首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sanz P  Ludin K  Carlson M 《Genetics》2000,154(1):99-107
The Snf1 protein kinase is an essential component of the glucose starvation signalling pathway in Saccharomyces cerevisiae. We have used the two-hybrid system to identify a new protein, Sip5, that interacts with the Snf1 kinase complex in response to glucose limitation. Coimmunoprecipitation studies confirmed the association of Sip5 and Snf1 in cell extracts. We found that Sip5 also interacts strongly with Reg1, the regulatory subunit of the Reg1/Glc7 protein phosphatase 1 complex, in both two-hybrid and coimmunoprecipitation assays. Previous work showed that Reg1/Glc7 interacts with the Snf1 kinase under glucose-limiting conditions and negatively regulates its activity. Sip5 is the first protein that has been shown to interact with both Snf1 and Reg1/Glc7. Genetic analysis showed that the two-hybrid interaction between Reg1 and Snf1 is reduced threefold in a sip5Delta mutant. These findings suggest that Sip5 facilitates the interaction between the Reg1/Glc7 phosphatase and the Snf1 kinase.  相似文献   

2.
In Saccharomyces cerevisiae, the protein phosphatase type 1 (PP1)-binding protein Reg1 is required to maintain complete repression of ADH2 expression during growth on glucose. Surprisingly, however, mutant forms of the yeast PP1 homologue Glc7, which are unable to repress expression of another glucose-regulated gene, SUC2, fully repressed ADH2. Constitutive ADH2 expression in reg1 mutant cells did require Snf1 protein kinase activity like constitutive SUC2 expression and was inhibited by unregulated cyclic AMP-dependent protein kinase activity like ADH2 expression in derepressed cells. To further elucidate the functional role of Reg1 in repressing ADH2 expression, deletions scanning the entire length of the protein were analyzed. Only the central region of the protein containing the putative PP1-binding sequence RHIHF was found to be indispensable for repression. Introduction of the I466M F468A substitutions into this sequence rendered Reg1 almost nonfunctional. Deletion of the central region or the double substitution prevented Reg1 from significantly interacting with Glc7 in two-hybrid analyses. Previous experimental evidence had indicated that Reg1 might target Glc7 to nuclear substrates such as the Snf1 kinase complex. Subcellular localization of a fully functional Reg1-green fluorescent protein fusion, however, indicated that Reg1 is cytoplasmic and excluded from the nucleus independently of the carbon source. When the level of Adr1 was modestly elevated, ADH2 expression was no longer fully repressed in glc7 mutant cells, providing the first direct evidence that Glc7 can repress ADH2 expression. These results suggest that the Reg1-Glc7 phosphatase is a cytoplasmic component of the machinery responsible for returning Snf1 kinase activity to its basal level and reestablishing glucose repression. This implies that the activated form of the Snf1 kinase complex must cycle between the nucleus and the cytoplasm.  相似文献   

3.
In Saccharomyces cerevisiae, Snf1 kinase, the ortholog of the mammalian AMP-activated protein kinase, is activated by an increase in the phosphorylation of the conserved threonine residue in its activation loop. The phosphorylation status of this key site is determined by changes in the rate of dephosphorylation catalyzed by the yeast PP1 phosphatase Glc7 in a complex with the Reg1 protein. Reg1 and many PP1 phosphatase regulatory subunits utilize some variation of the conserved RVxF motif for interaction with PP1. In the Snf1 pathway, the exact role of the Reg1 protein is uncertain since it binds to both the Glc7 phosphatase and to Snf1, the Glc7 substrate. In this study we sought to clarify the role of Reg1 by separating the Snf1- and Glc7-binding functions. We generated a series of Reg1 proteins, some with deletions of conserved domains and one with two amino acid changes in the RVxF motif. The ability of Reg1 to bind Snf1 and Glc7 required the same domains of Reg1. Further, the RVxF motif that is essential for Reg1 binding to Glc7 is also required for binding to Snf1. Our data suggest that the regulation of Snf1 dephosphorylation is imparted through a dynamic competition between the Glc7 phosphatase and the Snf1 kinase for binding to the PP1 regulatory subunit Reg1.  相似文献   

