首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Reactive oxygen species (ROS) are implicated in aging of cartilage and in the pathogenesis of osteoarthritis. However, the biological role of chondrocytes-derived ROS has not been elucidated. An in-vitro model was developed to study the role of chondrocyte-derived ROS in cartilage matrix degradation. The primary articular chondrocytes were cultured and the aggrecan matrix was radiolabeled with 35-sulfate. The labeled aggrecan matrix was washed to remove unincorporated label and chondrocytes were returned to serum free balanced salt solution. The cell-monolayer-matrix sensitivity to oxidative damage due to either hydrogen peroxide or glucose oxidase was established by monitoring the release of labeled aggrecan into the medium. Lipopolysaccharide (LPS) treatment of chondrocytemonolayer enhanced the release of labeled aggrecan. Catalase significantly prevented the release of labeled aggrecan in LPS-chondrocyte cultures, suggesting a role for chondrocyte-derived hydrogen peroxide in aggrecan degradation. Superoxide dismutase or boiled catalase had no such inhibitory effect. The effect of several antioxidants on LPS-chondrocyte-dependent aggrecan degradation was examined. Hydroxyl radical scavengers (mannitol and thiourea) significantly decreased aggrecan degradation. A spin trapping agent N-tert-butyl-phenylnitrone (but not its inactive analog tert-butyl-phenylcarbonate) significantly decreased aggrecan degradation. Butylated hydroxytoluene also inhibited aggrecan degradation, whereas the other lipophilic antioxidant tested, propyl gallate, had a marked dose-dependent inhibitory effect. These data indicate that general antioxidants, hydroxyl radical scavengers, antioxidant vitamins, iron chelating agents, lipophilic antioxidants, and spin trapping agents can influence chondrocyte-dependent aggrecan degradation. These studies support the role of a chondrocyte-dependent oxidative mechanism in aggrecan degradation and indicate that antioxidants can prevent matrix degradation and therefore may have a preventive or therapeutic value in arthritis. The enhancement of oxidative activity in chondrocytes and its damaging effect on matrix may be an important mechanism of matrix degradation in osteoarthritis.  相似文献   

2.
Reactive oxygen species (ROS) are implicated in aging of cartilage and in the pathogenesis of osteoarthritis. However, the biological role of chondrocytes-derived ROS has not been elucidated. An in-vitro model was developed to study the role of chondrocyte-derived ROS in cartilage matrix degradation. The primary articular chondrocytes were cultured and the aggrecan matrix was radiolabeled with 35-sulfate. The labeled aggrecan matrix was washed to remove unincorporated label and chondrocytes were returned to serum free balanced salt solution. The cell-monolayer-matrix sensitivity to oxidative damage due to either hydrogen peroxide or glucose oxidase was established by monitoring the release of labeled aggrecan into the medium. Lipopolysaccharide (LPS) treatment of chondrocytemonolayer enhanced the release of labeled aggrecan. Catalase significantly prevented the release of labeled aggrecan in LPS-chondrocyte cultures, suggesting a role for chondrocyte-derived hydrogen peroxide in aggrecan degradation. Superoxide dismutase or boiled catalase had no such inhibitory effect. The effect of several antioxidants on LPS-chondrocyte-dependent aggrecan degradation was examined. Hydroxyl radical scavengers (mannitol and thiourea) significantly decreased aggrecan degradation. A spin trapping agent N-tert-butyl-phenylnitrone (but not its inactive analog tert-butyl-phenylcarbonate) significantly decreased aggrecan degradation. Butylated hydroxytoluene also inhibited aggrecan degradation, whereas the other lipophilic antioxidant tested, propyl gallate, had a marked dose-dependent inhibitory effect. These data indicate that general antioxidants, hydroxyl radical scavengers, antioxidant vitamins, iron chelating agents, lipophilic antioxidants, and spin trapping agents can influence chondrocyte-dependent aggrecan degradation. These studies support the role of a chondrocyte-dependent oxidative mechanism in aggrecan degradation and indicate that antioxidants can prevent matrix degradation and therefore may have a preventive or therapeutic value in arthritis. The enhancement of oxidative activity in chondrocytes and its damaging effect on matrix may be an important mechanism of matrix degradation in osteoarthritis.  相似文献   

