1, respectively. Hydroxylamine and other inhibitors of pyridoxal 5′-phosphate-dependent enzymes completely blocked the enzyme activity, indicating the enzyme requires pyridoxal 5′-phosphate as a coenzyme. This is the first evidence of an amino acid racemase that specifically catalyzes racemization of nonpolar amino acids at the C-2 position.  相似文献   

11.
Ribulose 1,5-diphosphate carboxylase was detected in extracts of germinating castor bean (Ricinus communis var. Hale) endosperms. This is the first report of this enzyme in a nonphotosynthetic (no chlorophyll) plant tissue. Radioactive 3-phosphoglyceric acid has been identified as the principle product resulting from the enzymatic condensation of 14C-bicarbonate and ribulose-1,5-diP in endosperm extracts. The Km values of bicarbonate and ribulose-1,5-diP for the endosperm carboxylase are 1.14 × 10−2m and 7.5 × 10−5m, respectively. The carboxylase activity peaks at 4 days in endosperms of castor beans germinated in the dark. The specific activity of the carboxylase at this stage of germination is 4.3 μmoles of 3-phosphoglycerate formed/mg protein·hr. The presence of ribulose-1,5-diP carboxylase and other enzymes of the reductive pentose phosphate pathway show the potential of this pathway in castor bean endosperms.  相似文献   

12.
1. The total activity of adenine phosphoribosyltransferase/liver of mice remained constant from 1 to 16 days after birth despite a fourfold increase in liver weight. The total activity of this enzyme increased fivefold from 16 to 36 days and then remained relatively constant at least until 96 days after birth. Total hypoxanthine-phosphoribosyltransferase activity/liver steadily increased between 1 and 57 days after birth. 2. The mean Km of 5-phosphoribosyl pyrophosphate with adenine phosphoribosyltransferase was 10·1μm between 3 and 11 days, at 64 days and at 96 days after birth. Between 17 and 51 days the mean Km value was 3·0μm. The Km of 5-phosphoribosyl pyrophosphate with hypoxanthine phosphoribosyltransferase remained constant at 28·2μm between 2 and 64 days. 3. Adenine-phosphoribosyltransferase activity was stimulated between 15 and 83% by 60μm-ATP when extracts were made between 3 and 11 days, at 64 days or at 96 days after birth. Between 17 and 51 days ATP had little stimulatory effect on the activity of this enzyme. 4. AMP competed with 5-phosphoribosyl pyrophosphate in the reaction catalysed by adenine phosphoribosyltransferase. Liver extracts containing enzyme with a low value of Km for 5-phosphoribosyl pyrophosphate (3μm) had a Km/Ki ratio approximately half that of extracts with a high value of Km (10μm). 5. The results indicate that two different forms of adenine phosphoribosyltransferase can exist in mouse liver at different stages of development. The physiological significance of these findings is discussed.  相似文献   

13.
The particulate glucan synthetase preparation isolated from a homogenate of oat coleoptiles at 4 C lost 65% of its original activity after 1 day when the UDP-d-glucose substrate concentration was 5 × 10−7m to 1.0 × 10−6m. Storage of the particulate enzyme at −20 C or in liquid nitrogen did not prevent the enzyme from losing its activity. Incorporation of 0.5% hovine serum albumin into the medium stabilized the particulate enzyme at 0 C for 6 days and for at least 2 weeks in liquid nitrogen.  相似文献   

14.
1. An F-insensitive 3′-nucleotidase was purified from spinach leaf tissue; the enzyme hydrolysed 3′-AMP, 3′-CMP and adenosine 3′-phosphate 5′-sulphatophosphate but not adenosine 5′-nucleotides nor PPi. The pH optimum of the enzyme was 7.5; Km (3′-AMP) was approx. 0.8mm and Km (3′-CMP) was approx. 3.3mm. 3′-Nucleotidase activity was not associated with chloroplasts. Purified Mg2+-dependent pyrophosphatase, free from F-insensitive 3′-nucleotidase, catalysed some hydrolysis of 3′-AMP; this activity was F-sensitive. 2. Adenosine 5′-sulphatophosphate kinase activity was demonstrated in crude spinach extracts supplied with 3′-AMP by the synthesis of the sulphate ester of 2-naphthol in the presence of purified phenol sulphotransferase; purified ATP sulphurylase and pyrophosphatase were also added to synthesize adenosine 5′-sulphatophosphate. Adenosine 5′-sulphatophosphate kinase activity was associated with chloroplasts and was released by sonication. 3. Isolated chloroplasts synthesized adenosine 3′-phosphate 5′-sulphatophosphate from sulphate and ATP in the presence of a 3′-nucleotide; the formation of adenosine 5′-sulphatophosphate was negligible. In the absence of a 3′-nucleotide the synthesis of adenosine 3′-phosphate 5′-sulphatophosphate was negligible, but the formation of adenosine 5′-sulphatophosphate was readily detected. Some properties of the synthesis of adenosine 3′-phosphate 5′-sulphatophosphate by isolated chloroplasts are described. 4. Adenosine 3′-phosphate 5′-sulphatophosphate, synthesized by isolated chloroplasts, was characterized by specific enzyme methods, electrophoresis and i.r. spectrophotometry. 5. Isolated chloroplasts catalysed the incorporation of sulphur from sulphate into cystine/cysteine; the incorporation was enhanced by 3′-AMP and l-serine. It was concluded that adenosine 3′-phosphate 5′-sulphatophosphate is an intermediate in the incorporation of sulphur from sulphate into cystine/cysteine.  相似文献   