4.
The conserved, ubiquitin-selective AAA ATPase Cdc48 regulates numerous cellular processes including protein quality control, DNA repair and the cell cycle. Cdc48 function is tightly controlled by a multitude of cofactors mediating substrate specificity and processing. The UBX domain protein Shp1 is a bona fide substrate-recruiting cofactor of Cdc48 in the budding yeast S. cerevisiae. Even though Shp1 has been proposed to be a positive regulator of Glc7, the catalytic subunit of protein phosphatase 1 in S. cerevisiae, its cellular functions in complex with Cdc48 remain largely unknown. Here we show that deletion of the SHP1 gene results in severe growth defects and a cell cycle delay at the metaphase to anaphase transition caused by reduced Glc7 activity. Using an engineered Cdc48 binding-deficient variant of Shp1, we establish the Cdc48Shp1 complex as a critical regulator of mitotic Glc7 activity. We demonstrate that shp1 mutants possess a perturbed balance of Glc7 phosphatase and Ipl1 (Aurora B) kinase activities and show that hyper-phosphorylation of the kinetochore protein Dam1, a key mitotic substrate of Glc7 and Ipl1, is a critical defect in shp1. We also show for the first time a physical interaction between Glc7 and Shp1 in vivo. Whereas loss of Shp1 does not significantly affect Glc7 protein levels or localization, it causes reduced binding of the activator protein Glc8 to Glc7. Our data suggest that the Cdc48Shp1 complex controls Glc7 activity by regulating its interaction with Glc8 and possibly further regulatory subunits.  相似文献   

5.
The GLC7 gene of Saccharomyces cerevisiae encodes the catalytic subunit of type 1 protein phosphatase (PP1) and is essential for cell growth. We have isolated a previously uncharacterized gene, REG2, on the basis of its ability to interact with Glc7p in the two-hybrid system. Reg2p interacts with Glc7p in vivo, and epitope-tagged derivatives of Reg2p and Glc7p coimmunoprecipitate from cell extracts. The predicted protein product of the REG2 gene is similar to Reg1p, a protein believed to direct PP1 activity in the glucose repression pathway. Mutants with a deletion of reg1 display a mild slow-growth defect, while reg2 mutants exhibit a wild-type phenotype. However, mutants with deletions of both reg1 and reg2 exhibit a severe growth defect. Overexpression of REG2 complements the slow-growth defect of a reg1 mutant but does not complement defects in glycogen accumulation or glucose repression, two traits also associated with a reg1 deletion. These results indicate that REG1 has a unique role in the glucose repression pathway but acts together with REG2 to regulate some as yet uncharacterized function important for growth. The growth defect of a reg1 reg2 double mutant is alleviated by a loss-of-function mutation in the SNF1-encoded protein kinase. The snf1 mutation also suppresses the glucose repression defects of reg1. Together, our data are consistent with a model in which Reg1p and Reg2p control the activity of PP1 toward substrates that are phosphorylated by the Snf1p kinase.  相似文献   

6.
Protein phosphatase 1, comprising the regulatory subunit Reg1 and the catalytic subunit Glc7, has a role in glucose repression in Saccharomyces cerevisiae. Previous studies showed that Reg1 regulates the Snf1 protein kinase in response to glucose. Here, we explore the functional relationships between Reg1, Glc7, and Snf1. We show that different sequences of Reg1 interact with Glc7 and Snf1. We use a mutant Reg1 altered in the Glc7-binding motif to demonstrate that Reg1 facilitates the return of the activated Snf1 kinase complex to the autoinhibited state by targeting Glc7 to the complex. Genetic evidence indicated that the catalytic activity of Snf1 negatively regulates its interaction with Reg1. We show that Reg1 is phosphorylated in response to glucose limitation and that this phosphorylation requires Snf1; moreover, Reg1 is dephosphorylated by Glc7 when glucose is added. Finally, we show that hexokinase PII (Hxk2) has a role in regulating the phosphorylation state of Reg1, which may account for the effect of Hxk2 on Snf1 function. These findings suggest that the phosphorylation of Reg1 by Snf1 is required for the release of Reg1-Glc7 from the kinase complex and also stimulates the activity of Glc7 in promoting closure of the complex.  相似文献   