3.
Osteoarthritis (OA) affects a large segment of the aging population and is a major cause of pain and disability. At present, there is no specific treatment available to prevent or retard the cartilage destruction that occurs in OA. Recently, glucosamine sulfate has received attention as a putative agent that may retard cartilage degradation in OA. The precise mechanism of action of glucosamine is not known. We investigated the effect of glucosamine in an in vitro model of cartilage collagen degradation in which collagen degradation induced by activated chondrocytes is mediated by lipid peroxidation reaction. Lipid peroxidation in chondrocytes was measured by conjugated diene formation. Protein oxidation and aldehydic adduct formation were studied by immunoblot assays. Antioxidant effect of glucosamine was also tested on malondialdehyde (thiobarbituric acid-reactive substances [TBARS]) formation on purified lipoprotein oxidation for comparison. Glucosamine sulfate and glucosamine hydrochloride in millimolar (0.1 to 50) concentrations specifically and significantly inhibited collagen degradation induced by calcium ionophore-activated chondrocytes. Glucosamine hydrochloride did not inhibit lipid peroxidation reaction in either activated chondrocytes or in copper-induced oxidation of purified lipoproteins as measured by conjugated diene formation. Glucosamine hydrochloride, in a dose-dependent manner, inhibited malondialdehyde (TBARS) formation by oxidized lipoproteins. Moreover, we show that glucosamine hydrochloride prevents lipoprotein protein oxidation and inhibits malondialdehyde adduct formation in chondrocyte cell matrix, suggesting that it inhibits advanced lipoxidation reactions. Together, the data suggest that the mechanism of decreasing collagen degradation in this in vitro model system by glucosamine may be mediated by the inhibition of advanced lipoxidation reaction, preventing the oxidation and loss of collagen matrix from labeled chondrocyte matrix. Further studies are needed to relate these in vitro findings to the retardation of cartilage degradation reported in OA trials investigating glucosamine.  相似文献   

4.
Cartilage loss in osteoarthritis is characterized by matrix degradation and chondrocyte death. The lipid messenger ceramide is implicated in signal transduction of the catabolic cytokines tumor necrosis factor (TNF) and interleukin-1 (IL-1), as well as in apoptosis. The aim of this study was to examine the in vitro effects of ceramide on proteoglycan degradation, matrix-metalloproteinase (MMP) expression and activity, and chondrocyte apoptosis in rabbit articular cartilage. Cell-permeant ceramide C(2) stimulated proteoglycan degradation in cartilage explants starting from 3 x 10(-5) M, with 100% increase at the dose of 10(-4) M. This effect was probably due to MMPs since it was blocked by the MMP inhibitor batimastat. Furthermore, in isolated chondrocytes, C(2) stimulated the expression of MMP-1, 3, and 13 at the mRNA level, MMP activity, and MMP-3 production. Ceramide also caused chondrocyte apoptosis at doses ranging from 10(-5) to 10(-4) M. This study supports the hypothesis that ceramide might play a mediatory role in both matrix degradation and apoptosis in processes of cartilage loss such as those observed in osteoarthritis.  相似文献   

5.
The integrin family of cell adhesion receptors plays a major role in mediating interactions between cells and the extracellular matrix. Normal adult articular chondrocytes express α1β1, α3β1, α5β1, α10β1, αVβ1, αVβ3, and αVβ5 integrins, while chondrocytes from osteoarthritic tissue also express α2β1, α4β1, α6β1. These integrins bind a host of cartilage extracellular matrix (ECM) proteins, most notably fibronectin and collagen types II and VI, which provide signals that regulate cell proliferation, survival, differentiation, and matrix remodeling. By initiating signals in response to mechanical forces, chondrocyte integrins also serve as mechanotransducers. When the cartilage matrix is damaged in osteoarthritis, fragments of fibronectin are generated that signal through the α5β1 integrin to activate a pro-inflammatory and pro-catabolic response which, if left unchecked, could contribute to progressive matrix degradation. The cell signaling pathways activated in response to excessive mechanical signals and to fibronectin fragments are being unraveled and may represent useful therapeutic targets for slowing or stopping progressive matrix destruction in arthritis.  相似文献   

