首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
Ectopic, or tertiary, lymphoid aggregates often form in chronically inflamed areas. Lymphatic vessels, as well as high endothelial venules, form within these lymphoid aggregates, but the mechanisms underlying their development are poorly understood. Overexpression of the chemokine CCL21 in the thyroid of transgenic mice leads to formation of lymphoid aggregates containing topologically segregated T and B lymphocytes, dendritic cells (DCs), and specialized vasculature, including Lyve-1(+)/Prox-1(+) lymphatic vessels. In this article, we show that adoptive transfer of mature CD4(+) T cells into animals expressing CCL21 in a RAG-deficient background promotes the influx of host NK cells and DCs into the thyroid and the formation of new lymphatic vessels within 10 d. This process is dependent on the expression of lymphotoxin ligands by host cells, but not by the transferred CD4(+) T cells. Ablation of host DCs, but not NK cells, reduces the formation of new lymphatic vessels in the thyroid. Taken together, these data suggest a critical role for CD11c(+) DCs in the induction of lymphangiogenesis in tertiary lymphoid structures.  相似文献   

2.
It has recently been suggested that C-C chemokines may play a role in the organ-specific homing of lymphocytes, but there is not enough in vivo evidence in intestinal mucosa. The aim of this study was to examine whether thymus-expressed chemokine (TECK)/CCL25 and its ligand CCR9 are involved in T-lymphocyte interaction with microvessels of murine intestinal mucosa. T lymphocytes from the small intestine were fluorescence labeled, and their adhesion to mucosal microvessels was observed by intravital microscopy. Lamina proprial lymphocytes (LPL) and intraepithelial lymphocytes (IEL) adhered to both the small intestine and colon, and desensitization of CCR9 with TECK/CCL25 or anti-TECK/CCL25 antibody significantly inhibited these adhesions only in small intestine. At both sites, TNF-alpha significantly increased LPL adhesion but not IEL adhesion. Desensitization of CCR9 or anti-TECK/CCL25 antibody also attenuated the TNF-alpha-induced LPL adhesion in the small intestine. Increased expression of TECK/CCL25 by TNF-alpha was observed in the lamina propria of small intestine. TECK/CCL25 may thus play an important role in the adherence of mucosal lymphocytes to the microvessels of the small intestine but not the colon under uninflamed as well as inflamed conditions.  相似文献   

3.
Recruitment of immune cells to tumors is a complex process crucial for both inflammation-driven tumor progression and specific anti-tumor cytotoxicity. Chemokines control the directed migration of immune cells, and their actions are partly controlled by nonsignaling chemokine decoy receptors. The role of the receptors such as D6, Duffy antigen receptor for chemokines and ChemoCentryx chemokine receptor in immunity to tumors is still unclear. Using real-time PCR, we detected significantly decreased expression of D6 mRNA in colon tumors compared to unaffected mucosa. D6 protein was expressed by lymphatic endothelium and mononuclear cells in the colon lamina propria and detected by immunohistochemistry in two out of six tissue samples containing high D6 mRNA levels, whereas no staining was observed in any tissue samples expressing low mRNA levels. When examining the density of lymphatic vessels in colon tumors, we detected a marked increase in vessels identified by the lymphatic endothelial marker Lyve-1, excluding passive regulation of D6 due to decreased lymphatic vessel density. In parallel, the Treg-recruiting chemokine CCL22, which is sequestered by D6, was threefold increased in tumor tissue. Furthermore, we could show that low D6 expression correlated to more invasive tumors and that tumor location influences D6 expression, which is lower in the more distal parts of the colon. The data support that regulation of D6 by colon tumors results in altered levels of proinflammatory CC chemokines, thereby shaping the local chemokine network to favor tumor survival. This may have implications for the design of future immunotherapy for colon cancer.  相似文献   

4.
Hepatocyte growth factor promotes lymphatic vessel formation and function   总被引:20,自引:0,他引:20  
The lymphatic vascular system plays a pivotal role in mediating tissue fluid homeostasis and cancer metastasis, but the molecular mechanisms that regulate its formation and function remain poorly characterized. A comparative analysis of the gene expression of purified lymphatic endothelial cells (LEC) versus blood vascular endothelial cells (BVEC) revealed that LEC express significantly higher levels of hepatocyte growth factor receptor (HGF-R). Whereas little or no HGF-R expression was detected by lymphatic vessels of normal tissues, HGF-R was strongly expressed by regenerating lymphatic endothelium during tissue repair and by activated lymphatic vessels in inflamed skin. Treatment of cultured LEC with HGF promoted LEC proliferation, migration and tube formation. HGF-induced proliferation of LEC did not require vascular endothelial growth factor receptor-3 activation, and HGF-induced cell migration was partially mediated via integrin alpha-9. Transgenic or subcutaneous delivery of HGF promoted lymphatic vessel formation in mice, whereas systemic blockade of HGF-R inhibited lymphatic function. These results identify HGF as a novel, potent lymphangiogenesis factor, and also indicate that HGF-R might serve as a new target for inhibiting pathological lymphangiogenesis.  相似文献   