7.
We have recently characterized Ypi1 as an inhibitory subunit of yeast Glc7 PP1 protein phosphatase. In this work we demonstrate that Ypi1 forms a complex with Glc7 and Sds22, another Glc7 regulatory subunit that targets the phosphatase to substrates involved in cell cycle control. Interestingly, the combination of equimolar amounts of Ypi1 and Sds22 leads to an almost full inhibition of Glc7 activity. Because YPI1 is an essential gene, we have constructed conditional mutants that demonstrate that depletion of Ypi1 leads to alteration of nuclear localization of Glc7 and cell growth arrest in mid-mitosis with aberrant mitotic spindle. These phenotypes mimic those produced upon inactivation of Sds22. The fact that progressive depletion of either Ypi1 or Sds22 resulted in similar physiological phenotypes and that both proteins inhibit the phosphatase activity of Glc7 strongly suggest a common role of these two proteins in regulating Glc7 nuclear localization and function.  相似文献   

8.
Protein phosphatases play an important role in vesicular trafficking and membrane fusion processes. The type 1 phosphatase Glc7p and its regulatory subunit Reg1p were identified as required components in the glucose-induced targeting of the key gluconeogenic enzyme fructose-1,6-bisphosphatase (FBPase) to the vacuole for degradation. The interaction of Reg1p with Glc7p was important for the transport of FBPase from intermediate vacuole import and degradation (Vid) vesicles to vacuoles. The glc7-T152K mutant strain exhibited a reduced Reg1p binding along with defects in FBPase degradation and Vid vesicle trafficking to the vacuole. In this mutant, Vid vesicles were the most defective components, whereas the vacuole was also defective. Shp1p and Glc8p regulate Glc7p phosphatase activity and are required for FBPase degradation. In the Deltashp1 and Deltaglc8 strains, Reg1p-Glc7p interaction was not affected, suggesting that phosphatase activity is also necessary for FBPase degradation. Similar to those seen in the glc7-T152K mutant, the Deltashp1 and Deltaglc8 mutants exhibited severely defective Vid vesicles, but partially defective vacuoles. Taken together, our results suggest that Reg1p-Glc7p interaction and Glc7p phosphatase activity play a required role in the Vid vesicle to vacuole-trafficking step along the FBPase degradation pathway.  相似文献   

9.
The budding yeast Glc7 serine/threonine protein phosphatase-1 is regulated by Glc8, the yeast ortholog of mammalian phosphatase inhibitor-2. In this work, we demonstrated that similarly to inhibitor-2, Glc8 function is regulated by phosphorylation. The cyclin-dependent protein kinase, Pho85, in conjunction with the related cyclins Pcl6 and Pcl7 comprise the major Glc8 kinase in vivo and in vitro. Several glc7 mutations are dependent on the presence of Glc8 for viability. For example, glc7 alleles R121K, R142H, and R198D are lethal in combination with a glc8 deletion. We found that glc7-R121K is lethal in combination with a pho85 deletion. This finding indicates that Pho85 is the sole Glc8 kinase in vivo. Furthermore, glc7-R121K is also lethal when combined with deletions of pcl6, plc7, pcl8, and pcl10, indicating that these related cyclins redundantly activate Pho85 for Glc8 phosphorylation in vivo. In vitro kinase assays and genetic results indicate that Pho85 cyclins Pcl6 and Pcl7 comprise the predominant Glc8 kinase.  相似文献   