15.
The ribulose 1,5-diphosphate carboxylase from Gonyaulax polyedra Stein. has a half-life of about four hours in buffer, but can be stabilized by the addition of 50% glycerol. The optimum pH is 7.8 to 8.0 and the optimum Mg2+ concentration is 3 mm. Heavy metal ions (Cu2+, Hg2+, Ni2+, Zn2+), EDTA, pyrophosphate, and adenosine triphosphate were strongly inhibitory. Ribulose 1,5-diphosphate carboxylase from Gonyaulax was not cold-sensitive or activated by light activation factor from tomato or Gonyaulax. No difference in the activity of this enzyme was detected when extracts prepared at the maximum and the minimum of the circadian rhythm of photosynthesis were compared. The Km of HCO3 was also the same (16 to 19 mm).  相似文献   

16.
Ramus J 《Plant physiology》1974,54(6):945-949
Active transport of exogenous sulfate into log phase cells of Porphyridium aerueineum followed Michaelis-Menten kinetics, and the apparent Km for sulfate transport is approximately 2.5 × 10−6m. Molybdate, also a group VI anion, is a competitive inhibitor of sulfate transport, and the inhibition is freely reversible. Once in the cell, molybdate depresses the rate of sulfate pool utilization by blocking sulfate transfer to polysaccharides destined for secretion to the cell surface. Specifically, molybdate inhibits the formation of adenosine 5′-phosphosulfate and in turn the formation of adenosine 3′-phosphate 5′-phosphosulfate, the activated donor for sulfate transfer reactions. Combined with the previous identification of adenosine 3′-phosphate 5′-phosphosulfate, this is taken as evidence that the adenosine 5′-phosphosulfate/adenosine 3′-phosphate 5′-phosphosulfate enzymatic sequence for sulfate activation and sulfate donor reactions is operating in Porphyridium. Thiosulfate is utilized as effectively as sulfate as both a sulfur source for growth and polysaccharide synthesis.  相似文献   

17.
A soluble enzyme system from suspension cultures of Acer pseudoplatanus L. converts d-glucose 6-phosphate to myoinositol. A Mg2+-dependent phosphatase, present in the crude extract, hydrolyzes the product of the cyclization, myoinositol monophosphate, to free myoinositol. Further purification of the enzyme system by precipitation with (NH4)2SO4 followed by diethylaminoethyl cellulose chromatography eliminates the phosphatase and makes it necessary to add alkaline phosphatase to the reaction mixture in order to assay for free myoinositol. Gel filtration on Sephadex G-200 increases the specific activity of the cycloaldolase to 8.8 × 10−4 units per milligram protein (1 unit = 1 micromole of myoinositol formed per minute). The cycloaldolase has an absolute requirement for nicotinamide adenine dinucleotide and a maximum activity at pH 8 with 0.1 mm nicotinamide adenine dinucleotide. The reaction rate is linear for 2.5 hours when d-glucose 6-phosphate is below 4 mm and has a Km of 1.77 mm. The diethylaminoethyl cellulose-purified enzyme is stable for 6 to 8 weeks in the frozen state.  相似文献   

