首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sialosyl-lactosylceramide, GM3, is the major ganglioside of human liver, where it constitutes more than 90% of the total lipid-bound sialic acid. When analyzed by thin-layer chromatography, human liver GM3 migrates as two main spots. They are representative of ganglioside molecular species which differ in the acyl moiety. The faster running spot is mainly composed of molecular species with non-hydroxylated C22-C24 acyl chains; the other contains mainly molecular species bearing non-hydroxylated C16-C18 and alpha-hydroxylated C16-C24 acyl chains. In this study the content of the two GM3 molecular species groups was investigated in 31 subjects ranging from 19 to 85 years of age. By thin-layer chromatography we observed that the group of molecular species containing non-hydroxylated C22-C24 acyl chains, decreased linearly with subject age, while that of non-hydroxylated C16-C18 acyl chains and hydroxylated C16-C24 acyl chains increased linearly. Fast-atom-bombardment mass spectrometry performed on seven samples from subjects ranging from 21 to 78 years of age demonstrated that the age-dependent increase of the lower spot is caused by an increase in the hydroxylated fatty acid form of GM3, the content of non-hydroxylated C16-C18 fatty acid species remaining constant with age.  相似文献   

2.
A new procedure is described for preparing the molecular species of GM1 ganglioside that carry a single fatty acid (myristic (C14:0), stearic (C18:0), arachidic (C20:0) or lignoceric (C24:0) acid) and a single long chain base (C18 or C20 sphingosine, C18 or C20 sphinganine, each of them in natural 3D(+)erythro or unnatural 3L(-)threo form). The procedure consisted of the following steps: a) alkaline hydrolysis of GM1 ganglioside in the presence of tetramethylammonium hydroxide, which produces de-N-acylation of the ceramide and de-N-acetylation of the sialic acid residue; b) specific re-N-acylation at the long chain base amino group with a new fatty acid (myristic, stearic, arachidic, or lignoceric) in the presence of 1-(3-dimethylaminopropyl)-3-ethyl-carbodiimide hydrochloride; and c) final re-N-acetylation at the level of the sialic acid residue. GM1 ganglioside molecular species, completely homogeneous in the ceramide portion, were prepared by reversed phase high performance liquid chromatography. The GM1 ganglioside molecular species were analyzed for saccharide, fatty acid, and long chain base composition by chemical and spectrometric analyses. Using a combination of the two procedures, 32 different molecular species of GM1 ganglioside, over 99% homogeneous, have been prepared.  相似文献   

3.
New chemical trends in ganglioside research   总被引:3,自引:0,他引:3  
A report is given of recent progress in the methodology for isolation of gangliosides from natural sources, for the preparation of molecular species of gangliosides homogeneous in both the oligosaccharide and ceramide portions of the molecule, for chemical manipulation and derivatization of gangliosides, and for the preparation of gangliosides radiolabelled in different parts of the molecule. Particular emphasis has been given to: high performance liquid chromatographic procedures capable to separate gangliosides on the basis of their oligosaccharide or ceramide moieties and yielding completely homogeneous compounds, that is gangliosides with a single oligosaccharide, a single long chain base and a single fatty acid; two-dimensional thin-layer chromatographic procedures, provided with a fully computerized quantification system, particularly suitable to identifying gangliosides containing alkali-labile linkages, including ganglioside lactones; chemical procedures of high yield for reducing gangliosides at the double bond of long chain base, for selective removal of the fatty acyl moiety and replacement with a novel fatty acid, and for the synthesis of ganglioside lactones; chemical procedures for inserting fluorescent, paramagnetic or photoreactive probes at the fatty acyl part of the ganglioside molecule; procedures for chemical isotopic radiolabelling of gangliosides at the level of sialic acid acetyl group and at the fatty acid moiety. Examples are provided evidencing the significance and potential use of a variety of ganglioside derivatives in the study of ganglioside metabolism and functional implications.  相似文献   