5.
BACKGROUND: Lymph nodes (LNs) are important sites of connection between the sampled peripheral tissues, the many cells of the immune system, and the blood. The organization of the interface between the afferent and efferent lymphatic vasculature and LN parenchyma is incompletely understood, and obtaining a better understanding of these tissue microenvironments will contribute to an improved understanding of overall lymphatic function. METHODS AND RESULTS: We used histologic approaches to define the distributions of cells expressing lymphatic endothelial cell (LEC) markers in LNs from healthy, simian immunodeficiency virus (SIV) infected, or Mycobacterium tuberculosis infected cynomolgus macaques. Cells at the afferent and efferent interfaces of LNs from all animals showed differential expression of LEC markers, with podoplanin, Prox-1, and VEGFR3 expressed in both microenvironments, but with LYVE-1 expressed only at the efferent interface. The chemokine CCL20 was uniquely expressed at the afferent interface by cells co-expressing podoplanin, and this expression was increased during SIV or M. tuberculosis infection. In contrast, only a small proportion of cells expressing the CCR7 ligand CCL21 co-expressed podoplanin. Treatment of model LECs with the TLR3 ligand poly(I:C) or gamma-irradiated M. tuberculosis increased production of CCL20 without altering CCL21 or LEC marker expression. CONCLUSIONS: This study provides a comprehensive mapping of the organization of the lymphatic endothelial network entering and exiting LNs in health and in chronic infectious diseases in a nonhuman primate model. The differences we have defined between the afferent and efferent interfaces of LNs could inform the future design of vaccines and immunotherapies.  相似文献   

6.
The expression of platelet-endothelial cell adhesion molecule-1 (PECAM-1) on lymphatic and blood vessels of the human tongue was examined with fluorescence and transmission electron microscopy (TEM). The study used anti-desmoplakins antiserum for light microscopic identification of the lymphatic vessels, plus a pre-embedding immunogold electron microscopic technique for TEM observations. Before making TEM observations, cryostat serial sections were immunostained with anti-desmoplakins or anti-PECAM-1 and then embedded. Semithin sections from each cryostat section were photographed under a light microscope and compared in order to identify the lymphatic vessels expressing PECAM-1. In fluorescence microscopy, PECAM-1 expression on lymphatic vessels was weaker than that on blood vessels. TEM observations showed that PECAM-1 expression on the blood vessels was observed only on the luminal surface of the endothelium. In lymphatic vessels, PECAM-1 expression was found both on the luminal and abluminal surfaces of the endothelium. The density of the PECAM-1 reaction products was lower in lymphatic vessels than in blood vessels. The density of PECAM-1 reaction products on the luminal surface of lymphatic vessels was higher than on the abluminal surfaces. The results suggest that blood vessels are more active than lymphatic vessels in leukocyte migration. The expression of PECAM-1 on the abluminal surface of lymphatic endothelium may allow leukocytes to adhere to the endothelium and interact in their migration from tissue into lymphatic vessels.  相似文献   

7.

Background

Lymphatic vessels play a pivotal role in fluid drainage and egress of immune cells from the lung. However, examining murine lung lymphatics is hampered by the expression of classical lymph endothelial markers on other cell types, which hinders the unambiguous identification of lymphatics. The expression of CD90/Thy-1 on lymph endothelium was recently described and we therefore examined its suitability to identify murine pulmonary lymph vessels under healthy and inflammatory conditions.