6.
Temporomandibular joint (TMJ) osteoarthritis is a common chronic degenerative disease of the TMJ. In order to explore its aetiology and pathological mechanism, many animal models and cell models have been constructed to simulate the pathological process of TMJ osteoarthritis. The main pathological features of TMJ osteoarthritis include chondrocyte death, extracellular matrix (ECM) degradation and subchondral bone remodelling. Chondrocyte apoptosis accelerates the destruction of cartilage. However, autophagy has a protective effect on condylar chondrocytes. Degradation of ECM not only changes the properties of cartilage but also affects the phenotype of chondrocytes. The loss of subchondral bone in the early stages of TMJ osteoarthritis plays an aetiological role in the onset of osteoarthritis. In recent years, increasing evidence has suggested that chondrocyte hypertrophy and endochondral angiogenesis promote TMJ osteoarthritis. Hypertrophic chondrocytes secrete many factors that promote cartilage degeneration. These chondrocytes can further differentiate into osteoblasts and osteocytes and accelerate cartilage ossification. Intrachondral angiogenesis and neoneurogenesis are considered to be important triggers of arthralgia in TMJ osteoarthritis. Many molecular signalling pathways in endochondral osteogenesis are responsible for TMJ osteoarthritis. These latest discoveries in TMJ osteoarthritis have further enhanced the understanding of this disease and contributed to the development of molecular therapies. This paper summarizes recent cognition on the pathogenesis of TMJ osteoarthritis, focusing on the role of chondrocyte hypertrophy degeneration and cartilage angiogenesis.  相似文献   

7.
Martin JA  Buckwalter JA 《Biorheology》2000,37(1-2):129-140
Throughout life chondrocytes maintain the articular cartilage matrix by replacing degraded macromolecules and respond to focal cartilage injury or degeneration by increasing local synthesis activity. These observations suggest that mechanisms exist within articular cartilage that stimulate chondrocyte anabolic activity in response to matrix degradation or damage. An important cartilage anabolic factor, insulin-like growth factor I (IGF-I), appears to have a role in stimulating chondrocyte anabolic activity. Although IGF-I is ubiquitous, its bioavailability is controlled by a class of secreted proteins, IGF binding proteins (IGFPBs). Of the six known IGFPBs, IGFBP-3 is the most abundant in human articular cartilage. We recently found that with increasing age, articular chondrocytes increase their expression of IGFBP-3. This observation led us to investigate the potential role of IGFBP-3 in chondrocyte-matrix interactions. Using immunofluorescent staining and confocal microscopy we found that IGFBP-3 accumulates with increasing age in the chondrocyte territorial matrix where it co-localizes with fibronectin, but not with tenascin-C or type VI collagen. Using purified proteins we demonstrated that IGFBP-3 binds to fibronectin in a dose dependent manner, but not to tenascin-C. In vitro studies showed that IGFBP-3 alone inhibited chondrocyte synthetic activity while intact fibronectin alone significantly stimulated activity. When fibronectin and IGFBP-3 were combined we found that the inhibitory activity of low concentrations of IGFPB-3 was enhanced. These observations indicate that in mature articular cartilage IGF-I is stored in the chondrocyte territorial matrix through binding to a complex of IGFPB-3 and intact fibronectin. Storage of IGF-I of the territorial matrix may help maintain a relatively constant level of available IGF-I and the local increase in matrix synthesis following matrix damage may result from release of IGF-I. This mechanism may have an important role in maintaining and repairing articular cartilage and failure of this mechanism may lead to progressive articular cartilage degeneration.  相似文献   

8.
Normal rabbit-articular chondrocytes secrete very small amounts of degradative enzymes in culture. Rabbit peritoneal macrophages, when activated with lipopolysaccharides, release a factor in the medium which stimulates the chondrocytes to produce significantly high levels of collagenase and other neutral protease for 2-3 days. The soluble mediator from macrophages appears to be a polypeptide with a molecular weight of 13000-15000 and can be inactivated by short-term treatment with trypsin or pronase. The enzyme-synthesis by chondrocytes can be stimulated to the same extent by repeated addition of the macrophage-medium. The metabolism of chondrocytes is altered due to the presence of this mediator. The cellular proliferation is diminished, while the rates of degradation as well as biosynthesis of the matrix are increased. These studies suggest the possibility that in the conditions such as osteoarthritis, where the synovial cells may not play an active role in cartilage degradation, the proteases can be produced by the cartilage cells themselves after the stimulation by macrophage-derived mediators. These intrinsic enzymes may be responsible for the slow, but progressive degeneration of cartilage tissue.  相似文献   