10.
Faithful chromosome segregation depends on the opposing activities of the budding yeast Glc7/PP1 protein phosphatase and Ipl1/Aurora protein kinase. We explored the relationship between Glc7 and Ipl1 and found that the phosphorylation of the Ipl1 substrate, Dam1, was altered by decreased Glc7 activity, whereas Ipl1 levels, localization, and kinase activity were not. These data strongly suggest that Glc7 ensures accurate chromosome segregation by dephosphorylating Ipl1 targets rather than regulating the Ipl1 kinase. To identify potential Glc7 and Ipl1 substrates, we isolated ipl1-321 dosage suppressors. Seven genes (SDS22, BUD14, GIP3, GIP4, SOL1, SOL2, and PEX31) encode newly identified ipl1 dosage suppressors, and all 10 suppressors encode proteins that physically interact with Glc7. The overexpression of the Gip3 and Gip4 suppressors altered Glc7 localization, indicating they are previously unidentified Glc7 regulatory subunits. In addition, the overexpression of Gip3 and Gip4 from the galactose promoter restored Dam1 phosphorylation in ipl1-321 mutant cells and caused wild-type cells to arrest in metaphase with unsegregated chromosomes, suggesting that Gip3 and Gip4 overexpression impairs Glc7's mitotic functions. We therefore propose that the overexpression of Glc7 regulatory subunits can titrate Glc7 away from relevant Ipl1 targets and thereby suppress ipl1-321 cells by restoring the balance of phosphatase/kinase activity.  相似文献   

11.
The protein phosphatases PP2A and PP1 are major regulators of a variety of cellular processes in yeast and other eukaryotes. Here, we reveal that both enzymes are direct targets of glucose sensing. Addition of glucose to glucose-deprived yeast cells triggered rapid posttranslational activation of both PP2A and PP1. Glucose activation of PP2A is controlled by regulatory subunits Rts1, Cdc55, Rrd1 and Rrd2. It is associated with rapid carboxymethylation of the catalytic subunits, which is necessary but not sufficient for activation. Glucose activation of PP1 was fully dependent on regulatory subunits Reg1 and Shp1. Absence of Gac1, Glc8, Reg2 or Red1 partially reduced activation while Pig1 and Pig2 inhibited activation. Full activation of PP2A and PP1 was also dependent on subunits classically considered to belong to the other phosphatase. PP2A activation was dependent on PP1 subunits Reg1 and Shp1 while PP1 activation was dependent on PP2A subunit Rts1. Rts1 interacted with both Pph21 and Glc7 under different conditions and these interactions were Reg1 dependent. Reg1-Glc7 interaction is responsible for PP1 involvement in the main glucose repression pathway and we show that deletion of Shp1 also causes strong derepression of the invertase gene SUC2. Deletion of the PP2A subunits Pph21 and Pph22, Rrd1 and Rrd2, specifically enhanced the derepression level of SUC2, indicating that PP2A counteracts SUC2 derepression. Interestingly, the effect of the regulatory subunit Rts1 was consistent with its role as a subunit of both PP2A and PP1, affecting derepression and repression of SUC2, respectively. We also show that abolished phosphatase activation, except by reg1Δ, does not completely block Snf1 dephosphorylation after addition of glucose. Finally, we show that glucose activation of the cAMP-PKA (protein kinase A) pathway is required for glucose activation of both PP2A and PP1. Our results provide novel insight into the complex regulatory role of these two major protein phosphatases in glucose regulation.  相似文献   

12.
Protein phosphatase 1 (PP1) is one of the major protein phosphatases in eukaryotic cells. PP1 activity is believed to be controlled by the interaction of PP1 catalytic subunit with various regulatory subunits. The essential gene GLC7 encodes the PP1 catalytic subunit in Saccharomyces cerevisiae. In this study, full-length GLC7(1-312), C-terminal deletion mutants, and C-terminally poly-his tagged mutants were constructed and expressed in a GLC7 knockout strain of S. cerevisiae. Viability studies of the GLC7 knockout strains carrying the plasmids expressing GLC7 C-terminal deletion mutants and their tagged forms showed that the mutants 1-295 and 1-304 were functional, whereas the mutant 1-245 was not. The C-terminally poly-his tagged Glc7p with and without an N-terminal hemagglutinin (HA) tag was partially purified by immobilized Ni(2+) affinity chromatography and further analyzed by gel filtration and ion exchange chromatography. Phosphatase activity assays, SDS-PAGE, and Western blot analyses of the chromatographic fractions suggested that the Glc7p associated with regulatory subunits in vivo. A 40-kDa protein was copurified with tagged Glc7p through several chromatographic procedures. Monoclonal antibody against the HA tag coimmunoprecipitated the tagged Glc7p and the 40-kDa protein. This protein was further purified by a reverse phase HPLC column. Analysis by CNBr digestion, peptide sequencing, and electrospray mass spectrometry showed that this 40-kDa protein is Sds22p, one of the proteins proposed to be a regulatory subunit of Glc7. These results demonstrate that Sds22p forms a complex with Glc7p and that Sds22p:Glc7p is a stable isolatable form of yeast PP1.  相似文献   