Methodology/Principal Findings

Immunohistochemistry with a monoclonal antibody against CD90.2/Thy-1.2 on 200 µm thick precision cut lung slices labeled a vascular network that was distinct from blood vessels. Preembedding immunostaining and electron microscopy verified that the anti-CD90.2/Thy-1.2 antibody labeled lymphatic endothelium. Absence of staining in CD90.1/Thy-1.1 expressing FVB mice indicated that CD90/Thy-1 was expressed on lymph endothelium and labeling was not due to antibody cross reactivity. Double-labeling immunohistochemistry for CD90/Thy-1 and α-smooth muscle actin identified two routes for lymph vessel exit from the murine lung. One started in the parenchyma or around veins and left via venous blood vessels. The other began in the space around airways or in the space between airways and pulmonary arteries and left via the main bronchi. As expected from the pulmonary distribution of lymph vessels, intranasal application of house dust mite led to accumulation of T cells around veins and in the connective tissue between airways and pulmonary arteries. Surprisingly, increased numbers of T cells were also detected around intraacinar arteries that lack lymph vessels. This arterial T cell sheath extended to the pulmonary arteries where lymph vessels were located.

Conclusions/Significance

These results indicate that CD90/Thy-1 is expressed on lymphatic endothelial cells and represents a suitable marker for murine lung lymph vessels. Combining CD90/Thy-1 labeling with precision cut lung slices allows visualizing the anatomy of the lymphatic system in normal and inflamed conditions.  相似文献   

8.
Lymphocytic infiltrates and lymphoid follicles with germinal centers are often detected in autoimmune thyroid disease (AITD), but the mechanisms underlying lymphocyte entry and organization in the thyroid remain unknown. We tested the hypothesis that CCL21, a chemokine that regulates homeostatic lymphocyte trafficking, and whose expression has been detected in AITD, is involved in the migration of lymphocytes to the thyroid. We show that transgenic mice expressing CCL21 from the thyroglobulin promoter (TGCCL21 mice) have significant lymphocytic infiltrates, which are topologically segregated into B and T cell areas. Although high endothelial venules expressing peripheral lymph node addressin were frequently observed in the thyroid tissue, lymphocyte recruitment was independent of L-selectin or lymphotoxin-alpha but required CCR7 expression. Taken together, these results indicate that CCL21 is sufficient to drive lymphocyte recruitment to the thyroid, suggest that CCL21 is involved in AITD pathogenesis, and establish TGCCL21 transgenic mice as a novel model to study the formation and function of lymphoid follicles in the thyroid.  相似文献   

9.
Fas-mediated induction of apoptosis is a major factor in the selection of lymphocytes and downregulation of immunological processes. In the present study, we have assessed endothelial Fas-ligand (FasL) expression in normal human ileum, appendix, and colon, and compared the expression levels with that in inflammatory bowel disease and in acute appendicitis. In a normal appendix, endothelial FasL levels were constant in almost half of the mucosal vessels; but, in the normal ileum and colon, endothelial FasL was practically restricted to areas in close proximity to lymphatic follicles, and was expressed mainly in the submucosal aspect of the follicles in the vessels with high endothelium. In samples from subjects with either Crohn’s disease or ulcerative colitis, the extent of endothelial FasL expression was elevated in the submucosa and associated with an elevated number of lymphoid follicles. In inflammatory bowel disease, ulcers and areas with a high density of mononuclear cells expressing FasL also showed an elevated density of blood vessels with endothelial FasL expression. Although the function of endothelial FasL remains unclear, such a specific expression pattern suggests that endothelial FasL expression has a role in the regulation of lymphocyte access to the peripheral lymphoid tissues, including the intestinal mucosa.  相似文献   

10.
In situ zymography provides a tool to localize proteolytic activity in tissues in vivo. However, it has been difficult to discriminate between the proteases responsible for the detected activity. We used a selective tissue-permeable gelatinase inhibitor, the CTTHWGFTLC-peptide (CTT) in inflamed human gingiva. The CTT-peptide was evidenced to home, target to, and selectively inhibit the areas of gelatinolytic activity in inflamed human gingiva expressing MMP-2 and -9. Gelatinolytic activity, MMP-9 immunoreactivity, and mRNA expression as well as CD-45-positive inflammatory cells colocalized well in the inflamed human gingival connective tissue. Gelatinolytic activity corresponding to MMP-2 colocalized with laminin-5 gamma2-chain immunoreactivity and was detected in the close vicinity of the sulcular basement membrane region. Furthermore, the CTT-peptide inhibited beta-caseinolysis by human MMP-2 and MMP-9 as well as laminin-5 gamma2-chain degradation by MMP-2 in vitro. Thus, the CTT-peptide may prove to be a useful tool (i) to discriminate between gelatinolytic proteases detected by in situ zymography and (ii) to preventMMP-2-dependent induction of epithelial cell migration and gelatinase-dependent tissue destruction in inflammatory and malignant diseases.  相似文献   