4.
Abnormalities of ganglioside structure characterize the neoplastic state, and aberrant glycosylation has been implicated as underlying many new tumor ganglioside structures. However, variations in ceramide structure can also result in novel tumor gangliosides. To address systematically this aspect of ganglioside metabolism, we have initiated a study of the structures of the ceramide species of an oligosaccharide-homogeneous human tumor-derived ganglioside, GM2. The ganglioside was isolated from neuroblastoma tissue and purified by normal-phase high pressure liquid chromatography. Marked ceramide heterogeneity was observed; 18 individual ceramide species of neuroblastoma GM2 were separated by reversed-phase high pressure liquid chromatography and collected. Their structures were determined by a combination of negative- and positive-ion fast atom bombardment mass spectrometry and collisionally activated dissociation tandem mass spectrometry of the underivatized gangliosides. The striking finding was the detection of alpha-hydroxylation of a significant fraction of each of the major fatty acid species (16:0, 18:0, 20:0, 22:0, and 24:1); alpha-hydroxylated species quantitatively represented almost one-fifth of the total tumor GM2 species. Fatty acyl hydroxylation was also detected in the ceramide of several other human tumor gangliosides. In contrast, as previously known, fatty acyl hydroxylation was not detected in the normal human brain gangliosides GM3, GM2, and GM1. We propose that aberrant fatty acid alpha-hydroxylation is a novel and sometimes quantitatively significant characteristic of human tumor ganglioside metabolism.  相似文献   

5.
N-Glycolylneuraminic acid containing GM1, GM1(NeuGc), was prepared by semisynthetic procedure. The procedure makes use of GM1 ganglioside deacetylated at the level of sialic acid residue (deAc-GM1) and of 1,3-dioxalan-2,4-dione. DeAc-GM1 is prepared from GM1 by alkaline hydrolysis in the presence of tetramethylammonium hydroxide and the glycolylating compound by reaction of glycolic acid with phosgene in dioxane, followed by cyclization under vacuum. Mass spectrometric and nuclear magnetic resonance spectroscopy analyses clearly indicated the presence, in the neosynthesized ganglioside of a glycolic group in the sialic acid residue. Laser-light scattering measurements show that GM1(NeuGc) aggregates in aqueous media being present in solution as micelles with a molecular weight of 576,000 and a hydrodynamic radius of 62.4 A as determined at 25 degrees C. GM1(NeuGc) promotes neurite outgrowth in N-2a cells to a similar degree as GM1(NeuAc), but shows different behaviour under treatment with sialidase from Arthrobacter ureafaciens.  相似文献   

6.
A new procedure was used to synthesize a derivative of ganglioside GM1 containing a photoreactive nitrophenyl azide group at the end of the fatty acyl moiety, using deAc-deAcyl-GM1 obtained by deacetylation of the sialic acid and deacylation of the ceramide portion of GM1. This deAc-deAcyl-GM1 was first acylated at the long chain base amino group with 12-aminododecanoic acid, which has the amino group protected by a fluorenyl residue, and tritium labeled at the sialic acid amino group with [3H]acetic anhydride of very high specific radioactivity. The fluorenyl group removed by ammonia treatment was substituted by a nitrophenyl azide group. Cultured human fibroblasts were exposed to mixtures of radioactive photolabeled GM1 and cold natural GM1 (1:10 by mol) for different times and then illuminated and the radioactive protein patterns studied by SDS-PAGE. After 2h of exposure, the photolabeled GM1 was stably associated to the cells and underwent almost no metabolic processing, behaving exactly as the underivatized natural GM1. Under these conditions very few proteins became radioactive: one, of about 30 kDa, interacted with the ganglioside molecules inserted into the outer membrane layer; three, in the region of 46 kDa, interacted with the portion of associated ganglioside able to be released by trypsin treatment. Thus, it is evident that the ganglioside binding to fibroblasts and insertion into the outer layer of the plasma membrane involve few individual proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The role of the ceramide moiety of gangliosides, together with the deriving aggregative properties of ganglioside in solution, in the process of ganglioside-cell interactions was studied. The natural GM1(stearoyl) and the synthetic GM1(acetyl), containing the stearoyl and acetyl groups as the acyl moiety, respectively, were used in binding experiments to rat cerebellar granule cells. Regardless of the cell culture conditions, such as the presence of absence of fetal calf serum, the association of GM1(acetyl) to the cells was much greater than that of GM1(stearoyl). GM1(acetyl) was present in the incubation medium as monomers. After incubation, a large part of the total GM1(acetyl) associated to cells, 76-93% depending on the experimental conditions, was removed by washing with protein solutions. The remaining associated ganglioside was not removed by repeating washing with protein solutions or trypsin treatments and was considered as a component of the membrane. The cell association of GM1(stearoyl), present in solution as monomers as well as micelles, could be classified as serum-labile, trypsin-labile and trypsin-stable. The trypsin-stable form of association, corresponding to the molecules stably inserted into the membrane, was proportionally higher, the proportions varying with increasing incubation time and decreasing ganglioside concentration. This form of association was particularly high when incubation was performed in the presence of fetal calf serum. Incubation experiments performed with a mixture of GM1(stearoyl) and GM1(acetyl) in a molar ratio which allowed their presence in the medium as monomers as well as mixed micelles, led to a ganglioside association suggesting that besides the aggregative properties of the molecule other ganglioside properties are involved in the ganglioside-cell interaction process.  相似文献   

