首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Previously, the transfer of the phosphoryl group between the EnvZ and OmpR proteins, which are involved in activation of the ompF and ompC genes in response to the medium osmolarity, has been demonstrated in vitro. In this study, we characterized mutant EnvZ and OmpR proteins in terms of their in vitro phosphorylation and dephosphorylation. The proteins isolated from the mutants, envZ11 and ompR3, were found to be defective in seemingly the same aspect, i.e. OmpR dephosphorylation. The protein isolated from the ompR77 mutant, which is a suppressor mutant specific for envZ11, was found to be defective in another aspect, i.e. OmpR phosphorylation. These results imply that the phosphotransfer reactions observed in vitro play roles in the mechanism underlying the osmoregulatory expression of the ompF and ompC genes in vivo. We provide evidence that the EnvZ protein is involved not only in OmpR phosphorylation but also in OmpR dephosphorylation.  相似文献   

2.
The OmpR protein is a positive regulator involved in osmoregulatory expression of the ompC and ompF genes that specify the major outer membrane proteins OmpC and OmpF, respectively. We purified the OmpR protein not only from wild-type cells but also from two ompR mutants (ompR2 and ompR3) exhibiting quite different phenotypes as to osmoregulation of the ompC and ompF genes. The OmpR2 protein has an amino acid conversion in the C-terminal portion of the OmpR polypeptide, whereas the OmpR3 protein has one in the N-terminal portion. Comparative studies on these purified OmpR proteins were carried out in terms of their interaction with the ompC and ompF promoters. The nucleotide sequences involved in OmpR-binding were determined in individual promoter regions by deoxyribonuclease I footprinting. The OmpR3 protein as well as the wild-type OmpR protein appeared to bind, to similar extents, to both the ompC and ompF promoters. In contrast, the OmpR2 protein bound preferentially to the ompF promoter and failed to protect the ompC promoter against DNAse I digestion. These results support the view that the C-terminal portion of the OmpR protein is responsible for the binding of the OmpR protein to the ompC and ompF promoter DNAs. Based on these results, the structure and function of the OmpR protein are discussed in relation to the mechanism of osmoregulation.  相似文献   

3.
4.
5.
6.
OmpR and EnvZ comprise a two-component system that regulates the porin genes ompF and ompC in response to changes in osmolarity. EnvZ is autophosphorylated by intracellular ATP on a histidine residue, and it transfers the phosphoryl group to an aspartic acid residue of OmpR. EnvZ can also dephosphorylate phospho-OmpR (OmpR-P) to control the cellular level of OmpR-P. At low osmolarity, OmpR-P levels are low because of either low EnvZ kinase or high EnvZ phosphatase activities. At high osmolarity, OmpR-P is elevated. It has been proposed that EnvZ phosphatase is the activity that is regulated by osmolarity. OmpR is a two-domain response regulator; phosphorylation of OmpR increases its affinity for DNA, and DNA binding stimulates phosphorylation. The step that is affected by DNA depends upon the phosphodonor employed. In the present work, we have used fluorescence anisotropy and phosphotransfer assays to examine OmpR interactions with EnvZ. Our results indicate that phosphorylation greatly reduces the affinity of OmpR for the kinase, whereas DNA does not affect their interaction. The results presented cast serious doubts on the role of the EnvZ phosphatase in response to signaling in vivo.  相似文献   

7.
Osmoregulation of the bacterial porin genes ompF and ompC is controlled by a two-component regulatory system. EnvZ, the sensor component of this system, is capable both of phosphorylating and dephosphorylating OmpR, the effector component. Mutations were isolated in envZ that abolish the expression of both porin genes. These mutants appear to have lost the kinase activity of EnvZ while retaining their phosphatase activity, so that in their presence OmpR is completely unphosphorylated. The behavior of these mutants in haploid, and in diploid with other envZ alleles, is consistent with a model in which EnvZ mediates osmoregulation by controlling the concentration of a single species. OmpR-P.  相似文献   

8.
9.
Previously, the transfer of a phosphoryl group between the EnvZ and OmpR proteins, which are involved in expression of the ompF and ompC genes in response to the medium osmolarity, was demonstrated in vitro. In this study, the histidine (His) residue at position 243 of the EnvZ protein, and the aspartate (Asp) residues at positions 12 and 55 of the OmpR protein were changed, respectively, by means of site-directed mutagenesis. We characterized the mutant proteins in terms of not only their in vitro phosphotransfer reactions but also their in vivo osmoregulatory phenotypes. The mutant EnvZ protein was defective in its in vitro ability not only as to EnvZ-autophosphorylation but also OmpR-phosphorylation and OmpR-dephosphorylation. This particular mutant EnvZ protein seemed to exhibit null functions as to the in vivo osmoregulatory phenotype. The mutant OmpR protein with the amino acid change at position 12 was clearly phosphorylated in vitro, but at a very low rate as compared with the wild-type OmpR protein. In vitro phosphorylation of the mutant OmpR protein with the amino acid change at position 55 was more severely affected. This mutant OmpR protein appeared to exhibit null functions as to the in vivo osmoregulatory phenotype. These results suggest that the histidine residue at position 243 of the EnvZ protein and the aspartate residues at positions 12 and 55 of the OmpR protein are deeply involved in the phosphotransfer between the EnvZ and OmpR proteins.  相似文献   