13.
In yeast, the type 1 protein phosphatase (PP1) catalytic subunit Glc7 is involved in the regulation of multiple cellular processes and thought to achieve specificity through association with different regulatory subunits. Here, we report that the Glc7 regulator Shp1 plays important roles in cell morphogenesis, cell cycle progression and DNA damage response in Candida albicans. SHP1 deletion caused the formation of rod-shaped yeast cells with slow growth. Flow cytometry analysis revealed that shp1Δ cells showed a prolonged G(2)/M phase, which was rescued by deleting the spindle-checkpoint gene MAD2. Furthermore, shp1Δ cells were hypersensitive to heat and genotoxic stresses. Interestingly, depletion of Glc7 caused defects similar to the shp1Δ mutant such as arrest at G(2)/M transition; and the GLC7/glc7Δ heterozygous mutant exhibited increased sensitivity to genotoxic stresses, consistent with the recent finding that Saccharomyces cerevisiae Glc7 has a role in DNA damage response. We also show that Shp1 is required for the nuclear accumulation of Glc7, suggesting that Shp1 executes its cellular function partly by regulating Glc7 localization.  相似文献   

14.
Glc7p is an essential serine/threonine type 1 protein phosphatase (PP1) from the yeast Saccharomyces cerevisiae, which has a role in many processes including cell cycle progression, sporulation, glycogen accumulation, translation initiation, and glucose repression. Two hallmarks of PP1 enzymes are very high amino acid sequence conservation and association of the catalytic subunit with a variety of noncatalytic, regulatory subunits. We tested the hypothesis that PP1 sequence conservation was the result of each PP1 residue playing a role in multiple intermolecular interactions. Analysis of 24 glc7 mutants, isolated primarily by their glycogen accumulation traits, revealed that every mutated Glc7p residue altered many noncatalytic subunit affinities and conferred unselected sporulation traits to various degrees. Furthermore, quantitative analysis showed that Glc7p affinity for the glycogen-binding noncatalytic subunit Gac1p was not the only parameter that determines the glycogen accumulation by a glc7 mutant. Sds22p is one Glc7p noncatalytic subunit that is essential for mitotic growth. Surprisingly, several mutant Glc7p proteins had undetectable affinity for Sds22p, yet grew apparently normally. The characterization of glc7 diploid sporulation revealed that Glc7p has at least two meiotic roles. Premeiotic DNA synthesis was undetectable in glc7 mutants with the poorest sporulation. In the glc7 diploids examined, expression of the meiotic inducer IME1 was proportional to the glc7 diploid sporulation frequency. Moreover, IME1 hyperexpression could not suppress glc7 sporulation traits. The Glc7p/Gip1p holoenzyme may participate in completion of meiotic divisions or spore packaging because meiotic dyads predominate when some glc7 diploids sporulate.  相似文献   

