首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Hernick M  Fierke CA 《Biochemistry》2006,45(49):14573-14581
The metal-dependent enzyme UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) catalyzes the conversion of UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine to UDP-3-O-(R-3-hydroxymyristoyl)glucosamine and acetate. This is the committed step in the biosynthesis of lipid A, and for this reason, LpxC is a target for the development of antibiotics in the treatment of Gram-negative bacterial infections. Here we examine the importance of bound metal ion(s) and fatty acids for molecular recognition of ligands by LpxC. The KDproduct value increases >1000-fold with the loss of the hydroxymyristoyl moiety, indicating that the enhanced catalytic efficiency of substrates containing this acyl group is mainly due to increased binding affinity. New fluorescent binding assays for measuring the affinity of LpxC for fatty acids indicate that myristate binds to LpxC 10-fold less tightly than palmitate and that fatty acid affinity is only modestly dependent on pH. Furthermore, LpxC homologues from different species have similar affinities for fatty acids despite alterations in protein sequence. In contrast, the affinity of LpxC for both product and fatty acids is significantly influenced (< or =40-fold) by changes in the number and identity of metal ions bound to the LpxC active site. Therefore, interactions with these metal ions are critical for molecular recognition of ligands by LpxC and may mimic similar contacts with active site inhibitors. These data indicate that the potency of LpxC inhibitors in vitro can be altered by assay conditions used in screening and/or development of LpxC inhibitors and that the metal ion status of LpxC in vivo will likely influence the effectiveness of LpxC inhibitors as antibiotics.  相似文献   

2.
The cell wall in Gram-negative bacteria is surrounded by an outer membrane comprised of charged lipopolysaccharide (LPS) molecules that prevent entry of hydrophobic agents into the cell and protect the bacterium from many antibiotics. The hydrophobic anchor of LPS is lipid A, the biosynthesis of which is essential for bacterial growth and viability. UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) is an essential zinc-dependant enzyme that catalyzes the conversion of UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine to UDP-3-O-(R-3-hydroxymyristoyl)glucosamine and acetate in the biosynthesis of lipid A, and for this reason, LpxC is an attractive target for antibacterial drug discovery. Here we disclose a 1.9 A resolution crystal structure of LpxC from Pseudomonas aeruginosa (paLpxC) in a complex with the potent BB-78485 inhibitor. To our knowledge, this is the first crystal structure of LpxC with a small-molecule inhibitor that shows antibacterial activity against a wide range of Gram-negative pathogens. Accordingly, this structure can provide important information for lead optimization and rational design of the effective small-molecule LpxC inhibitors for successful treatment of Gram-negative infections.  相似文献   

3.
UDP-3-O-((R)-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) is a zinc-dependent enzyme that catalyzes the deacetylation of UDP-3-O-((R)-3-hydroxymyristoyl)-N-acetylglucosamine to form UDP-3-O-(R-hydroxymyristoyl)glucosamine and acetate. The structural similarity of the active site of LpxC to metalloproteases led to the proposal that LpxC functions via a metalloprotease-like mechanism. The pH dependence of k(cat)/Km catalyzed by Escherichia coli and Aquifex aeolicus LpxC displayed a bell-shaped curve (EcLpxC yields apparent pKa values of 6.4+/-0.1 and 9.1+/-0.1), demonstrating that at least two ionizations are important for maximal activity. Metal substitution and mutagenesis experiments suggest that the basic limb of the pH profile is because of deprotonation of a zinc-coordinated group such as the zinc-water molecule, whereas the acidic limb of the pH profile is caused by protonation of either Glu78 or His265. Furthermore, the magnitude of the activity decreases and synergy observed for the active site mutants suggest that Glu78 and His265 act as a general acid-base catalyst pair. Crystal structures of LpxC complexed with cacodylate or palmitate demonstrate that both Glu78 and His265 hydrogen-bond with the same oxygen atom of the tetrahedral intermediate and the product carboxylate. These structural features suggest that LpxC catalyzes deacetylation by using Glu78 and His265 as a general acid-base pair and the zinc-bound water as a nucleophile.  相似文献   