9.
Oxidative stress leads to increased risk for osteoarthritis (OA) but the precise mechanism remains unclear. We undertook this study to clarify the impact of oxidative stress on the progression of OA from the viewpoint of oxygen free radical induced genomic instability, including telomere instability and resulting replicative senescence and dysfunction in human chondrocytes. Human chondrocytes and articular cartilage explants were isolated from knee joints of patients undergoing arthroplastic knee surgery for OA. Oxidative damage and antioxidative capacity in OA cartilage were investigated in donor-matched pairs of intact and degenerated regions of tissue isolated from the same cartilage explants. The results were histologically confirmed by immunohistochemistry for nitrotyrosine, which is considered to be a maker of oxidative damage. Under treatment with reactive oxygen species (ROS; 0.1 μmol/l H2O2) or an antioxidative agent (ascorbic acid: 100.0 μmol/l), cellular replicative potential, telomere instability and production of glycosaminoglycan (GAG) were assessed in cultured chondrocytes. In tissue cultures of articular cartilage explants, the presence of oxidative damage, chondrocyte telomere length and loss of GAG to the medium were analyzed in the presence or absence of ROS or ascorbic acid. Lower antioxidative capacity and stronger staining of nitrotyrosine were observed in the degenerating regions of OA cartilages as compared with the intact regions from same explants. Immunostaining for nitrotyrosine correlated with the severity of histological changes to OA cartilage, suggesting a correlation between oxidative damage and articular cartilage degeneration. During continuous culture of chondrocytes, telomere length, replicative capacity and GAG production were decreased by treatment with ROS. In contrast, treatment with an antioxidative agent resulted in a tendency to elongate telomere length and replicative lifespan in cultured chondrocytes. In tissue cultures of cartilage explants, nitrotyrosine staining, chondrocyte telomere length and GAG remaining in the cartilage tissue were lower in ROS-treated cartilages than in control groups, whereas the antioxidative agent treated group exhibited a tendency to maintain the chondrocyte telomere length and proteoglycan remaining in the cartilage explants, suggesting that oxidative stress induces chondrocyte telomere instability and catabolic changes in cartilage matrix structure and composition. Our findings clearly show that the presence of oxidative stress induces telomere genomic instability, replicative senescence and dysfunction of chondrocytes in OA cartilage, suggesting that oxidative stress, leading to chondrocyte senescence and cartilage ageing, might be responsible for the development of OA. New efforts to prevent the development and progression of OA may include strategies and interventions aimed at reducing oxidative damage in articular cartilage.  相似文献   

10.
The reaction patterns of chondrocytes in osteoarthritis can be summarized in five categories: (1) proliferation and cell death (apoptosis); changes in (2) synthetic activity and (3) degradation; (4) phenotypic modulation of the articular chondrocytes; and (5) formation of osteophytes. In osteoarthritis, the primary responses are reinitiation of synthesis of cartilage macromolecules, the initiation of synthesis of types IIA and III procollagens as markers of a more primitive phenotype, and synthesis of active proteolytic enzymes. Reversion to a fibroblast-like phenotype, known as 'dedifferentiation', does not appear to be an important component. Proliferation plays a role in forming characteristic chondrocyte clusters near the surface, while apoptosis probably occurs primarily in the calcified cartilage.  相似文献   

11.
Endochondral ossification begins from the condensation and differentiation of mesenchymal cells into cartilage. The cartilage then goes through a program of cell proliferation, hypertrophic differentiation, calcification, apoptosis, and eventually is replaced by bone. Unlike most cartilage, articular cartilage is arrested before terminal hypertrophic differentiation. In this study, we showed that TGF-beta/Smad3 signals inhibit terminal hypertrophic differentiation of chondrocyte and are essential for maintaining articular cartilage. Mutant mice homozygous for a targeted disruption of Smad3 exon 8 (Smad3(ex8/ex8)) developed degenerative joint disease resembling human osteoarthritis, as characterized by progressive loss of articular cartilage, formation of large osteophytes, decreased production of proteoglycans, and abnormally increased number of type X collagen-expressing chondrocytes in synovial joints. Enhanced terminal differentiation of epiphyseal growth plate chondrocytes was also observed in mutant mice shortly after weaning. In an in vitro embryonic metatarsal rudiment culture system, we found that TGF-beta1 significantly inhibits chondrocyte differentiation of wild-type metatarsal rudiments. However, this inhibition is diminished in metatarsal bones isolated from Smad3(ex8/ex8) mice. These data suggest that TGF-beta/Smad3 signals are essential for repressing articular chondrocyte differentiation. Without these inhibition signals, chondrocytes break quiescent state and undergo abnormal terminal differentiation, ultimately leading to osteoarthritis.  相似文献   