10.
The Escherichia coli OmpR protein is an activator protein specific for the ompF and ompC genes, which respectively encode the outer membrane proteins, OmpF and OmpC. The EnvZ protein is a protein kinase specific for the OmpR protein. In this study, we compared the in vitro DNA-binding ability of the phosphorylated form of the OmpR protein with that of the non-phosphorylated form by means of non-denaturing gel retardation analysis and DNase I footprinting analysis. The results indicate that the phosphorylation of the OmpR protein results in stimulation of its in vitro DNA-binding ability as to both the ompF and ompC promoter DNAs.  相似文献   

11.
The OmpR protein is a positive regulator involved in osmoregulatory expression of the ompF and ompC genes, which respectively code for major outer membrane proteins OmpF and OmpC of Escherichia coli. The OmpR protein has been purified to homogeneity from an overproducing strain harboring an ompR gene-carrying plasmid. Throughout the purification the OmpR protein behaved as a single entity. The molecular weight determined on sodium dodecyl sulfate-polyacrylamide gel, the total amino acid composition, and the NH2-terminal amino acid sequence of the purified protein were essentially the same as those deduced from the nucleotide sequence of the ompR gene. Molecular weight determination and cross-linking study on the native protein revealed that the purified protein exists as a monomer. The purified OmpR protein was specifically bound to the promoter regions of the ompC and ompF genes. Experiments with a series of upstream deletions of the ompC and ompF promoters revealed that the region upstream from the -35 region was indispensable for OmpR binding to both the ompC and the ompF promoters. Although it has been proposed that depending on the medium osmolarity the OmpR protein may exist in two alternative structures, which respectively regulate functioning of the ompC and the ompF promoters, the purified OmpR protein appeared to be homogeneous and interacted with both promoters to the same extent.  相似文献   

12.
The EnvZ protein is presumably a membrane-located osmotic sensor, which specifically phosphorylates the activator protein, OmpR, involved in expression of the ompF and ompC genes in Escherichia coli. In this study, we developed an in vitro system for analyzing the intact form of the EnvZ protein located in the isolated cytoplasmic membrane. This particular form of the EnvZ protein exhibited its in vitro ability not only as to OmpR-phosphorylation but also OmpR-dephosphorylation. It was found that when a high concentration of a mono-cation (K+, Na-, or Li+) was present during the in vitro reactions, OmpR-dephosphorylation was preferentially inhibited and consequently the phosphorylated from of the OmpR protein was accumulated under the in vitro conditions used, although the K+ ion appears to be essential for the OmpR-phosphorylation reaction. Procaine, a local anesthetic, is known to affect the osmotic regulation of the ompF and ompC genes in vivo. In this study, procaine was also found to preferentially inhibit OmpR-dephosphorylation mediated by the EnvZ protein in vitro.  相似文献   

13.
M Kato  H Aiba  S Tate  Y Nishimura  T Mizuno 《FEBS letters》1989,249(2):168-172
The OmpR protein of Escherichia coli is a positive regulator involved in activation of the ompF and ompC genes which encode the major outer membrane proteins OmpF and OmpC, respectively. By employing recombinant DNA techniques, we isolated the N- and C-terminal halves of the OmpR molecule. From the results of biochemical analyses of these fragments, it was concluded that the N-terminal portion contains a site involved in phosphorylation by an OmpR-specific protein kinase EnvZ, whereas the C-terminal part possesses a DNA-binding site for the ompC and ompF promoters.  相似文献   

14.
The OmpR protein of Escherichia coli is a positive regulator specific for the ompF and ompC genes. The function of OmpR is modulated through phosphotransfer signaling mediated by the kinase, EnvZ. We previously demonstrated that OmpR contains two functional domains, which are physically separable; one is responsible for the interaction with EnvZ, whereas the other participates in interactions with cognate promoter DNAs. In this study, these domains of OmpR were overproduced in wild-type cells harboring the endogenous intact ompR gene on their chromosome. It was found that when the N-terminal domain of OmpR, which contains the phosphorylation site, was overproduced, expression of the ompF and ompC genes was markedly inhibited, irrespective of the osmolarity of the growth medium. Based on our current model for the molecular mechanism underlying signal transduction through Envz-OmpR phosphotransfer (T. Mizuno and S. Mizushima, Mol. Microbiol. 4, (1990), 1077-1082), we provide evidence that this phenomenon is best interpreted by the concept of 'signal titration' in the phosphotransfer signaling pathway.  相似文献   

15.
16.
In Escherichia coli , EnvZ senses changes in the osmotic conditions of the growth environment and controls the phosphorylated state of the regulatory protein, OmpR. OmpR-phosphate regulates the expression of the porin genes, ompF and ompC . To investigate the role of the periplasmic domain of EnvZ in sensing of osmolarity signals, portions of this domain were deleted. Cells containing the EnvZ mutant proteins were able to regulate normally the production of OmpF and OmpC in response to changes in osmolarity. The periplasmic domain of EnvZ was also replaced with the non-homologous periplasmic domain of the histidine kinase PhoR of Bacillus subtilis . Osmoregulation of OmpF and OmpC production in cells containing the PhoR–EnvZ hybrid protein was indistinguishable from that in cells containing wild-type EnvZ. Identical results were obtained with an envZ – pta/ack strain, which could not synthesize acetyl phosphate. Thus, acetyl phosphate was not involved in the regulation of ompF and ompC observed in this study. These results indicate that the periplasmic domain of EnvZ is not essential for sensing of osmolarity signals.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号