11.
Leukocyte Immunoglobulin-like Receptor B4 (LILRB4) null mice have an exacerbated T helper cell type 2 (Th2) immune response and pulmonary inflammation compared with Lilrb4+/+ animals when sensitized intranasally with ovalbumin (OVA) and low-dose lipopolysaccharide (LPS) followed by challenge with OVA. Moreover, OVA-challenged Lilrb4 −/− mice exhibit greater migration of antigen (Ag)-bearing dendritic cells (DCs) to lymph nodes and accumulation of interleukin 4- and interleukin 5-producing lymph node lymphocytes. The main objective of this study was to determine how the absence of LILRB4 leads to a greater number of DCs in the lymph nodes of Ag-challenged mice and increased lung Th2 inflammation. Mice were sensitized intranasally with PBS alone or containing OVA and LPS; additional cohorts were subsequently challenged with OVA. Expression of chemokine (C-C motif) ligand 21 (CCL21) in the lung was assessed immunohistologically. OVA ingestion and expression of LILRB4 and chemokine (C-C motif) receptor 7 (CCR7) were quantified by flow cytometry. Inhalation of OVA and LPS induced upregulation of LILRB4 selectively on lung Ag-bearing DCs. After sensitization and challenge, the lung lymphatic vessels of Lilrb4 −/− mice expressed more CCL21, a chemokine that directs the migration of DCs from peripheral tissue to draining lymph nodes, compared with Lilrb4+/+ mice. In addition, lung DCs of challenged Lilrb4 −/− mice expressed more CCR7, the CCL21 receptor. The lungs of challenged Lilrb4 −/− mice also contained significantly greater numbers of CD4+ cells expressing interleukin-4 or interleukin-5, consistent with the greater number of Ag-bearing DCs and Th2 cells in lymph nodes and the attendant exacerbated Th2 lung pathology. Our data establish a new mechanism by which LILRB4 can downregulate the development of pathologic allergic inflammation: reduced upregulation of key molecules needed for DC migration leading to decreases in Th2 cells in lymph nodes and their target tissue.  相似文献   

12.
Chemotherapeutic drugs have been successfully used to treat several cancers, including melanoma. However, metastasis occasionally occurs after chemotherapy. Here, we reported that paclitaxel (PTX) treatment for B16F10 tumour in mice led to an enhanced lymphatic metastasis of the melanoma cells, although a significant inhibition of tumour growth at the injection site was observed. Further study demonstrated that PTX upregulated the expression of C-C chemokine receptor type 7 (CCR7) in B16F10 cells, enhancing their migration through the activation of JNK and p38 signalling pathways. Loss of CCR7 or blockade of C-C motif chemokine ligand 21 (CCL21)/CCR7 axis abolished the pro-migration effect of PTX on B16F10 melanoma cells. Importantly, combination of PTX and CCR7 mAb could simultaneously delay the tumour growth and reduce the lymphatic metastasis in B16F10 melanoma. The blockade of CCL21/CCR7 axis may collectively serve as a strategy for lymphatic metastasis in some melanoma after chemotherapy.  相似文献   

13.
Extravasated fluid, proteins and cells are returned into the circulation by lymphatic vessels that are also important in immune cell trafficking. Lymphatic vessels in gingiva are located in lamina propria, and traverse the external surface of the alveolar bone. Lack of gingival lymphatics has been shown to increase the interstitial fluid pressure and fluid volume, thus showing that lymphatics are important for fluid drainage also in this tissue. Gingival lymphatic vessels require continuous signaling by the growth factors VEGF-C and D via their receptor VEGFR-3 for their maintenance, factors that are expressed in the gingival epithelium and also in immune cells in lamina propria. VEGF-C seems to be of critical importance for lymphangiogeneses induced during periodontal disease development. Mice are protected against periodontitis by lymphatics clearing bacteria and bacterial products and promoting humoral immune responses. CCL21, a ligand important for dendritic cell migration, has been found to be downregulated in lymphatics from patients with periodontitis. Such patients may have impaired gingival lymphatic function due to high enzymatic activity and thus loss of structural components in the interstitium. At present there are few studies on the role of lymphatic vessels in periodontal disease making this a rather unexplored field.  相似文献   

