首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Current standards for evaluation of the public health safety of recreational and shellfish-harvesting waters are based upon bacteriological analysis, but do not include an evaluation of the number of viruses. The objective of this study was to determine the occurrence of enteric viruses in estuarine sediments and to find a relationship, if any, between the presence of viruses in seawater or sediment or both and various biological and physicochemical characteristics of the environment. Viruses were found in greater numbers in sediment than in overlying seawater on a volume basis. Several types of enteroviruses were isolated: coxsackievirus types A16, B1, and B5, echovirus type 1, and poliovirus type 2. On several occasions, viruses were isolated from sediments when overlying seawaters met bacteriological water quality standards for recreational use. Statistical analysis of the relationship between viruses in seawater or in sediment and other variables measured yielded only one significant association: the number of viruses in sediment was found to be positively correlated with the number of fecal coliforms in sediment. No other physical, chemical, or biological characteristic of seawater or sediment that was measured showed statistically significant association with viral numbers. No correlation was found between bacterial indicators and virus in the overlying waters. The data indicated that evaluation of the presence of bacteria and viruses in sediment may provide additional insight into long-term water quality conditions and that indicator bacteria in water are not reflective of the concentration of enteric viruses in marine waters.  相似文献   

2.
Increased construction of residential canal communities along the southern coastline of the United States has led to a concern about their impact on water quality. Pollution of such dead-end canals is potentially hazardous because of their heavy usage for recreational activities. Coliforms, fecal coliforms, and salmonellae in the surface water and bottom sediments of six selected residential coastal canals were monitored over a period of 17 months. No statistically significant relationship was observed between the organism concentrations and temperature, pH, turbidity, and suspended solids content of water. An inverse relationship between the concentration of indicator organism and salinity of water was found, however, to occur at a 99.9% level of significance. All of the microorganisms studied were found to be present in greater numbers in sediments than in the overlying water, often by a factor of several logs. Heavy rainfall resulted in large increases in the number of organisms in both water and sediment samples. Our results indicate that bottom sediments in the shallow canal systems can act as reservoirs of enteric bacteria, which may be resuspended in response to various environmental factors and recreational activities.  相似文献   

3.
Increased construction of residential canal communities along the southern coastline of the United States has led to a concern about their impact on water quality. Pollution of such dead-end canals is potentially hazardous because of their heavy usage for recreational activities. Coliforms, fecal coliforms, and salmonellae in the surface water and bottom sediments of six selected residential coastal canals were monitored over a period of 17 months. No statistically significant relationship was observed between the organism concentrations and temperature, pH, turbidity, and suspended solids content of water. An inverse relationship between the concentration of indicator organism and salinity of water was found, however, to occur at a 99.9% level of significance. All of the microorganisms studied were found to be present in greater numbers in sediments than in the overlying water, often by a factor of several logs. Heavy rainfall resulted in large increases in the number of organisms in both water and sediment samples. Our results indicate that bottom sediments in the shallow canal systems can act as reservoirs of enteric bacteria, which may be resuspended in response to various environmental factors and recreational activities.  相似文献   

4.
Recreational waters contaminated with human fecal pollution are a public health concern, and ensuring the safety of recreational waters for public use is a priority of both the Environmental Protection Agency (EPA) and the Centers for Disease Control and Prevention (CDC). Current recreational water standards rely on fecal indicator bacteria (FIB) levels as indicators of human disease risk. However present evidence indicates that levels of FIB do not always correspond to the presence of other potentially harmful organisms, such as viruses. Thus, enteric viruses are currently tested as water quality indicators, but have yet to be successfully implemented in routine monitoring of water quality. This study utilized enteric viruses as possible alternative indicators of water quality to examine 18 different fresh and offshore recreational waters on O‘ahu, Hawai‘i, by using newly established laboratory techniques including highly optimized PCR, real time PCR, and viral infectivity assays. All sample sites were detected positive for human enteric viruses by PCR including enterovirus, norovirus genogroups I and II, and male specific FRNA coliphage. A six time-point seasonal study of enteric virus presence indicated significant variation in virus detection between the rainy and dry seasons. Quantitative PCR detected the presence of norovirus genogroup II at levels at which disease risk may occur, and there was no correlation found between enteric virus presence and FIB counts. Under the present laboratory conditions, no infectious viruses were detected from the samples PCR-positive for enteric viruses. These data emphasize both the need for additional indicators for improved monitoring of water quality, and the feasibility of using enteric viruses as these indicators. Electronic Supplementary MaterialSupplementary material is available for this article at 10.1007/s12250-015-3644-x and is accessible for authorized users.  相似文献   