12.
13.
The reaction patterns of chondrocytes in osteoarthritis can be summarized in five categories: (1) proliferation and cell death (apoptosis); changes in (2) synthetic activity and (3) degradation; (4) phenotypic modulation of the articular chondrocytes; and (5) formation of osteophytes. In osteoarthritis, the primary responses are reinitiation of synthesis of cartilage macromolecules, the initiation of synthesis of types IIA and III procollagens as markers of a more primitive phenotype, and synthesis of active proteolytic enzymes. Reversion to a fibroblast-like phenotype, known as "dedifferentiation", does not appear to be an important component. Proliferation plays a role in forming characteristic chondrocyte clusters near the surface, while apoptosis probably occurs primarily in the calcified cartilage.  相似文献   

14.
Osteoarthritis is characterized by a progressive degradation of articular cartilage leading to loss of joint function. The molecular mechanisms regulating pathogenesis and progression of osteoarthritis are poorly understood. Remarkably, some characteristics of this joint disease resemble chondrocyte differentiation processes during skeletal development by endochondral ossification. In healthy articular cartilage, chondrocytes resist proliferation and terminal differentiation. By contrast, chondrocytes in diseased cartilage progressively proliferate and develop hypertrophy. Moreover, vascularization and focal calcification of joint cartilage are initiated. Signaling molecules that regulate chondrocyte activities in both growth cartilage and permanent articular cartilage during osteoarthritis are thus interesting targets for disease-modifying osteoarthritis therapies.  相似文献   

15.
Osteoarthritis is one of the most common orthopedic diseases in elderly people who have lost their mobility. In this study,we observed abnormally high EGR1 expression in the articular cartilage of patients with osteoarthritis. We also found significantly high EGR1 expression in the articular cartilage of mice with destabilized medial meniscus (DMM)-induced osteoarthritis and 20-month-old mice. In vitro experiments indicated that IL-1β could significantly enhance EGR1 expression in primary mouse chondrocytes. EGR1 over-expression in chondrocytes using adenovirus could inhibit COl2A1 expression and enhance MMP9 and MMP13 expression. And silencing EGR1, using RNAi, had the opposite effects. Moreover, EGR1 over-expression accelerated chondrocyte hypertrophy in vitro, and EGR1 knockdown reversed this effect. We then explored the underlying mechanism. EGR1 over-expression increased Kruppel-Like Factor 5 (KLF5) protein level without influencing its synthesis. Enhanced EGR1 expression induced its integration with KLF5, leading to suppressed ubiquitination of KLF5. Moreover, EGR1 prompted β-catenin nuclear transportation to control chondrocyte hypertrophy. Ectopic expression of EGR1 in articular cartilage aggravated the degradation of the cartilage matrix in vivo. The EGR1 inhibitor, ML264, protected chondrocytes from IL-1β-mediated cartilage matrix degradation in vitro and DMM-induced osteoarthritis in vivo. Above all, we demonstrate the effect and mechanisms of EGR1 on osteoarthritis and provide evidence that the ML264 might be a potential drug for treating osteoarthritis in the future.  相似文献   