14.
The aim of the study was to characterise CCR7+ and CCR7- memory T cells infiltrating the inflamed joints of patients with juvenile idiopathic arthritis (JIA) and to investigate the functional and anatomical heterogeneity of these cell subsets in relation to the expression of the inflammatory chemokine receptors CXCR3 and CCR5. Memory T cells freshly isolated from the peripheral blood and synovial fluid (SF) of 25 patients with JIA were tested for the expression of CCR7, CCR5, CXCR3 and interferon-gamma by flow cytometry. The chemotactic activity of CD4 SF memory T cells from eight patients with JIA to inflammatory (CXCL11 and CCL3) and homeostatic (CCL19, CCL21) chemokines was also evaluated. Paired serum and SF samples from 28 patients with JIA were tested for CCL21 concentrations. CCR7, CXCR3, CCR5 and CCL21 expression in synovial tissue from six patients with JIA was investigated by immunohistochemistry. Enrichment of CD4+, CCR7- memory T cells was demonstrated in SF in comparison with paired blood from patients with JIA. SF CD4+CCR7- memory T cells were enriched for CCR5+ and interferon-gamma+ cells, whereas CD4+CCR7+ memory T cells showed higher coexpression of CXCR3. Expression of CCL21 was detected in both SF and synovial membranes. SF CD4+ memory T cells displayed significant migration to both inflammatory and homeostatic chemokines. CCR7+ T cells were detected in the synovial tissue in either diffuse perivascular lymphocytic infiltrates or organised lymphoid aggregates. In synovial tissue, a large fraction of CCR7+ cells co-localised with CXCR3, especially inside lymphoid aggregates, whereas CCR5+ cells were enriched in the sublining of the superficial subintima. In conclusion, CCR7 may have a role in the synovial recruitment of memory T cells in JIA, irrespective of the pattern of lymphoid organisation. Moreover, discrete patterns of chemokine receptor expression are detected in the synovial tissue.  相似文献   

15.
According to the current model for tissue-specific homing, specificity is conferred by the selective recruitment of lymphocyte populations from peripheral blood, based on their expression of chemokine and adhesion receptors (endothelial selection). In this study, we provide evidence for an alternative stromal induction mechanism that operates in chronic inflammation. We show that the human rheumatoid synovial microenvironment directly induces functional inflammatory (CCR5 and CXCR3) and constitutive (CCR7 and CXCR4) chemokine receptors on infiltrating CD4(+) T cells. Expression of the corresponding inflammatory chemokine ligands (CCL5 and CXCL11) was confined to stromal areas in the synovium. However, expression of the constitutive ligands (CCL19 and CXCL12) was inappropriately high on both vascular and lymphatic endothelium, suggesting that the vascular to lymphatic chemokine gradient involved in lymphatic recirculation becomes subverted in the rheumatoid synovium. These results challenge the view that leukocyte trafficking is regulated solely by selective recruitment of pre-existing chemokine receptor-positive cells from peripheral blood, by providing an alternative explanation based on aberrant lymphocyte retention and compromised lymphatic return.  相似文献   

16.
17.
Mucosal tissues require constant immune surveillance to clear harmful pathogens while maintaining tolerance to self Ags. Regulatory T cells (Tregs) play a central role in this process and expression of alpha(E)beta(7) has been reported to define a subset of Tregs with tropism for inflamed tissues. However, the signals responsible for recruiting Tregs to epithelial surfaces are poorly understood. We have isolated a subset of CCR10-expressing CD25+CD4+Foxp3+ Tregs with potent anti-inflammatory properties from chronically inflamed human liver. The CCR10+ Tregs were detected around bile ducts that expressed increased levels of the CCR10 ligand CCL28. CCL28 was secreted by primary human cholangiocytes in vitro in response to LPS, IL-1beta, or bile acids. Exposure of CCR10+ Tregs to CCL28 in vitro stimulated migration and adhesion to mucosal addressin cell adhesion molecule-1 and VCAM-1. Liver-derived CCR10+ Tregs expressed low levels of CCR7 but high levels of CXCR3, a chemokine receptor associated with infiltration into inflamed tissue and contained a subset of alpha(E)beta7(+) cells. We propose that CXCR3 promotes the recruitment of Tregs to inflamed tissues and CCR10 allows them to respond to CCL28 secreted by epithelial cells resulting in the accumulation of CCR10+ Tregs at mucosal surfaces.  相似文献   