5.
Bdellovibrio was found in all liquid phases of the sewage works examined. The predator was also found in all the river sediments and sewage-polluted river waters examined but could not be found in some unpolluted river waters. Bdellovibrio was able to multiply on the high numbers of bacteria present in the aerobic percolating filter film but could not survive in anaerobic sludge. Similarly, the predator was present in the aerobic surface layers of river sediments but not in the anaerobic bottom layers. The major source of Bdellovibrio in the polluted rivers examined were sewage works effluents, and numbers in both river water and sediment were correlated with river water quality. It was unlikely that Bdellovibrio was important in reducing numbers of other bacteria in either sewage or river sediment.  相似文献   

6.
Bdellovibrio was found in all liquid phases of the sewage works examined. The predator was also found in all the river sediments and sewage-polluted river waters examined but could not be found in some unpolluted river waters. Bdellovibrio was able to multiply on the high numbers of bacteria present in the aerobic percolating filter film but could not survive in anaerobic sludge. Similarly, the predator was present in the aerobic surface layers of river sediments but not in the anaerobic bottom layers. The major source of Bdellovibrio in the polluted rivers examined were sewage works effluents, and numbers in both river water and sediment were correlated with river water quality. It was unlikely that Bdellovibrio was important in reducing numbers of other bacteria in either sewage or river sediment.  相似文献   

7.
AIMS: To identify the most efficient techniques for the separation of micro-organisms from coastal sediments and, using these techniques, to determine the concentration of faecal indicator organisms in recreational coastal water and sediment. METHODS AND RESULTS: Sediment samples were taken from a range of recreational coastal sites and subjected to various physical techniques to separate micro-organisms from sediment particles. Techniques investigated included manual shaking, treatment by sonication bath for 6 and 10 min, respectively, and by sonication probe for 15 s and 1 min, respectively. The use of the sonication bath for 10 min was the most successful method for removing micro-organisms from sediment particles where sediments consisted mainly of sand. When sediments contained considerable proportions of silt and clay, however, manual shaking was most successful. Faecal coliforms were then enumerated by membrane filtration in both water and sediment from three recreational coastal sites, chosen to represent different physical sediment characteristics, over a 12-month period. Faecal coliform concentrations were generally greater in sediment compared with overlying water for all samples. This was most evident in sediment consisting of greater silt/clay and organic carbon content. CONCLUSIONS: This study demonstrated the importance of sediment characteristics in determining the most efficient method for the separation of micro-organisms from coastal sediments. Sediment characteristics were also found to influence the persistence of micro-organisms in coastal areas. SIGNIFICANCE AND IMPACT OF THE STUDY: Recreational coastal sediments can act as a reservoir for faecal coliforms; therefore, sampling only overlying water may greatly underestimate the risk of exposure to potentially pathogenic micro-organisms in recreational waters.  相似文献   

8.
AIMS: To determine the persistence of the faecal indicator organism Escherichia coli in recreational coastal water and sediment using laboratory-based microcosms and validation with in situ measurements. METHODS AND RESULTS: Intact sediment cores were taken from three distinct coastal sites. Overlying estuarine water was inoculated with known concentrations of E. coli and decay rates from both overlying water and sediment were determined following enumeration by the membrane filtration method at fixed time intervals over a 28-day period. It was demonstrated that E. coli may persist in coastal sediment for >28 days when incubated at 10 degrees C. Escherichia coli survival was found to have an inverse relationship with temperature in both water and sediment. In general the decay rate for E. coli was greater in water than in sediment. Small particle size and high organic carbon content were found to enhance E. coli survival in coastal sediments in the microcosms. CONCLUSIONS: Results of this microcosm study demonstrated the more prolonged survival of E. coli in coastal sediments compared with overlying water, which may imply an increased risk of exposure because of the possible resuspension of pathogenic micro-organisms during natural turbulence or human recreational activity. SIGNIFICANCE AND IMPACT OF THE STUDY: A more accurate estimate of exposure risk has been described which may subsequently be used in a quantitative microbial risk assessment for recreational coastal waters.  相似文献   