8.
M Masserini  P Palestini  E Freire 《Biochemistry》1989,28(12):5029-5034
The thermotropic behavior of dipalmitoylphosphatidylcholine large unilamellar vesicles containing gangliosides has been studied by high-sensitivity heating and cooling differential scanning calorimetry. These studies have been directed to identify and evaluate the influence of both the ganglioside lipidic portion and oligosaccharide moiety on the physical properties of phospholipid bilayers containing gangliosides. The influence of the ganglioside lipidic portion has been evaluated by studying the behavior of vesicles containing different GD1a molecular species carrying homogeneous lipid moieties (C20 or C18 sphingosine or sphinganine and stearic acid). The influence of the ganglioside saccharide portion was evaluated by investigating the thermotropic behavior of vesicles containing different gangliosides (GM1, Fuc-GM1, GD1a, GT1b) carrying the same homogeneous long-chain base moiety (C20 sphingosine and stearic acid). These studies, in conjunction with previous studies using homogeneous lipidic portion ganglioside GM1 and phosphatidylcholines of various chain lengths [Masserini, M., & Freire, E. (1986) Biochemistry 25, 1043-1049], indicate that, for a given oligosaccharide composition, gangliosides exhibit lateral phase separation in an extent dependent upon the length and unsaturation difference between the ganglioside long-chain base and phosphatidylcholine acyl chains. For a given ganglioside lipidic composition the extent of phase separation is dependent upon the number of sugar units present in the glycolipid. The addition of Ca2+ induces or enhances phase separation in a manner dependent on the long-chain base and oligosaccharide composition. Cooling differential scanning calorimetry experiments showed that the ganglioside property to form aggregates within the membrane is independent of the initial physical state of the bilayer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Fourier transform infrared (FTIR) attenuated total reflection (ATR) spectroscopy was used to elucidate the hydration behavior and molecular order of phospholipid/ganglioside bilayers. We examined dry and hydrated films of the gangliosides GM1, deacetyl-GM1, lyso-GM1, deacetyllyso-GM1, and GM3 and oriented mixed films of these gangliosides with 1,2-dimyristoyl-sn-glycero-3-phosphorylcholine (DMPC) using polarized light. Analysis of the amide I frequencies reveals that the amide groups are involved in intermolecular interactions via hydrogen bonds of varying strengths. The tilt angle of the acyl chains of the lipids in mixed films was determined as a function of ganglioside structure. Deacetylation of the sialic acid in the headgroup has a stronger influence on the tilt angle than the removal of the ganglioside fatty acid. The phase behavior was examined by FTIR ATR spectroscopy and by differential scanning calorimetry (DSC) measurements on lipid suspensions. At the same molar concentration, lyso-gangliosides have less effect on changes of transition temperature compared to the double-chain analogs. Distinct differences in the amide band shapes were observed between mixtures with lyso-gangliosides and normal double-chain gangliosides. Determined from the dicroic ratio RATR, the orientation of the COO- group in all DMPC/ganglioside mixtures was found to be relatively fixed with respect to the membrane normal. In 4:1 mixtures of DMPC with GM1 and deacetyl-GM1, the binding of Ca2+ leads to a slight decrease in chain tilt in the gel phase, probably caused by a dehydration of the membrane-water interface. In mixtures of DMPC with GM3 and deacetyl-lyso-GM1, a slight increase in chain tilt is observed. The chain tilt in DMPC/lyso-GM1 mixtures is unchanged. Analysis of the COO- band reveals that Ca2+ does not bind to the carboxylate group of the sialic acid of GM1 and deacetyl-GM1, the mixtures in which a decrease in chain tilt was observed. Binding to the sialic acid was only observed for mixtures of DMPC with GM3, lyso-GM1, and deacetyl-lyso-GM1. Ca2+ obviously accumulates at the bilayer-water interface and leads to partial dehydration of the headgroup region in the gel as well as in the liquid-crystalline phase. This can be concluded from the changes in the amide I band shapes. With the exception of DMPC/deacetyl-GM1, the effects on the ester C==O bands are small. The addition of Ca2+ has minor effects on the phase behavior, with the exception of the DMPC/GM1 mixture.  相似文献   

