首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activation of the inducible isoform of nitric oxide synthase (NOS) is associated with the production of large quantities of nitric oxide in response to cytokine stimulation. Bacillus Calmette-Guerin (BCG) mode of action against bladder carcinoma remains unclear, although a plethora of local and systemic events may follow its intravesical instillation. The present study was designed to investigate the expression of inducible NOS in normal and neoplastic urothelium and its alteration following tumor resection and subsequent intravesical immunotherapy. Bladder carcinoma and autologous normal bladder tissue specimens were procured from 36 patients undergoing transurethral resection. Tissue specimens were obtained from the same patients at first cystoscopy following six weekly intravesical instillations. Inducible NOS protein expression was assessed by immunohistochemistry in all tissue specimens. Immunostaining of normal urothelium for iNOS before treatment was negative in all but four cases. BCG treatment induced iNOS expression in tumor-free bladder tissue in 24 cases (66.6%). There were only four early tumor recurrences; interestingly, they corresponded to the cases with tumor cells expressing iNOS before BCG treatment, while novel tumors were also iNOS immunoreactive. BCG upregulated iNOS expression in normal human urothelial cells in vivo suggesting a role for nitric oxide in BCG mediated antitumor activity. Inducible NOS was detected in certain tumor specimens before and after BCG treatment implying a possible involvement in pro-tumor action.  相似文献   

2.
Tissue recombinants of embryonic urogenital sinus mesenchyme (UGM) and epithelium of the urinary bladder (urothelium, BLE) of adult rats and mice were grown for 3-30 d in male syngeneic hosts. Short-term in vivo growth indicated that prostatic morphogenesis is initiated as focal outgrowths from the basal aspect of the adult urothelium. The solid epithelial buds elongate, branch, and subsequently canalize, forming prostatic acini. After 30 d of growth in the male hosts, prostatic acini exhibit secretory activity. The marked changes in urothelial morphology induced by the UGM are accompanied by the expression of fine- structural features indicative of secretory function (rough endoplasmic reticulum, Golgi apparatus, and secretory granules). During this process, urothelial cells express prostatic histochemical markers (alkaline phosphatase, nonspecific esterase, glycosaminoglycans) and prostate-specific antigens. The expression within BLE of prostatic characteristics is associated with the loss of urothelial characteristics. These data indicate that adult urothelial cells retain a responsiveness to embryonic mesenchymal inductors. Furthermore, mesenchyme-induced changes in urothelial cytodifferentiation appear to be coupled to changes in functional activity.  相似文献   

3.
Incubation of rabbit liver microsomes with alkaline phosphatase resulted in a marked decrease of NADPH-dependent monooxygenase activities. This decrease was found to be correlated with the decrease of NADPH-cytochrome c reductase activity catalyzed by NADPH-cytochrome P-450 reductase. Neither the content of cytochrome P-450, as determined from its CO difference spectrum, nor the peroxide-supported demethylase activity catalyzed by cytochrome P-450 alone was affected by the phosphatase treatment. NADH-cytochrome b5 reductase and cytochrome b5 were not affected by the phosphatase either. NADPH-cytochrome P-450 reductase purified from rabbit liver microsomes lost its NADPH-dependent cytochrome c reductase activity upon incubation with phosphatase in a way similar to that of microsome-bound reductase. Flavin analysis showed that the phosphatase treatment caused a decrease of FMN with concomitant appearance of riboflavin. Alkaline phosphatase, therefore, inactivates the reductase by attacking its FMN, and the inactivation of the reductase, in turn, leads to a decrease of the microsomal monooxygenase activities.  相似文献   