9.
Escherichia coli, a fecal coliform, was found to survive for longer periods of time in unsterile natural seawater when sediment material was present than in seawater alone, and at least on one occasion growth was observed to occur. This enteric bacterium was found to increase rapidly in number in autoclaved natural seawater and autoclaved sediment taken from areas receiving domestic wastes, even when the seawater had salinities as high as 34 g/kg. However, in autoclaved seawater, growth was always more gradual and never reached numbers as high as those observed when sediment was present. It was found that nutrients were easily eluted from the sediment after autoclaving or upon addition to artificial seawater, but little elution occured during mixing of the sediments with unsterile natural seawater. The longer survival of E. coli in the sediment is attributed to the greater content of organic matter present in the sediment than the sweater. These laboratory results, in part, could explain why on a volume basis larger numbers of coliforms and fecal coliforms and fecal coliforms were found in estuarine sediments than the overlaying water at field sites.  相似文献   

10.
We intensively examined the recreational water quality of the Colorado River and 26 tributaries in Grand Canyon National Park over four consecutive summers. Highly ephemeral precipitation cycles and arid watershed hydrologies were the principal factors influencing water quality. Fecal coliforms (FC) in the river and in most tributaries were less than or equal to 10 FC 100 ml-1 and less than or equal to 20 FC 100 ml-1, respectively, during drought cycles. During rainfall cycles, FC densities were highly variable and often exceeded recreational contact standards. FC were not found to vary significantly in response to diurnal fluctuations in river stage height which resulted from hydroelectric stream flow regulation. River and tributary bottom sediments harbored FC in densities averaging 10 to 100 times those in the overlying waters. Sediment FC densities were not found to be reliable indicators of overlying water quality when storm flow and nonstorm flow periods were compared.  相似文献   

11.
Considering both the protective effect of glycine betaine (GB) on enteric bacteria grown at high osmolarity and the possible presence of GB in marine sediments, we have analyzed the survival, in nutrient-free seawater, of Escherichia coli cells incubated in sediments supplemented with GB or not supplemented and measured the efficiency of GB uptake systems and the expression of proP and proU genes in both seawater and sediments. We did this by using strains harboring proP-lacZ and proU-lacZ operon or gene fusions. We found that the uptake of GB and the expression of both proP and proU were very weak in seawater. The survival ability of cells in seawater supplemented with GB was a linear function of GB concentration, although the overall protection by the osmolyte was low. In sediments, proP expression was weak and GB uptake and proU expression were variable, possibly depending on the availability of organic nutrients. In a sediment with a high total organic carbon content, GB uptake was very high and proU expression was enhanced; cells previously incubated in this sediment showed a higher resistance to decay in seawater. GB might therefore play a significant role in the long-term maintenance of enteric bacterial cells in some marine sediments.  相似文献   

12.
Aims: To study the virological quality of surface water from highly urbanized tropical water catchment areas and to determine predominant enteric viral genotypes in surface water. Methods and Results: A wide range of human pathogenic viruses in urban surface waters was screened by nested PCR assays after concentration by ultrafiltration. Among the 84 water samples collected, at least one virus was detected in 70 (83·3%) of these samples. Noroviruses were determined to be the most prevalent enteric viruses detected in urban surface water samples, followed by astroviruses, enteroviruses, adenoviruses and hepatitis A viruses. The molecular characterization of environmental viral isolates suggested co‐circulation of multiple genotypes of both noroviruses GI and GII, astroviruses and enteroviruses in urban surface waters. Conclusions: Human enteric viruses with great genetic diversity were detected in surface waters, indicating the presence of human origin of faecal contamination in highly urbanized water catchment areas. Significance and Impact of the Study: The present study identifies and characterizes potential viral hazards of source waters for drinking water supply and recreational activities. This will enable scientific decisions to be made regarding the selection and prioritization of human pathogenic viruses to be included in the future risk assessment and treatment evaluation for water and wastewater.  相似文献   