10.
It was previously shown that sphingomyelin and gangliosides can be biosynthesized starting from sphingosine or sphingosine-containing fragments which originated in the course of GM1 ganglioside catabolism. In the present paper we investigated which fragments were specifically re-used for sphingomyelin and ganglioside biosynthesis in rat liver. At 30 h after intravenous injection of GM1 labelled at the level of the fatty acid ([stearoyl-14C]GM1) or of the sphingosine ([Sph-3H]) moiety, it was observed that radioactive sphingomyelin was formed almost exclusively after the sphingosine-labelled-GM1 administration. This permitted the recognition of sphingosine as the metabolite re-used for sphingomyelin biosynthesis. Conversely, gangliosides more complex than GM1 were similarly radiolabelled after the two treatments, thus ruling out sphingosine re-utilization for ganglioside biosynthesis. For the identification of the lipid fragment re-used for ganglioside biosynthesis, we administered to rats neutral glycosphingolipids (galactosylceramide, glucosylceramide and lactosylceramide) each radiolabelled in the sphingosine moiety or in the terminal sugar residue. Thereafter we compared the formation of radiolabelled gangliosides in the liver with respect to the species administered and the label location. After galactosylceramide was injected, no radiolabelled gangliosides were formed. After the administration of differently labelled glucosylceramide, radiolabelled gangliosides were formed, regardless of the position of the label. After lactosylceramide administration, the ganglioside fraction became more radioactive when the long-chain-base-labelled precursors were used. These results suggest that glucosylceramide, derived from glycosphingolipid and ganglioside catabolism, is recycled for ganglioside biosynthesis.  相似文献   

11.
The influence of ceramide composition on the rate of GM1 association to HeLa cells has been investigated by incubating the cells in the presence of either native ganglioside or molecular species carrying highly homogeneous long chain base moieties, fractionated from native GM1. The GM1 ganglioside species carrying the unsaturated C18 long chain base moiety proved to have the fastest rate of association, whereas the saturated species carrying 20 carbon atoms had the slowest rate. After having increased the GM1 cell content (65-fold) by incubation with the various ganglioside species, the cells were incubated with cholera toxin and the time course of cyclic AMP accumulation was monitored. Remarkable differences among cells enriched with the various molecular species were found in the duration of the lag time preceding the accumulation of cyclic AMP, the shortest being displayed by the unsaturated C18 species. Moreover, the amount of cyclic AMP accumulated after a given time of incubation with cholera toxin was significantly higher when the C18:1-GM1 species was present than with native GM1. Fluorescence anisotropy experiments, carried out using the probe 1,3-diphenylhexatriene, show that the GM1 ganglioside ceramide moiety was also modifying the cell membrane fluidity of the host.  相似文献   

12.
Synthesis of lysogangliosides   总被引:6,自引:0,他引:6  
The synthesis of gangliosides GM3, GM2, GM1, and GD1a solely lacking the fatty acid moiety, and thus called lysogangliosides in analogy to lysophospholipids, is described. Since a selective elimination of the fatty acid residue has not been achieved as yet, the gangliosides were first subjected to alkaline hydrolysis. By this procedure the fatty acyl as well as the acetyl groups of the sialic acid residue(s) were completely removed. The acetamido group of the N-acetylgalactosamine moiety of the gangliosides GM2, GM1, and GD1a was very little (congruent to 10%) hydrolyzed. In a two-phase system composed of water and ether, the selective protection of the sphingoid amino group was accomplished with a hydrophobic protective group (9-fluorenylmethoxycarbonyl). Lysogangliosides were obtained after re-N-acetylation of the sialooligosaccharide amino group(s) followed by removal of the protecting group. The overall yield was about 30%. The structures of the lysogangliosides were confirmed by chemical analysis as well as negative ion FAB mass spectrometry and 1H NMR spectroscopy. By simple re-N-acylation of lysogangliosides with any labeled fatty acid, labeled gangliosides are now obtainable that are identical with their parent gangliosides except for their labeled fatty acid residue. This has been demonstrated by the synthesis of GM1 with a [1-13C]palmitic acid moiety in its ceramide portion. If desired, double-labeled gangliosides may be obtained by use of labeled acetic anhydride in the synthesis of the lysogangliosides.  相似文献   