4.
UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) catalyzes the second step in the biosynthesis of lipid A, a unique amphiphilic molecule found in the outer membranes of virtually all Gram-negative bacteria. Since lipid A biosynthesis is required for bacterial growth, inhibitors of LpxC have potential utility as antibiotics. The enzymes of lipid A biosynthesis, including LpxC, are encoded by single copy genes in all sequenced Gram-negative genomes. We have now cloned, overexpressed, and purified LpxC from the hyperthermophile Aquifex aeolicus. This heat-stable LpxC variant (the most divergent of all known LpxCs) displays 32% identity and 51% similarity over 277 amino acid residues out of the 305 in Escherichia coli LpxC. Although A. aeolicus LpxC deacetylates the substrate UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine at a rate comparable with E. coli LpxC, a phenyloxazoline-based hydroxamate that inhibits E. coli LpxC with K(i) of approximately 50 nM (Onishi, H. R., Pelak, B. A., Gerckens, L. S., Silver, L. L., Kahan, F. M., Chen, M. H., Patchett, A. A., Galloway, S. M., Hyland, S. A., Anderson, M. S., and Raetz, C. R. H. (1996) Science 274, 980-982) does not inhibit A. aeolicus LpxC. To determine whether or not broad-spectrum deacetylase inhibitors can be found, we have designed a new class of hydroxamate-containing inhibitors of LpxC, starting with the structure of the physiological substrate. Several of these compounds inhibit both E. coli and A. aeolicus LpxC at similar concentrations. We have also identified a phosphinate-containing substrate analog that inhibits both E. coli and A. aeolicus LpxC, suggesting that the LpxC reaction proceeds by a mechanism similar to that described for other zinc metalloamidases, like carboxypeptidase A and thermolysin. The differences between the phenyloxazoline and the substrate-based LpxC inhibitors might be exploited for developing novel antibiotics targeted either against some or all Gram-negative strains. We suggest that LpxC inhibitors with antibacterial activity be termed "deacetylins."  相似文献   

5.
Hernick M  Fierke CA 《Biochemistry》2006,45(51):15240-15248
UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) is a metal-dependent deacetylase that catalyzes the hydrolysis of UDP-3-O-myristoyl-N-acetyl-glucosamine to form UDP-3-O-myristoyl-glucosamine and acetate. This is the committed step in the biosynthesis of lipid A, and therefore, LpxC is a target for the development of antimicrobial agents in the treatment of Gram-negative infections. To facilitate the development of potent and specific inhibitors of LpxC, the molecular determinants of binding and specificity and the catalytic mechanism for this enzyme have been probed. The functions of active site residues have been classified on the basis of changes in steady-state turnover (kcat, KM, and kcat/KM) and product binding affinity (KDProduct). We have identified side chains that enhance product affinity and reactivity (F192, K239, D246, and H265), destabilize product affinity (E78 and D197), and preferentially enhance catalytic efficiency (H19, T19, K143, and N162). In addition, the affinity of LpxC for myrUDP-GlcNH2 is dependent on two ionizations, one deprotonation and one protonation, with apparent pKa values of 6.5 +/- 0.1 and 7.4 +/- 0.1, respectively. The UDP moiety of the product contributes significantly to recognition by LpxC, suggesting that this region can be targeted in drug development. These data provide a map of the active site features essential for catalysis and molecular recognition by LpxC that can be used for developing more potent LpxC inhibitors.  相似文献   