13.
Considering both the protective effect of glycine betaine (GB) on enteric bacteria grown at high osmolarity and the possible presence of GB in marine sediments, we have analyzed the survival, in nutrient-free seawater, of Escherichia coli cells incubated in sediments supplemented with GB or not supplemented and measured the efficiency of GB uptake systems and the expression of proP and proU genes in both seawater and sediments. We did this by using strains harboring proP-lacZ and proU-lacZ operon or gene fusions. We found that the uptake of GB and the expression of both proP and proU were very weak in seawater. The survival ability of cells in seawater supplemented with GB was a linear function of GB concentration, although the overall protection by the osmolyte was low. In sediments, proP expression was weak and GB uptake and proU expression were variable, possibly depending on the availability of organic nutrients. In a sediment with a high total organic carbon content, GB uptake was very high and proU expression was enhanced; cells previously incubated in this sediment showed a higher resistance to decay in seawater. GB might therefore play a significant role in the long-term maintenance of enteric bacterial cells in some marine sediments.  相似文献   

14.
The objectives of this study were to document the spatial and temporal distributions and compositions of bacteria in the sediments and overlying waters of an important urban shellfishing area in the lower Chesapeake Bay region, the Lynnhaven Estuary. Marked fluctuations were observed in the date of many of the physicochemical parameters and the indicator bacteria. The higher-salinity water and coarser sediment of the inlet site showed lower overall bacterial densities than did the headwater sites, where freshwater runoff and decreased tidal action were characteristic. Densities of benthic indicator bacteria, when expressed on a volumetric basis, were significantly greater than counts in the overlying waters. These counts were indicative of a fecally polluted system and were well above the safe maximum limits for shellfish-growing waters. Significantly fewer total and fecal bacteria were observed in both the water and the sediment during the warm months of May, July, and August. The primary sources of the Lynnhaven's bacterial pollution appeared to be typical of urban and agricultural runoff, although failure of septic tank systems was suspected as a problem in the Lynnhaven's western branch. These results illustrated that sediments in shellfishing areas could serve as a reservoir for high densities of indicator bacteria and that, potentially, pathogens could pose a health hazard.  相似文献   

15.
A bacteriological examination was done on samples of water and sediment from three localities in the Baltic. The highest numbers of bacteria were recovered from areas subjected to pollution. The isolates included members of the family Enterobacteria-ceae, the genus Pseudomonas and strains of Aeromonas hydrophila, Alteromonas putrefaciens and some Gram positive bacteria. It is suggested tentatively that H2S production in the black sediments was caused by Alt. putrefaciens. None of the isolates had an absolute requirement for NaCl, although all of them were salt-tolerant to varying degrees, and most were able to grow aerobically at salinities comparable with those found in seawater. Isolates belonging to the family Enterobacteriaceae were, however, unable to grow anaerobically under comparable conditions. Freshwater strains of several genera of the family Enterobacteriaceae and of Aeromonas hydrophila and Aer. sobria displayed salt tolerance identical with that of the Baltic isolates. One strain each of Escherichia coli, Klebsiella pneumoniae and Yersinia enterocolitica survived well during three weeks at 17°C in artificial seawater lacking both carbon and nitrogen sources. These results suggest the need for a re-evaluation of the persistence of potentially pathogenic bacteria in the sea.  相似文献   