4.
The protective effect of melatonin on lipopolysaccharide (LPS)-induced oxidative damage in phenobarbital-treated rats was measured using the following parameters: changes in total glutathione (tGSH) concentration, levels of oxidized glutathione (GSSG), the activity of the antioxidant enzyme glutathione peroxidase (GSH-PX) in both brain and liver, and the content of cytochrome P450 reductase in liver. Melatonin was injected intraperitoneally (ip, 4mg/kg BW) every hour for 4 h after LPS administration; control animals received 4 injections of diluent. LPS was given (ip, 4 mg/kg) 6 h before the animals were killed. Prior to the LPS injection, animals were pretreated with phenobarbital (PB), a stimulator of cytochrome P450 reductase, at a dose 80 mg/kg BW ip for 3 consecutive days. One group of animals received LPS together with Nw-nitro-L-arginine methyl ester (L-NAME), a blocker of nitric oxide synthase (NOS) (for 4 days given in drinking water at a concentration of 50 mM). In liver, PB, in all groups, increased significantly both the concentration of tGSH and the activity of GSH-PX. When the animals were injected with LPS the levels of tGSH and GSSG were significantly higher compared with other groups while melatonin and L-NAME significantly enhanced tGSH when compared with that in the LPS-treated rats. Melatonin alone reduced GSSG levels and enhanced the activity of GSH-PX in LPS-treated animals. Additionally, LPS diminished the content of cytochrome P450 reductase with this effect being largely prevented by L-NAME administration. Melatonin did not change the content of P450 either in PB- or LPS-treated animals. In brain, melatonin and L-NAME increased both tGSH levels and the activity of GSH-PX in LPS-treated animals. The results suggest that melatonin protects against LPS-induced oxidative toxicity in PB-treated animals in both liver and brain, and the findings are consistent with previously published observations related to the antioxidant activity of the pineal hormone.  相似文献   

5.
Nitric oxide (NO), a highly reactive free radical is involved in vasodilation, neurotransmission, hormone secretion, and reproduction. Since all known nitric oxide synthase (NOS) isoforms possess NADPH-diaphorase (NADPH-d) activity, NADPH-d histochemistry was used as a commonly accepted procedure for NOS identification. The aim of our study was to determine the cellular localization of NADPH-d, eNOS, and iNOS in the porcine uterus and the correlation between NADPH-d and NOS activity in the early, middle, late luteal, and follicular phase of the estrous cycle. Light-microscopic observations of the sections revealed the differential expression of the NADPH-d in the analyzed stages of the estrous cycle. The most intense staining was observed in the luminal epithelium in the late luteal phase and in some groups of the endometrial glands in all studied stages. Positive reaction was also found in the endothelial cells of blood vessels and in the myometrium itself. Immunostaining for eNOS was observed in the luminal and glandular epithelium in all studied stages, but no clear fluctuations were observed. The endothelium of both endometrial and myometrial blood vessels displayed pronounced eNOS immunostaining. Strong iNOS staining was observed in the luminal epithelium in the late luteal and follicular phase and in selected groups of endometrial glands. Thus, only NADPH-d and iNOS undergo cyclic changes in the studied stages of the estrous cycle. The differential expression of NADPH-d/NOS in the porcine uterine horn during the estrous cycle suggests a role for NO in modulating uterine function.  相似文献   

6.
Nitric oxide synthase (NOS) is responsible for the biological production of nitric oxide (NO) in several organs, including those of the reproductive tract. We investigated potential changes in NADPH-diaphorase (NADPH-d) activity (marker for NOS activity) and the presence and distribution of NOS in the porcine oviduct. Tissues were obtained from gilts (n=16) on different days of the estrous cycle. One fallopian tube was used for histo- and immunohistochemistry and the other for Western blotting analysis. NADPH-d activity was much higher in the epithelium of the mucosa than in the myosalpinx. The highest activity of NADPH-d was always found in the epithelium of the isthmus. The intensity of the reaction (arbitrary units +/- SEM) in isthmus epithelium increased from the postovulatory period until early proestrus (96.2 +/- 11.2) and then gradually decreased. The lowest intensity of NADPH-d reaction in the epithelium of the isthmus was seen at estrus (58.4 +/- 7.7). The most intense NADPH-d activity in myosalpinx of all parts of the oviduct was observed at the postovulatory stage of the estrous cycle (isthmus 38.3 +/- 2.5; ampulla 35.6 +/- 4.2; infundibulum 24.7 +/- 0.8) and then decreased during the remaining stages of the estrous cycle (p< 0.001). The presence of endothelial NOS (eNOS) was detected in epithelial cells of mucosa and in endothelium of vascular tissues and myosalpinx during all studied days of the estrous cycle. The positive reaction for inducible NOS (iNOS) was restricted only to the endothelium of lymph vessels and some blood vessels. Because our Western blotting analysis revealed that porcine oviduct contains eNOS but not iNOS, we suggest that eNOS is the main isoform of NOS expressed in the porcine oviduct. We concluded that the different activity of NADPH-d in the various regions of the oviduct, accompanied by changes in its activity during the course of the estrous cycle, could indicate an important role of NO in regulation of tubal function.  相似文献   