6.
The deacetylation of UDP-3-O-[(R)-3-hydroxymyristoyl]-N-acetylglucosamine (UDP-3-O-acyl-GlcNAc) by LpxC is the committed reaction of lipid A biosynthesis. CHIR-090, a novel N-aroyl-l-threonine hydroxamic acid, is a potent, slow, tight-binding inhibitor of the LpxC deacetylase from the hyperthermophile Aquifex aeolicus, and it has excellent antibiotic activity against Pseudomonas aeruginosa and Escherichia coli, as judged by disk diffusion assays. We now report that CHIR-090 is also a two-step slow, tight-binding inhibitor of E. coli LpxC with Ki = 4.0 nM, Ki* = 0.5 nM, k5 = 1.9 min-1, and k6 = 0.18 min-1. CHIR-090 at low nanomolar levels inhibits LpxC orthologues from diverse Gram-negative pathogens, including P. aeruginosa, Neisseria meningitidis, and Helicobacter pylori. In contrast, CHIR-090 is a relatively weak competitive and conventional inhibitor (lacking slow, tight-binding kinetics) of LpxC from Rhizobium leguminosarum (Ki = 340 nM), a Gram-negative plant endosymbiont that is resistant to this compound. The KM (4.8 microM) and the kcat (1.7 s-1) of R. leguminosarum LpxC with UDP-3-O-[(R)-3-hydroxymyristoyl]-N-acetylglucosamine as the substrate are similar to values reported for E. coli LpxC. R. leguminosarum LpxC therefore provides a useful control for validating LpxC as the primary target of CHIR-090 in vivo. An E. coli construct in which the chromosomal lpxC gene is replaced by R. leguminosarum lpxC is resistant to CHIR-090 up to 100 microg/mL, or 400 times above the minimal inhibitory concentration for wild-type E. coli. Given its relatively broad spectrum and potency against diverse Gram-negative pathogens, CHIR-090 is an excellent lead for the further development of new antibiotics targeting the lipid A pathway.  相似文献   

7.
UDP–3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) is one of the key enzymes of bacterial lipid A biosynthesis, catalyzing the removal of the N-acetyl group of UDP–3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine. The lpxC gene is essential in Gram-negative bacteria but absent from mammalian genomes, making it an attractive target for antibacterial drug discovery. Current assay methods for LpxC are not suitable for high throughput screening, since they require multiple product separation steps and the use of radioactively labeled material that is difficult to prepare. A homogenous fluorescence-based assay was developed that uses UDP–3-O-(N-hexyl-propionamide)-N-acetylglucosamine as a surrogate substrate. This surrogate can be prepared from commercially available UDP–GlcNAc by enzymatic conversion to UDP–MurNAc, which is then chemically coupled to n-hexylamine. Following the LpxC reaction, the free amine of the deacetylation product can be derivatized by fluorescamine, thus generating a fluorescent signal. This surrogate substrate has a Km of 367 μM and kcat of 0.36 s−1, compared to 2 μM and 1.5 s−1 for the natural substrate. Since no separation is needed, the assay is easily adaptable to high throughput screening. IC50s of LpxC inhibitors determined using this assay method is similar to those measured by traditional method with the natural substrate.  相似文献   

8.
Jackman JE  Raetz CR  Fierke CA 《Biochemistry》1999,38(6):1902-1911
The enzyme UDP-3-O-(R-3-hydroxymyristoyl)-GlcNAc deacetylase (LpxC) catalyzes the committed step in the biosynthesis of lipid A and is therefore a potential antibiotic target. Inhibition of this enzyme by hydroxamate compounds [Onishi, H. R.; Pelak, B. A.; Gerckens, L. S.; Silver, L. L.; Kahan, F. M.; Chen, M. H.; Patchett, A. A.; Stachula, S. S.; Anderson, M. S.; Raetz, C. R. H. (1996) Science 274, 980-982] suggested the presence of a metal ion cofactor. We have investigated the substrate specificity and metal dependence of the deacetylase using spectroscopic and kinetic analyses. Comparison of the steady-state kinetic parameters for the physiological substrate UDP-3-O-(R-3-hydroxymyristoyl)-GlcNAc and an alternative substrate, UDP-GlcNAc, demonstrates that the ester-linked R-3-hydroxymyristoyl chain increases kcat/KM (5 x 10(6))-fold. Metal-chelating reagents, such as dipicolinic acid (DPA) and ethylenediaminetetraacetic acid, completely inhibit LpxC activity, implicating an essential metal ion. Plasma emission spectroscopy and colorimetric assays directly demonstrate that purified LpxC contains bound Zn2+. This Zn2+ can be removed by incubation with DPA, causing a decrease in the LpxC activity that can be restored by subsequent addition of Zn2+. However, high concentrations of Zn2+ also inhibit LpxC. Addition of Co2+, Ni2+, or Mn2+ to apo-LpxC also activates the enzyme to varying degrees while no additional activity is observed upon the addition of Cd2+, Ca2+, Mg2+, or Cu2+. This is consistent with the profile of metals that substitute for catalytic zinc ions in metalloproteinases. Co2+ ions stimulate LpxC activity maximally at a stoichiometry of 1:1. These data demonstrate that E. coli LpxC is a metalloenzyme that requires bound Zn2+ for optimal activity.  相似文献   