13.
A semi-preparative, analytical high performance liquid chromatographic (HPLC) procedure is described for the isolation of molecular species of GM1 and GD1a gangliosides containing a single long chain base, C18 or C20 sphingosine, C18 or C20 sphinganine, each in its natural erythro or unnatural threo form. The threo forms were obtained from 2,3-dichloro-5,6-dicyanobenzoquinone/NaBH4 -treated gangliosides. The ganglioside molecular species separated by HPLC were analyzed for carbohydrate, fatty acid, and long chain base composition. In particular, long chain bases were submitted to gas-liquid chromatographic-mass spectrometric analyses as their trimethylsilyl (TMS) or N-acetyl-TMS derivatives, and chain length, presence or absence of C4-C5 double bond, and C-3 steric configuration were ascertained. The final preparations of individual molecular species of GM1 and GD1a gangliosides were more than 99% homogeneous in their saccharide moiety, contained a single long chain base (homogeneity higher than 99%), and had a fatty acid composition primarily of stearic acid (92 to 97%). All the individual molecular species of GM1 and GD1a gangliosides were also prepared in radioactive form by selective tritiation at C-3 of the long chain base. Their specific radioactivity ranged from 1.3 to 1.45 Ci/mmol. The availability of these molecular species of gangliosides is expected to facilitate studies aimed at ascertaining the role played by the hydrophobic portion in the functional behavior of gangliosides.  相似文献   

14.
The aggregative properties of GM1 ganglioside containing an acetyl group as acyl moiety [GM1(acetyl)] in aqueous solution have been studied by static and dynamic light scattering measurements and surface tension experiments. GM1 (acetyl) spontaneously aggregates as small micelles showing a hydrodynamic radius and molecular weight of 34 A and 102 kDa, respectively, down to a concentration of 2.0 x 10(-5) M.  相似文献   

15.
Previous syntheses of ganglioside GM3 (NeuAc alpha3Gal beta4Glc beta1Cer) are reviewed, and both chemoenzymatic and chemical total synthetic approaches were investigated. In a chemoenzymatic approach, (2S,3R,4E)-5'-acetyl-alpha-neuraminyl-(2' --> 3')-beta-galactopyranosyl-(1' --> 4')-beta-glucopyranosyl-(1' <--> 1)-2-azido-4-octadecene-1,3-diol (azidoGM3) was readily prepared utilizing recombinant beta-Gal-(1' --> 3'/4')-GlcNAc alpha-(2' --> 3')-sialyltransferase enzyme, and was evaluated as a synthetic intermediate to ganglioside GM3. The chemical total synthesis of ganglioside GM3 was performed on one of the largest scales yet reported. The highlights of this synthesis include minimizing the steps necessary to prepare the lactosyl acceptor as a useful anomeric mixture, which was present in excess for the highly regioselective and fairly stereoselective sialylation with a known neuraminyl donor to give the protected GM3 trisaccharide. The synthetic methodology maximized convergence by a subsequent glycosidic coupling of the well-characterized GM3 trisaccharide trichloroacetimidate derivative with protected ceramide. The ganglioside GM3 was nearly homogeneous as the two glycosidic couplings utilized preparative HLPC purifications, and variations in the sphingosine base and fatty acyl group were under 0.1 and 0.2%, respectively.  相似文献   

16.
《FEBS letters》1994,350(2-3):219-222
The exposure of GM1 molecular species present in the native ganglioside, carrying C18:1 or C20:1 long-chain bases (LCB), to Dactylium dendroides galactose oxidase was studied. When native GM1 (49.3% C18:1 and 50.7% C20:1 LCB, respectively), was inserted in dipalmitoylphosphatidylcholine vesicles and partially oxidized (10%), the proportion of C18:1 and C20:1 species in the oxidized GM1 was 59.6% and 40.4%, respectively, suggesting a preferential action of the enzyme on the shorter species. The Vmax of the enzyme was higher on C18:1 GM1 than on C20:1 GM1. The molecular species were affected without any preference after partial (10%) oxidation of GM1 incorporated in egg phosphatidylcholine vesicles or in micellar form. These data indicate that the exposure of the terminal galactose moiety of GM1 ganglioside to galactose oxidase is affected by the ganglioside ceramide composition as well as the phospholipid environment, that presumably determine the distribution (molecular dispersion, segregation) of the ganglioside within the membrane.  相似文献   