18.
Benzylpenicillin and cephaloridine reacted with the exocellular dd-carboxypeptidase–transpeptidase from Streptomyces R39 to form equimolar and inactive antibiotic–enzyme complexes. At saturation, the molar ratio of chromogenic cephalosporin 87-312 to enzyme was 1.3:1, but this discrepancy might be due to a lack of accuracy in the measurement of the antibiotic. Spectrophotometric studies showed that binding of cephaloridine and cephalosporin 87-312 to the enzyme caused opening of their β-lactam rings. Benzylpenicillin and cephalosporin 87-312 competed for the same site on the free enzyme, suggesting that binding of benzylpenicillin also resulted in the opening of its β-lactam ring. In Tris–NaCl–MgCl2 buffer at pH7.7 and 37°C, the rate constants for the dissociation of the antibiotic–enzyme complexes were 2.8×10−6, 1.5×10−6 and 0.63×10−6s−1 (half-lives 70, 130 and 300h) for benzylpenicillin, cephalosporin 87-312 and cephaloridine respectively. During the process, the protein underwent reactivation. The enzyme that was regenerated from its complex with benzylpenicillin was as sensitive to fresh benzylpenicillin as the native enzyme. With [14C]benzylpenicillin, the released radioactive compound was neither benzylpenicillin nor benzylpenicilloic acid. The Streptomyces R39 enzyme thus behaved as a β-lactam-antibiotic-destroying enzyme but did not function as a β-lactamase. Incubation at 37°C in 0.01m-phosphate buffer, pH7.0, and in the same buffer supplemented with sodium dodecyl sulphate caused a more rapid reversion of the [14C]benzylpenicillin–enzyme complex. The rate constants were 1.6×10−5s−1 and 0.8×10−4s−1 respectively. Under these conditions, however, there was no concomitant reactivation of the enzyme and the released radioactive compound(s) appeared not to be the same as before. The Streptomyces R39 enzyme and the exocellular dd-carboxypeptidase–transpeptidase from Streptomyces R61 appeared to differ from each other with regard to the topography of their penicillin-binding site.  相似文献   

19.
The effect of pH on the hydrolysis of α-N-benzoyl-l-arginine ethyl ester (BAEE) and α-N-benzoyl-l-argininamide (BAA) by a proteolytic enzyme component purified from Ficus carica var. Kadota latex has been studied in detail over the pH range of 3 to 9.5. kcat (lim) values for the hydrolysis of BAEE and BAA were essentially identical (5.20 and 5.01 sec−1, respectively at 30°). kcat values for hydrolysis of BAEE and BAA were dependent on prototropic groups with apparent pK values of 4.24 and 8.53 and 4.10 and 8.59, respectively. kcat (lim) values for tht hydrolysis of BAEE and BAA were essentially identical (5.20 and groups of pK 4.33 and 8.60 and 4.55 and 8.51, respectively. Thus the pH optimum is 6.5 for both substrates. Km (app) values for BAEE and BAA were 3.32 × 10−2m and 6.03 × 10−2m respectively over the pH range of 3.9 to 8.0. These data are interpreted in terms of the involvement of a carboxyl and a sulfhydryl group in the active center of the enzyme. The data do not support the concept that deacylation of the acyl-enzyme is completely the rate controlling step in the hydrolyses. Rather, it appears that the magnitude of k2 and k3 are not greatly different.  相似文献   

20.
KIF3AB is an N-terminal processive kinesin-2 family member best known for its role in intraflagellar transport. There has been significant interest in KIF3AB in defining the key principles that underlie the processivity of KIF3AB in comparison with homodimeric processive kinesins. To define the ATPase mechanism and coordination of KIF3A and KIF3B stepping, a presteady-state kinetic analysis was pursued. For these studies, a truncated murine KIF3AB was generated. The results presented show that microtubule association was fast at 5.7 μm−1 s−1, followed by rate-limiting ADP release at 12.8 s−1. ATP binding at 7.5 μm−1 s−1 was followed by an ATP-promoted isomerization at 84 s−1 to form the intermediate poised for ATP hydrolysis, which then occurred at 33 s−1. ATP hydrolysis was required for dissociation of the microtubule·KIF3AB complex, which was observed at 22 s−1. The dissociation step showed an apparent affinity for ATP that was very weak (K½,ATP at 133 μm). Moreover, the linear fit of the initial ATP concentration dependence of the dissociation kinetics revealed an apparent second-order rate constant at 0.09 μm−1 s−1, which is inconsistent with fast ATP binding at 7.5 μm−1 s−1 and a Kd,ATP at 6.1 μm. These results suggest that ATP binding per se cannot account for the apparent weak K½,ATP at 133 μm. The steady-state ATPase Km,ATP, as well as the dissociation kinetics, reveal an unusual property of KIF3AB that is not yet well understood and also suggests that the mechanochemistry of KIF3AB is tuned somewhat differently from homodimeric processive kinesins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号