9.
A class of metalloenzymes, known as zinc hydrolases, catalyze a variety of hydrolytic reactions on many different substrates in important metabolic pathways. Deacetylation is an example of one of the types of reactions catalyzed by zinc hydrolases. The biological importance of the reactions catalyzed by many zinc hydrolases, including zinc-dependent deacetylases, has made these enzymes pharmaceutical targets for the development of inhibitors and, therefore, a clear understanding of the mechanisms of these enzymes is warranted. This review focuses on the current understanding of the mechanisms catalyzed by various zinc-dependent deacetylases and, in particular, the reaction mechanism catalyzed by the enzyme UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase, also known as LpxC. In general, the zinc-water functions as the nucleophile with zinc stabilization of the tetrahedral intermediate and general-acid-base catalysis (GABC) provided by enzyme residue(s). Two types of GABC mechanisms have been identified, one that uses a single bifunctional GABC and another that uses a GABC pair.  相似文献   

10.
The first committed step of lipid A biosynthesis is catalyzed by UDP-(3-O-((R)-3-hydroxymyristoyl))-N-acetylglucosamine deacetylase, a metal-dependent deacetylase also known as LpxC. Because lipid A is essential for bacterial viability, the inhibition of LpxC is an appealing therapeutic strategy for the treatment of Gram-negative bacterial infections. Here we report the 1.79 ? resolution X-ray crystal structure of LpxC from Yersinia enterocolitica (YeLpxC) complexed with the potent hydroxamate inhibitor CHIR-090. This enzyme is a nearly identical orthologue of LpxC from Yersinia pestis (99.7% sequence identity), the pathogen that causes bubonic plague. Similar to the inhibition of LpxC from Escherichia coli, CHIR-090 inhibits YeLpxC via a two-step slow, tight-binding mechanism with an apparent K(i) of 0.54 ± 0.14 nM followed by conversion of the E·I to E·I* species with a rate constant of 0.11 ± 0.01 min(-1). The structure of the LpxC complex with CHIR-090 shows that the inhibitor hydroxamate group chelates the active site zinc ion, and the "tail" of the inhibitor binds in the hydrophobic tunnel in the active site. This hydrophobic tunnel is framed by a βαβ subdomain that exhibits significant conformational flexibility as it accommodates inhibitor binding. CHIR-090 displays a 27 mm zone of inhibition against Y. enterocolitica in a Kirby-Bauer antibiotic assay, which is comparable to its reported activity against other Gram-negative species including E. coli and Pseudomonas aeruginosa. This study demonstrates that the inhibition of LpxC should be explored as a potential therapeutic and/or prophylatic response to infection by weaponized Yersinia species.  相似文献   