16.
17.
The articular cartilage of diarthrodial joints experiences a variety of stresses, strains and pressures that result from normal activities of daily living. In normal cartilage, the extracellular matrix exists as a highly organized composite of specialized macromolecules that distributes loads at the bony ends. The chondrocyte response to mechanical loading is recognized as an integral component in the maintenance of articular cartilage matrix homeostasis. With inappropriate mechanical loading of the joint, as occurs with traumatic injury, ligament instability, bony malalignment or excessive weight bearing, the cartilage exhibits manifestations characteristic of osteoarthritis. Breakdown of cartilage in osteoarthritis involves degradation of the extracellular matrix macromolecules and decreased expression of chondrocyte proteins necessary for normal joint function. Osteoarthritic cartilage often exhibits increased amounts of type I collagen and synthesis of proteoglycans characteristic of immature cartilage. The shift in cartilage phenotype in response to altered load yields a matrix that fails to support normal joint function. Mathematical modeling and experimental studies in animal models confirm an association between altered loading of diarthrotic joints and arthritic changes. Both types of studies implicate shear forces as a critical component in the destructive profile. The severity of cartilage destruction in response to altered loads appears linked to expression of biological factors influencing matrix integrity and cellular metabolism. Determining how shear stress alters chondrocyte metabolism is fundamental to understanding how to limit matrix destruction and stimulate cartilage repair and regeneration. At present, the precise biochemical and molecular mechanisms by which shear forces alter chondrocyte metabolism from a normal to a degenerative phenotype remain unclear. The results presented here address the hypothesis that articular chondrocyte metabolism is modulated by direct effects of shear forces that act on the cell through mechanotransduction processes. The purpose of this work is to develop critical knowledge regarding the basic mechanisms by which mechanical loading modulates cartilage metabolism in health and disease. This presentation will describe the effects of using fluid induced shear stress as a model system for stimulation of articular chondrocytes in vitro. The fluid induced shear stress was applied using a cone viscometer system to stimulate all the cells uniformly under conditions of minimal turbulence. The experiments were carried using high-density primary monolayer cultures of normal and osteoarthritic human and normal bovine articular chondrocytes. The analysis of the cellular response included quantification of cytokine release, matrix metalloproteinase expression and activation of intracellular signaling pathways. The data presented here show that articular chondrocytes exhibit a dose- and time-dependent response to shear stress that results in the release of soluble mediators and extracellular matrix macromolecules. The data suggest that the chondrocyte response to mechanical stimulation contributes to the maintenance of articular cartilage homeostasis in vivo.  相似文献   

18.
Summary Rheumatoid arthritis, a disease of unknown aetiology, is characterized by joint inflammation and, in its later stages, cartilage destruction. Inflammatory mediators may exert not only suppression of matrix synthesis but also cartilage degradation, which eventually leads to severe cartilage depletion. Systemically and locally produced growth factors and hormones regulate cartilage metabolism. Alterations in levels of these factors or in their activity can influence the pathogenesis of articular cartilage destruction in arthritic joints. The main topic of the present review is the role of the anabolic factor insulin-like growth factor-1 in the regulation of chondrocyte metabolic functions in normal and in diseased cartilage. This is the most important growth factor that balances chondrocyte proteoglycan synthesis and catabolism to maintain a functional cartilage matrix. A brief overview of how chondrocytes keep the cartilage matrix intact, and how catabolic and anabolic vactors are thought to be involved in pathological cartilage destruction precedes the review of the role of this growth factor in proteoglycan metabolism in cartilage.  相似文献   

19.
20.
Osteopontin, a sulfated phosphoprotein with cell binding and matrix binding properties, is expressed in a variety of tissues. In the embryonic growth plate, osteopontin expression was found in bone-forming cells and in hypertrophic chondrocytes. In this study, the expression of osteopontin was analyzed in normal and osteoarthritic human knee cartilage. Immunohistochemistry, using a monoclonal anti-osteopontin antibody was negative on normal cartilage. These results were confirmed in Western blot experiments, using partially purified extracts of normal knee cartilage. No osteopontin gene expression was observed in chondrocytes of adult healthy cartilage, however, in the subchondral bone plate, expression of osteopontin mRNA was detected in the osteoblasts. In cartilage from patients with osteoarthritis, osteopontin could be detected by immunohistochemistry, Western blot analysis, in situ hybridization, and Northern blot analysis. A qualitative analysis indicated that osteopontin protein deposition and mRNA expression increase with the severity of the osteoarthritic lesions and the disintegration of the cartilaginous matrix. Osteopontin expression in the cartilage was limited to the chondrocytes of the upper deep zone, showing cellular and territorial deposition. The strongest osteopontin detection was found in deep zone chondrocytes and in clusters of proliferating chondrocytes from samples with severe osteoarthritic lesions. These data show the expression of osteopontin in adult human osteoarthritic chondrocytes, suggesting that chondrocyte differentiation and the expression of differentiation markers in osteoarthritic cartilage resembles that of epiphyseal growth plate chondrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号