15.
G R Alms  P Sanz  M Carlson    T A Haystead 《The EMBO journal》1999,18(15):4157-4168
Protein phosphatase 1 (Glc7p) and its binding protein Reg1p are essential for the regulation of glucose repression pathways in Saccharomyces cerevisiae. In order to identify physiological substrates for the Glc7p-Reg1p complex, we examined the effects of deletion of the REG1 gene on the yeast phosphoproteome. Analysis by two-dimensional phosphoprotein mapping identified two distinct proteins that were greatly increased in phosphate content in reg1Delta mutants. Mixed peptide sequencing identified these proteins as hexokinase II (Hxk2p) and the E1alpha subunit of pyruvate dehydrogenase. Consistent with increased phosphorylation of Hxk2p in response to REG1 deletion, fractionation of yeast extracts by anion-exchange chromatography identified Hxk2p phosphatase activity in wild-type strains that was selectively lost in the reg1Delta mutant. The phosphorylation state of Hxk2p and Hxk2p phosphatase activity was restored to wild-type levels in the reg1Delta mutant by expression of a LexA-Reg1p fusion protein. In contrast, expression of LexA-Reg1p containing mutations at phenylalanine in the putative PP-1C-binding site motif (K/R)(X)(I/V)XF was unable to rescue Hxk2p dephosphorylation in intact yeast or restore Hxk2p phosphatase activity. These results demonstrate that Reg1p targets PP-1C to dephosphorylate Hxk2p in vivo and that the motif (K/R)(X) (I/V)XF is necessary for its PP-1 targeting function.  相似文献   

16.
In Saccharomyces cerevisiae, a type 1 protein phosphatase complex composed of the Glc7 catalytic subunit and the Reg1 regulatory subunit represses expression of many glucose-regulated genes. Here we show that the Reg1-interacting proteins Bmh1, Bmh2, Ssb1, and Ssb2 have roles in glucose repression. Deleting both BMH genes causes partially constitutive ADH2 expression without significantly increasing the level of Adr1 protein, the major activator of ADH2 expression. Adr1 and Bcy1, the regulatory subunit of cAMP-dependent protein kinase, are both required for this effect indicating that constitutive expression in Deltabmh1Deltabmh2 cells uses the same activation pathway that operates in Deltareg1 cells. Deletion of both BMH genes and REG1 causes a synergistic relief from repression, suggesting that Bmh proteins also act independently of Reg1 during glucose repression. A two-hybrid interaction with the Bmh proteins was mapped to amino acids 187-232, a region of Reg1 that is conserved in different classes of fungi. Deleting this region partially releases SUC2 from glucose repression. This indicates a role for the Reg1-Bmh interaction in glucose repression and also suggests a broad role for Bmh proteins in this process. An in vivo Reg1-Bmh interaction was confirmed by copurification of Bmh proteins with HA(3)-TAP-tagged Reg1. The nonconventional heat shock proteins Ssb1 and Ssb2 are also copurified with HA(3)-TAP-tagged Reg1. Deletion of both SSB genes modestly decreases repression of ADH2 expression in the presence of glucose, suggesting that Ssb proteins, perhaps through their interaction with Reg1, play a minor role in glucose repression.  相似文献   

17.
The Ipl1 protein kinase is essential for proper chromosome segregation and cell viability in the budding yeast Saccharomyces cerevisiae. We have previously shown that the temperature-sensitive growth phenotype of conditional ipl1-1ts mutants can be suppressed by a partial loss-of-function mutation in the GLC7 gene, which encodes the catalytic subunit (PP1C) of protein phosphatase 1, thus suggesting that this enzyme acts in opposition to the Ipl1 protein kinase in regulating yeast chromosome segregation. We report here that the Glc8 protein, which is related in primary sequence to mammalian inhibitor 2, also participates in this regulation. Like inhibitor 2, the Glc8 protein is heat stable, exhibits anomalous electrophoretic mobility, and functions in vitro as an inhibitor of yeast as well as rabbit skeletal muscle PP1C. Interestingly, overexpression as well as deletion of the GLC8 gene results in a partial suppression of the temperature-sensitive growth phenotype of ipl1ts mutants and also moderately reduces the amount of protein phosphatase 1 activity which is assayable in crude yeast lysates. In addition, the chromosome missegregation phenotype caused by an increase in the dosage of GLC7 is totally suppressed by the glc8-delta 101::LEU2 deletion mutation. These findings together suggest that the Glc8 protein is involved in vivo in the activation of PP1C and that when the Glc8 protein is overproduced, it may also inhibit PP1C function. Furthermore, site-directed mutagenesis studies of GLC8 suggest that Thr-118 of the Glc8 protein, which is equivalent to Thr-72 of inhibitor 2, may play a central role in the ability of this protein to activate and/or inhibit PP1C in vivo.  相似文献   