11.
Preliminary studies from our laboratory have suggested the existence of a novel set of fatty acyltransferases in extracts of Escherichia coli that attach two R-3-hydroxymyristoyl moieties to UDP-GlcNAc (Anderson, M.S., Bulawa, C.E., and Raetz, C.R.H. (1985) J. Biol. Chem. 260, 15536-15541). The resulting "glucosamine-derived" phospholipids appear to be crucial precursors for the biosynthesis of the lipid A component of lipopolysaccharide. We now describe an assay and a 1000-fold purification of the first enzyme in this pathway, which catalyzes the reaction: UDP-GlcNAc + R-3-hydroxymyristoyl-acyl carrier protein----UDP-3-O-(R-3-hydroxymyristoyl)-GlcNAc + acyl carrier protein. The covalent structure of the monoacylated UDP-GlcNAc product was established by fast atom bombardment mass spectrometry and 1H-NMR spectroscopy. The UDP-GlcNAc acyltransferase has a strict requirement for R-3-hydroxymyristoyl-acyl carrier protein, since R-3-hydroxymyristoyl coenzyme A and myristoyl-acyl carrier protein are not substrates. Of various NDP-GlcNAc preparations examined, only the uridine and thymidine derivatives were utilized to a significant extent. When the product of the reaction (UDP-3-O-(R-3-hydroxymyristoyl)-GlcNAc) was isolated and reincubated with crude E. coli extracts, it was rapidly converted to more hydrophobic products in the presence of R-3-hydroxymyristoyl-acyl carrier protein. We propose that the addition of an R-3-hydroxymyristoyl residue to the 3 position of the GlcNAc moiety of UDP-GlcNAc is the first committed step in lipid A biosynthesis and that UDP-GlcNAc is situated at a biosynthetic branchpoint in E. coli leading either to lipid A or to peptidoglycan.  相似文献   

12.
The first committed step in lipid A biosynthesis is catalyzed by uridine diphosphate-(3-O-(R-3-hydroxymyristoyl))-N-acetylglucosamine deacetylase (LpxC), a zinc-dependent deacetylase, and inhibitors of LpxC may be useful in the development of antibacterial agents targeting a broad spectrum of Gram-negative bacteria. Here, we report the design of amphipathic benzoic acid derivatives that bind in the hydrophobic tunnel in the active site of LpxC. The hydrophobic tunnel accounts for the specificity of LpxC toward substrates and substrate analogues bearing a 3-O-myristoyl substituent. Simple benzoic acid derivatives bearing an aliphatic 'tail' bind in the hydrophobic tunnel with micromolar affinity despite the lack of a glucosamine ring like that of the substrate. However, although these benzoic acid derivatives each contain a negatively charged carboxylate 'warhead' intended to coordinate to the active site zinc ion, the 2.25A resolution X-ray crystal structure of LpxC complexed with 3-(heptyloxy)benzoate reveals 'backward' binding in the hydrophobic tunnel, such that the benzoate moiety does not coordinate to zinc. Instead, it binds at the outer end of the hydrophobic tunnel. Interestingly, these ligands bind with affinities comparable to those measured for more complicated substrate analogue inhibitors containing glucosamine ring analogues and hydroxamate 'warheads' that coordinate to the active site zinc ion. We conclude that the intermolecular interactions in the hydrophobic tunnel dominate enzyme affinity in this series of benzoic acid derivatives.  相似文献   

13.
Bartling CM  Raetz CR 《Biochemistry》2008,47(19):5290-5302
LpxD catalyzes the third step of lipid A biosynthesis, the (R)-3-hydroxymyristoyl-acyl carrier protein ( R-3-OHC14-ACP)-dependent N-acylation of UDP-3-O-[(R)-3-hydroxymyristoyl]-alpha-D-glucosamine [UDP-3-O-(R-3-OHC14)-GlcN]. We have now overexpressed and purified Escherichia coli LpxD to homogeneity. Steady-state kinetics suggest a compulsory ordered mechanism in which R-3-OHC14-ACP binds prior to UDP-3-O-(R-3-OHC14)-GlcN. The product, UDP-2,3-diacylglucosamine, dissociates prior to ACP; the latter is a competitive inhibitor against R-3-OHC14-ACP and a noncompetitive inhibitor against UDP-3-O-(R-3-OHC14)-GlcN. UDP-2-N-[(R)-3-Hydroxymyristoyl]-alpha-D-glucosamine, obtained by mild base hydrolysis of UDP-2,3-diacylglucosamine, is a noncompetitive inhibitor against both substrates. Synthetic (R)-3-hydroxylauroyl-methylphosphopantetheine is an uncompetitive inhibitor against R-3-OHC14-ACP and a competitive inhibitor against UDP-3-O-(R-3-OHC14)-GlcN, but (R)-3-hydroxylauroyl-methylphosphopantetheine is also a very poor substrate. A compulsory ordered mechanism is consistent with the fact that R-3-OHC14-ACP has a high binding affinity for free LpxD whereas UDP-3-O-(R-3-OHC14)-GlcN does not. Divalent cations inhibit R-3-OHC14-ACP-dependent acylation but not (R)-3-hydroxylauroyl-methylphosphopantetheine-dependent acylation, indicating that the acidic recognition helix of R-3-OHC14-ACP contributes to binding. The F41A mutation increases the K(M) for UDP-3-O-(R-3-OHC14)-GlcN 30-fold, consistent with aromatic stacking of the corresponding F43 side chain against the uracil moiety of bound UDP-GlcNAc in the X-ray structure of Chlamydia trachomatis LpxD. Mutagenesis implicates E. coli H239 but excludes H276 as the catalytic base, and neither residue is likely to stabilize the oxyanion intermediate.  相似文献   