18.
In hepatitis C virus (HCV) infection the immune response is ineffective, leading to chronic hepatitis and liver damage. Primed CD8 T cells are critical for antiviral immunity and subsets of circulating CD8 T cells have been defined in blood but these do not necessarily reflect the clonality or differentiation of cells within tissue. Current models divide primed CD8 T cells into effector and memory cells, further subdivided into central memory (CCR7+, L-selectin+), recirculating through lymphoid tissues and effector memory (CCR7-, L-selectin-) mediating immune response in peripheral organs. We characterized CD8 T cells derived from organ donors and patients with end-stage HCV infection to show that: 1) all liver-infiltrating CD8 T cells express high levels of CD11a, indicating the effective absence of naive CD8 T cells in the liver. 2) The liver contains distinct subsets of primed CD8+ T cells including a population of CCR7+ L-selectin- cells, which does not reflect current paradigms. The expression of CCR7 by these cells may be induced by the hepatic microenvironment to facilitate recirculation. 3) The CCR7 ligands CCL19 and CCL21 are present on lymphatic, vascular, and sinusoidal endothelium in normal liver and in patients with HCV infection. We suggest that the recirculation of CCR7+/L-selectin- intrahepatic CD8 T cells to regional lymphoid tissue will be facilitated by CCL19 and CCL21 on hepatic sinusoids and lymphatics. This centripetal pathway of migration would allow restimulation in lymph nodes, thereby promoting immune surveillance in normal liver and renewal of effector responses in chronic viral infection.  相似文献   

19.

Background

De novo lymphatic vessel formation has recently been observed in lungs of patients with moderate chronic obstructive pulmonary disease (COPD). However, the distribution of lymphatic vessel changes among the anatomical compartments of diseased lungs is unknown. Furthermore, information regarding the nature of lymphatic vessel alterations across different stages of COPD is missing. This study performs a detailed morphometric characterization of lymphatic vessels in major peripheral lung compartments of patients with different severities of COPD and investigates the lymphatic expression of molecules involved in immune cell trafficking.

Methods

Peripheral lung resection samples obtained from patients with mild (GOLD stage I), moderate-severe (GOLD stage II-III), and very severe (GOLD stage IV) COPD were investigated for podoplanin-immunopositive lymphatic vessels in distinct peripheral lung compartments: bronchioles, pulmonary blood vessels and alveolar walls. Control subjects with normal lung function were divided into never smokers and smokers. Lymphatics were analysed by multiple morphological parameters, as well as for their expression of CCL21 and the chemokine scavenger receptor D6.

Results

The number of lymphatics increased by 133% in the alveolar parenchyma in patients with advanced COPD compared with never-smoking controls (p < 0.05). In patchy fibrotic lesions the number of alveolar lymphatics increased 20-fold from non-fibrotic parenchyma in the same COPD patients. The absolute number of lymphatics per bronchiole and artery was increased in advanced COPD, but numbers were not different after normalization to tissue area. Increased numbers of CCL21- and D6-positive lymphatics were observed in the alveolar parenchyma in advanced COPD compared with controls (p < 0.01). Lymphatic vessels also displayed increased mean levels of immunoreactivity for CCL21 in the wall of bronchioles (p < 0.01) and bronchiole-associated arteries (p < 0.05), as well as the alveolar parenchyma (p < 0.001) in patients with advanced COPD compared with never-smoking controls. A similar increase in lymphatic D6 immunoreactivity was observed in bronchioles (p < 0.05) and alveolar parenchyma (p < 0.01).

Conclusions

This study shows that severe stages of COPD is associated with increased numbers of alveolar lymphatic vessels and a change in lymphatic vessel phenotype in major peripheral lung compartments. This novel histopathological feature is suggested to have important implications for distal lung immune cell traffic in advanced COPD.  相似文献   

20.
Lymphatic vessels, the second vascular system of higher vertebrates, are indispensable for fluid tissue homoeostasis, dietary fat resorption and immune surveillance. Not only are lymphatic vessels formed during fetal development, when the lymphatic endothelium differentiates and separates from blood endothelial cells, but also lymphangiogenesis occurs during adult life under conditions of inflammation, wound healing and tumour formation. Under all of these conditions, haemopoietic cells can exert instructive influences on lymph vessel growth and are essential for the vital separation of blood and lymphatic vessels. LECs (lymphatic endothelial cells) are characterized by expression of a number of unique genes that distinguish them from blood endothelium and can be utilized to drive reporter genes in a lymph endothelial-specific fashion. In the present paper, we describe the Prox1 (prospero homeobox protein 1) promoter-driven expression of the fluorescent protein mOrange2, which allows the specific intravital visualization of lymph vessel growth and behaviour during mouse fetal development and in adult mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号