18.
The REG1 gene encodes a regulatory subunit of the type-1 protein phosphatase (PP1) Glc7 in Saccharomyces cerevisiae, which directs the catalytic subunit to substrates involved in glucose repression. Loss of REG1 relieves glucose repression of many genes, including the MAL structural genes that encode the maltose fermentation enzymes. In this report, we explore the role of Reg1p and its homolog Reg2p in glucose-induced inactivation of maltose permease. Glucose stimulates the proteolysis of maltose permease and very rapid loss of maltose transport activity – more rapid than can be explained by loss of the permease protein alone. In a reg1Δ strain we observe a significantly reduced rate of glucose-induced proteolysis of maltose permease, and the rapid loss of maltose transport activity does not occur. Instead, surprisingly, the slow rate of proteolysis of maltose permease is accompanied by an increase in maltose transport activity. Loss of Reg2p modestly reduces the rates of both glucose-induced proteolysis of maltose permease and inactivation of maltose transport activity. Overexpression of Reg2p in a reg1Δ strain suppresses the effect on maltose permease proteolysis and partially restores the inactivation of maltose transport activity, but does not affect the insensitivity of MAL gene expression to repression by glucose observed in this strain. Thus, protein phosphatase type-1 (Glc7p-Reg1p and Glc7p-Reg2p) plays a role in transduction of the glucose signal during glucose-induced proteolysis of maltose permease, but only Glc7p-Reg1p is involved in glucose-induced inactivation of maltose transport activity and glucose repression of MAL gene expression. Overexpression of REG1 partially restores proteolysis of maltose permease in a grr1Δ strain, which lacks glucose signaling, but does not rescue rapid inactivation of maltose transport activity or sensitivity to glucose repression. A model for the role of Reg1p and Reg2p in glucose signaling pathways is discussed. We also uncovered a previously unrecognized G2/M delay in the grr1Δ but not the reg1Δ strains, and this delay is suppressed by REG1 overexpression. The G1/S delay seen in grr1Δ mutants is slightly suppressed as well, but REG1 overexpression does not suppress other grr1Δ phenotypes such as insensitivity to glucose repression. Received: 21 October 1999 / Accepted: 28 December 1999  相似文献   

19.
We isolated a mutant carrying a conditional mutation in the GLC7 gene, encoding the catalytic subunit of a type 1 protein phosphatase, by selection of suppressors that restored the growth defect of cdc24 mutants at high temperature and simultaneously conferred cold-sensitive growth. This cold sensitivity for growth is caused by a single mutation (glc7Y-170) at position 170 of the Glc7 protein, resulting in replacement of cysteine with tyrosine. Genetic analysis suggested that the glc7Y-170 allele is associated with a recessive negative phenotype, reducing the activity of Glc7 in the cell. The glc7Y-170 mutant missegregated chromosome III at the permissive temperature, arrested growth as large-budded cells at the restrictive temperature, exhibited a significant increase in the number of nuclei at or in the neck, and had a short spindle. Furthermore, the glc7Y-170 mutant exhibited a high level of CDC28-dependent protein kinase activity when incubated at the restrictive temperature. These findings suggest that the glc7Y-170 mutation is defective in the G2/M phase of the cell cycle. Thus, type 1 protein phosphatase in Saccharomyces cerevisiae is essential for the G2/M transition.  相似文献   

20.
Mayordomo I  Regelmann J  Horak J  Sanz P 《FEBS letters》2003,544(1-3):160-164
In this study we show that Reg1, the regulatory subunit of the Reg1/Glc7 protein phosphatase (PP1) complex, interacts physically with the two yeast members of the 14-3-3 protein family, Bmh1 and Bmh2. By using different fragments of the Reg1 protein we mapped the interaction domain at the N-terminal part of the protein. We also show that Reg1 and yeast 14-3-3 proteins participate actively in the regulation of the glucose-induced degradation of maltose permease (Mal61).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号