14.
The suppressor mutation, named sfhC21, that allows Escherichia coli ftsH null mutant cells to survive was found to be an allele of fabZ encoding R-3-hydroxyacyl-ACP dehydrase, involved in a key step of fatty acid biosynthesis, and appears to upregulate the dehydrase. The ftsH1(Ts) mutation increased the amount of lipopolysaccharide at 42 degrees C. This was accompanied by a dramatic increase in the amount of UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase [the IpxC (envA) gene product] involved in the committed step of lipid A biosynthesis. Pulse-chase experiments and in vitro assays with purified components showed that FtsH, the AAA-type membrane-bound metalloprotease, degrades the deacetylase. Genetic evidence also indicated that the FtsH protease activity for the deacetylase might be affected when acyl-ACP pools were altered. The biosynthesis of phospholipids and the lipid A moiety of lipopolysaccharide, both of which derive their fatty acyl chains from the same R-3-hydroxyacyl-ACP pool, is regulated by FtsH.  相似文献   

15.
The lipid A disaccharide of the Escherichia coli envelope is synthesized from the two fatty acylated glucosamine derivatives UDP-N2,O3-bis[(R)-3-hydroxytetradecanoyl]-alpha-D- glucosamine (UDP-2,3-diacyl-GlcN) and N2,O3-bis[(R)-3-hydroxytetradecanoyl]-alpha-D-glucosamine 1-phosphate (2,3-diacyl-GlcN-1-P) [Ray, B. L., Painter, G., & Raetz, C. R. H. (1984) J. Biol. Chem. 259, 4852-4859]. We have previously shown that UDP-2,3-diacyl-GlcN is generated in extracts of E. coli by fatty acylation of UDP-GlcNAc, giving UDP-3-O-[(R)-3-hydroxymyristoyl]-GlcNAc as the first intermediate, which is rapidly converted to UDP-2,3-diacyl-GlcN [Anderson, M. S., Bulawa, C. E., & Raetz, C. R. H. (1985) J. Biol. Chem. 260, 15536-15541; Anderson, M. S., & Raetz, C. R. H. (1987) J. Biol. Chem. 262, 5159-5169]. We now demonstrate a novel enzyme in the cytoplasmic fraction of E. coli, capable of deacetylating UDP-3-O-[(R)-3-hydroxymyristoyl]-GlcNAc to form UDP-3-O-[(R)-3-hydroxymyristoyl]glucosamine. The covalent structure of the previously undescribed UDP-3-O-[(R)-3-hydroxymyristoyl] glucosamine intermediate was established by 1H NMR spectroscopy and fast atom bombardment mass spectrometry. This material can be made to accumulate in E. coli extracts upon incubation of UDP-3-O-[(R)-3- hydroxymyristoyl]-GlcNAc in the absence of the fatty acyl donor [(R)-3-hydroxymyristoyl]-acyl carrier protein. However, addition of the isolated deacetylation product [UDP-3-O-[(R)-3-hydroxymyristoyl] glucosamine] back to membrane-free extracts of E. coli in the presence of [(R)-3-hydroxymyristoyl]-acyl carrier protein results in rapid conversion of this compound into the more hydrophobic products UDP-2,3-diacyl-GlcN, 2,3-diacyl-GlcN-1-P, and O-[2-amino-2-deoxy-N2,O3- bis[(R)-3-hydroxytetradecanoyl]-beta-D-glucopyranosyl]-(1----6)-2-amino- 2-deoxy-N2,O3-bis[(R)-3-hydroxytetradecanoyl]-alpha-D- glucopyranose 1-phosphate (tetra-acyldisaccharide-1-P), demonstrating its competency as a precursor. In vitro incubations using [acetyl-3H]UDP-3-O-[(R)-3-hydroxymyristoyl]-GlcNAc confirmed release of the acetyl moiety in this system as acetate, not as some other acetyl derivative. The deacetylation reaction was inhibited by 1 mM N-ethylmaleimide, while the subsequent N-acylation reaction was not. Our observations provide strong evidence that UDP-3-O-[(R)-3-hydroxymyristoyl]glucosamine is a true intermediate in the biosynthesis of UDP-2,3-diacyl-GlcN and lipid A.  相似文献   