16.
The pH of sediments underlying acidified lake waters does not necessarily reflect the acidification of the water. Profiles of sediments in Lake Anna, Virginia showed interstitial pH values between 6.0 and 7.0 within the top 4 cm, even though the sediments are constantly exposed to overlying waters with pH values as low as 3.5. The amount of acidity neutralized by sediment processes is 2 orders of magnitude greater than previously reported observations. The results indicate that caution must be used in drawing conclusions about sediment biogeochemical processes based on the pH of overlying waters.  相似文献   

17.
Beach sand is a habitat that supports many microbes, including viruses, bacteria, fungi and protozoa (micropsammon). The apparently inhospitable conditions of beach sand environments belie the thriving communities found there. Physical factors, such as water availability and protection from insolation; biological factors, such as competition, predation, and biofilm formation; and nutrient availability all contribute to the characteristics of the micropsammon. Sand microbial communities include autochthonous species/phylotypes indigenous to the environment. Allochthonous microbes, including fecal indicator bacteria (FIB) and waterborne pathogens, are deposited via waves, runoff, air, or animals. The fate of these microbes ranges from death, to transient persistence and/or replication, to establishment of thriving populations (naturalization) and integration in the autochthonous community. Transport of the micropsammon within the habitat occurs both horizontally across the beach, and vertically from the sand surface and ground water table, as well as at various scales including interstitial flow within sand pores, sediment transport for particle-associated microbes, and the large-scale processes of wave action and terrestrial runoff. The concept of beach sand as a microbial habitat and reservoir of FIB and pathogens has begun to influence our thinking about human health effects associated with sand exposure and recreational water use. A variety of pathogens have been reported from beach sands, and recent epidemiology studies have found some evidence of health risks associated with sand exposure. Persistent or replicating populations of FIB and enteric pathogens have consequences for watershed/beach management strategies and regulatory standards for safe beaches. This review summarizes our understanding of the community structure, ecology, fate, transport, and public health implications of microbes in beach sand. It concludes with recommendations for future work in this vastly under-studied area.  相似文献   

18.
Virus and bacteria removal from wastewater by land treatment.   总被引:12,自引:12,他引:0       下载免费PDF全文
Secondary sewage effluent and renovated water from four wells at the Flushing Meadows Wastewater Renovation Project near Phoenix, Arizona, in operation since 1967, were assayed approximately every 2 months in 1974 for viruses and enteric bacteria during flooding periods. No viruses of Salmonella sp. were detected in any renovated well water samples, and the numbers of fecal coliforms, fecal streptococci, and total bacteria were decreased by about 99.9% in the renovated well waters after the wastewater was filtered through about 9 m of soil.  相似文献   

19.
Biogeochemistry of manganese- and iron-rich sediments in Toolik Lake,Alaska   总被引:2,自引:2,他引:0  
The sediments within Toolik Lake in arctic Alaska are characterized by extremely low rates of organic matter sedimentation and unusually high concentrations of iron and manganese. Pore water and solid phase measurements of iron, manganese, trace metals, carbon, nitrogen, phosphorus, and sulfur are consistent with the hypothesis that the reduction of organic matter by iron and manganese is the most important biogeochemical reaction within the sediment. Very low rates of dissolved oxygen consumption by the sediments result in an oxidizing environment at the sediment-water interface. This results in high retention of upwardly-diffusing iron and manganese and the formation of metal-enriched sediment. Phosphate in sediment pore waters is strongly adsorbed by the metal-enriched phases. Consequently, fluxes of phosphorus from the sediments to overlying waters are very small and contribute to the oligotrophic nature of the Toolik Lake aquatic system. Toolik Lake contains an unusual type of lacustrine sediment, and in many ways the sediments are similar to those found in oligotrophic oceanic environments.  相似文献   

20.
Human enteric viruses were detected in samples of water, crabs, and bottom sediments obtained from two sewage sludge disposal sites in the Atlantic Ocean. Viruses were isolated from sediments 17 months after the cessation of sludge dumping. These findings indicate that, under natural conditions, viruses can survive for a long period of time in the marine environment and that they may present potential public health problems to humans using these resources for food and recreation. The isolation of viruses in the absence of fecal indicator bacteria reinforces previous observations on the inadequacy of these bacteria for predicting the virological quality of water and shellfish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号