17.
Interactions among four natural neutral sphingolipids (ceramide, glucosyl-ceramide, lactosyl-ceramide and asialo-GM1) and six gangliosides (GM3, GM2, GM1, GD3, GD1a and GT1b) were studied in binary Langmuir monolayers at the air-buffer interface in terms of their molecular packing, compressibility, dipole potential and mixing behavior. The changes of surface organization can be grouped into three sets: (a) binary films of neutral GSLs, and of the latter with ceramide, exhibit thermodynamically unfavorable mixing with mean molecular area expansions and dipole moment hyperpolarization; (b) mixed monolayers of ceramide, or of GlcCer, and gangliosides occur with thermodynamically favorable interactions leading to mean molecular area condensation and depolarisation; (c) binary mixtures of LacCer or Gg4Cer with gangliosides, and all ganglioside species among them, revealed molecular immiscibility characterized by additive mean molecular area and dipole potential, with composition-independent constant collapse pressure. These results disclose basic tendencies of GSLs to molecularly mix or demix, leading to their surface segregation, which may underlay vectorial separation of their specific biosynthetic pathways.  相似文献   

18.
A simple procedure is described for preparing lyso-GM1, a GM1 derivative that lacks the fatty acid moiety, starting from GM1 ganglioside using a one-pot reaction. Ganglioside deacylation was carried out in KOH/propan-1-ol in the absence of oxygen. The yield of lyso-GM1 under optimal conditions (6 h, 90 degrees C, 0.2 N KOH, 1 mM GM1) was 54%. The chemical structure of lyso-GM1 was determined by 1H-NMR and FAB-MS analyses, thus proving that the acetamide groups of galactosamine and sialic acid units were not affected during the deacylation reaction.  相似文献   

19.
The gangliosides of carp intestinal mucosa were isolated and analysed by thin-layer chromatography (TLC), TLC immunostaining test, and TLC/secondary ion mass spectrometry (TLC/SIMS). Four species of gangliosides, designated as G-1, G-2, G-3 and G-4, were separated on TLC. The TLC/SIMS analysis of the G-1 ganglioside of carp intestinal mucosa revealed a series of [M-H](-)ions from m/z 1061 to m/z 1131 representing the molecular mass range of GM4-like ganglioside with NeuAc. G-2, G-3 and G-4 gangliosides were analysed by the TLC immunostaining test. G-2 ganglioside was recognised by the monoclonal antibody specific for ganglioside GM1 (AGM-1 monoclonal antibody). However, G-3 ganglioside migrating on TLC between GM3 and GM1 ganglioside was not recognised by anti-GM3 monoclonal antibody and by AGM-1 monoclonal antibody. Furthermore, G-4 ganglioside with a similar TLC mobility as GD1a ganglioside did not show the reactivity to the anti-GD1a monoclonal antibody. In addition using the AGM-1 monoclonal antibody, the expression of GM1 ganglioside in the carp intestinal tissue was studied. GM1 ganglioside was detected on the epithelial cell surface of carp intestinal mucosa.  相似文献   

20.
Several derivatives of ganglioside GM2 were synthesized for mapping of the binding epitope of a monoclonal antibody raised against this ganglioside. The GM2 ganglioside was modified in both the hydrophobic and the hydrophobilic part of the molecule. The synthesized derivatives were characterized with fast atom bombardment mass spectrometry (FAB-MS). Affinity of the monoclonal antibody for the GM2 derivatives was determined by enzyme-linked immunosorbent assay (ELISA) on microtitre plates or by TLC immunostaining. Modifying the GM2 sialic acid by deacetylation or blocking of the carboxyl moiety abolished the binding to the monoclonal antibody while the cleaving of the glycol group on the sialic acid tail led to a 70% reduced binding affinity. Removal of the fatty acid (lyso-GM2) eliminated the binding to the antibody. GM2 derivatives with fatty acid moieties of 8 carbon atoms or less showed almost no reactivity. GM2 with saturated fatty acids 16:0, 18:0 and 20:0 had binding affinity similar to natural GM2, while the 24:0 fatty acid had only half the binding affinity. The results demonstrate the importance of ganglioside fatty acid composition with regard to ligand binding between the monoclonal antibody and its specific ganglioside antigen. Thus, caution must be shown in the application of immunaffinity methods with monoclonal antibodies for the quantitative determination of glycosphingolipids from different tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号