16.
A series of carbohydroxamido-oxazolidine inhibitors of UDP-3-O-[R-3-hydroxymyristoyl]-GlcNAc deacetylase, the enzyme responsible for the second step in lipid A biosynthesis, was identified. The most potent analog L-161,240 showed an IC50 = 30 nM in the DEACET assay and displayed an MIC of 1-3 microg/mL against wild-type E. coli.  相似文献   

17.
UDP-N-acetylglucosamine (UDP-GlcNAc) acyltransferase (LpxA) catalyzes the reversible transfer of an R-3-hydroxyacyl chain from R-3-hydroxyacyl-acyl carrier protein to the glucosamine 3-OH of UDP-GlcNAc in the first step of lipid A biosynthesis. Lipid A is required for the growth and virulence of most Gram-negative bacteria, making its biosynthetic enzymes intriguing targets for the development of new antibacterial agents. LpxA is a member of a large family of left-handed beta-helical proteins, many of which are acyl- or acetyltransferases. We now demonstrate that histidine-, lysine-, and arginine-specific reagents effectively inhibit LpxA of Escherichia coli, whereas serine- and cysteine-specific reagents do not. Using this information in conjunction with multiple sequence alignments, we constructed site-directed alanine substitution mutations of conserved histidine, lysine, and arginine residues. Many of these mutant LpxA enzymes show severely decreased specific activities under standard assay conditions. The decrease in activity corresponds to decreased k(cat)/K(m,UDP-GlcNAc) values for all the mutants. With the exception of H125A, in which no activity is seen under any assay condition, the decrease in k(cat)/K(m,UDP-GlcNAc) mainly reflects an increased K(m,UDP-GlcNAc). His(125) of E. coli LpxA may therefore function as a catalytic residue, possibly as a general base. LpxA does not catalyze measurable UDP-3-O-(R-3-hydroxymyristoyl)-GlcNAc hydrolysis or UDP-GlcNAc/UDP-3-O-(R-3-hydroxymyristoyl)-GlcNAc exchange, arguing against a ping-pong mechanism with an acyl-enzyme intermediate.  相似文献   

18.
The first committed step of lipid A biosynthesis in Gram-negative bacteria is catalyzed by the zinc-dependent hydrolase LpxC that removes an acetate from the nitrogen at the 2' '-position of UDP-3-O-acyl-N-acetylglucosamine. Recent structural characterization by both NMR and X-ray crystallography provides many important details about the active site environment of LpxC from Aquifex aeolicus, a heat-stable orthologue that displays 32% sequence identity to LpxC from Escherichia coli. The detailed reaction mechanism and specific roles of active site residues for LpxC from A. aeolicus are further analyzed here. The pH dependencies of k(cat)/K(M) and k(cat) for the deacetylation of the substrate UDP-3-O-[(R)-3-hydroxymyristoyl]-GlcNAc are both bell-shaped. The ascending acidic limb (pK(1)) was fitted to 6.1 +/- 0.2 for k(cat) and 5.7 +/- 0.2 for k(cat)/K(M). The descending basic limb (pK(2)) was fitted to 8.0 +/- 0.2 for k(cat) and 8.4 +/- 0.2 for k(cat)/K(M). The pH dependence of the E73A mutant exhibits loss of the acidic limb, and the mutant retains only 0.15% activity versus the wild type. The pH dependencies of the other active site mutants H253A, K227A, H253A/K227A, and D234N remain bell-shaped, although their significantly lower activities (0.25%, 0.05%, 0.007%, and 0.57%, respectively) suggest that they contribute significantly to catalysis. Our cumulative data support a mechanism for LpxC wherein Glu73 serves as the general base for deprotonation and activation of the zinc-bound water.  相似文献   

19.
UDP-3-O-((R)-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) catalyzes the deacetylation of UDP-3-O-((R)-3-hydroxymyristoyl)-N-acetylglucosamine to form UDP-3-O-myristoylglucosamine and acetate in Gram-negative bacteria. This second, and committed, step in lipid A biosynthesis is a target for antibiotic development. LpxC was previously identified as a mononuclear Zn(II) metalloenzyme; however, LpxC is 6–8-fold more active with the oxygen-sensitive Fe(II) cofactor (Hernick, M., Gattis, S. G., Penner-Hahn, J. E., and Fierke, C. A. (2010) Biochemistry 49, 2246–2255). To analyze the native metal cofactor bound to LpxC, we developed a pulldown method to rapidly purify tagged LpxC under anaerobic conditions. The metal bound to LpxC purified from Escherichia coli grown in minimal medium is mainly Fe(II). However, the ratio of iron/zinc bound to LpxC varies with the metal content of the medium. Furthermore, the iron/zinc ratio bound to native LpxC, determined by activity assays, has a similar dependence on the growth conditions. LpxC has significantly higher affinity for Zn(II) compared with Fe(II) with KD values of 60 ± 20 pm and 110 ± 40 nm, respectively. However, in vivo concentrations of readily exchangeable iron are significantly higher than zinc, suggesting that Fe(II) is the thermodynamically favored metal cofactor for LpxC under cellular conditions. These data indicate that LpxC expressed in E. coli grown in standard medium predominantly exists as the Fe(II)-enzyme. However, the metal cofactor in LpxC can switch between iron and zinc in response to perturbations in available metal ions. This alteration may be important for regulating the LpxC activity upon changes in environmental conditions and may be a general mechanism of regulating the activity of metalloenzymes.  相似文献   

20.
UDP-3-O-(acyl)-N-acetylglucosamine deacetylase (LpxC) catalyzes the second step in the biosynthesis of lipid A in Gram-negative bacteria. Compounds targeting this enzyme are proposed to chelate the single, essential zinc ion bound to LpxC and have been demonstrated to stop the growth of Escherichia coli. A comparison of LpxC sequences from diverse bacteria identified 10 conserved His, Asp, and Glu residues that might play catalytic roles. Each amino acid was altered in both E. coli and Aquifex aeolicus LpxC and the catalytic activities of the variants were determined. Three His and one Asp residues (H79, H238, D246, and H265) are essential for catalysis based on the low activities (<0.1% of wild-type LpxC) of mutants with alanine substitutions at these positions. H79 and H238 likely coordinate zinc; the Zn(2+) content of the purified variant proteins is low and the specific activity is enhanced by the addition of Zn(2+). The third side chain to coordinate zinc is likely either H265 or D246 and a fourth ligand is likely a water molecule, as indicated by the hydroxamate inhibition, suggesting a His(3)H(2)O or His(2)AspH(2)O Zn(2+)-polyhedron in LpxC. The decreased zinc inhibition of LpxC mutants at E78 suggests that this side chain may coordinate a second, inhibitory Zn(2+) ion. Given the absence of any known Zn(2+) binding motifs, the active site of LpxC may have evolved differently than other well-studied zinc metalloamidases, a feature that should aid in the design of safe antibiotics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号