7.
Age-related changes in various tissues have been associated with the onset of a number of age-related diseases, including inflammation and cancer. Bladder cancer, for instance, is a disease that mainly afflicts middle-aged or elderly people and is mostly of urothelial origin. Although research on age-related changes of long-lived post-mitotic cells such as neurons is rapidly progressing, nothing is known about age-related changes in the urothelium of the urinary bladder, despite all the evidence confirming the important role of oxidative stress in urinary bladder pathology. The purpose of this study was thus to investigate the oxidative status and age-related changes in urothelial cells of the urinary bladder of young (2 months) and aging (20 months) mice by means of various methods. Our results demonstrated that healthy young urothelium possesses a powerful antioxidant defence system that functions as a strong defence barrier against reactive species. In contrast, urothelial cells of aging bladder show significantly decreased total antioxidant capacity and significantly increased levels of lipid peroxides (MDA) and iNOS, markers of oxidative stress. Our study demonstrates for the first time that ultrastructural alterations in mitochondria and accumulation of lipofuscin, known to be one of the aging pigments, can clearly be found in superficial urothelial cells of the urinary bladder in aging mice. Since the presence of lipofuscin in the urothelium has not yet been reported, we applied various methods to confirm our finding. Our results reveal changes in the oxidative status and structural alterations to superficial urothelial cells similar to those of other long-lived post-mitotic cells.  相似文献   

8.
Nitric oxide plays a key role in the regulation of various female reproductive processes such as ovulation, implantation and myometrial relaxation. The aim of the present study was to determine the histochemical activity and cellular localization of NADPH-d in the porcine uterus during early pregnancy, including the implantation period. Tissue samples collected from the pig uteri on days 5, 10, 12, 15 and 17 of pregnancy were stained histochemically for NADPH-d activity and immunohistochemically for NOS isoforms localization. In the luminal epithelium a significant increase of NADPH-d activity was observed on days 5-12 of pregnancy. On day 17 of pregnancy, two different staining patterns were observed: 1) a significant (p0.001) decrease in NADPH-d activity at the site of implantation and 2) the high NADPH-d activity at inter-implantation regions. The endometrial glands showed a significant (p0.001) increase in NADPH-d staining with high activity in individual glands. The arterial endothelium expressed stronger NADPH-d staining compared with venous vessels. Immunoreactivity of eNOS was similar to NADPH-d staining but no optical differences in the intensity of staining were observed. Clear iNOS immunoreactivity was detected in the luminal epithelium, endometrial stroma and individual endometrial glands. The vascular endothelium displayed weak iNOS staining.  相似文献   

9.
Histochemical methods for detecting nitric oxide synthase   总被引:4,自引:0,他引:4  
Summary The three isoforms of nitric oxide synthase (NOS), neuronal (nNOS), endothelial (eNOS), and inducible (iNOS), can be visualized in cells and tissues by NADPH-diaphorase (NADPH-d) histochemistry, immunocytochemistry and in situ hybridization. Histochemical demonstration of NADPH-d shows the formazan final reaction product as a solid blue deposit. The ultrastructural localization of NADPH-d in the rat hippocampus showed an electron-dense deposit on membranes predominantly of the endoplasmic reticulum. The immunohistochemical demonstration of nNOS, using the nickel enhancement technique, shows positive reaction product over the dendrites and the soma of the nerve cell in the rat brain. Ultrastructural localization of nNOS in whole mount preparations of myenteric plexus and circular smooth muscle from guinea-pig ileum shows that NOS immunoreactivity was patchily distributed in myenteric neurones and was not specifically associated with any intracellular organelles or with plasma membranes. In situ hybridization, using radio-labelled probes, was used to study nNOS mRNA in lumbar dorsal root ganglia after peripheral transection of the sciatic nerve in rats. Labelling of the NOS mRNA-positive neurones is observed as a series of dense granules over the entire cell. NADPH-d histochemistry, immunocytochemistry and in situ hybridization each have a significant role to play in the localization of NOS. NADPH-d detects an enzyme associated with the NOS molecule, immunocytochemistry detects the NOS molecule, and in situ hybridization detects mRNA for NOS. Therefore, if each of these techniques is applied in carefully controlled experiments, consideration of the accumulated data should be valuable in revealing insights into the biology of NOS.  相似文献   

10.
The effect of diabetes was determined on nitric oxide synthase (NOS) activity in rat heart and liver. The diabetes was induced by streptozotocin (STZ) and NOS activity was determined after 1 or 12 weeks post-STZ injection. In both tissues, the majority of NOS activity was associated with endothelial constitutive calcium-sensitive NOS (ecNOS) isoform and found in the particulate (100,000xg pellet) fraction in young rats. The diabetes as well as age reduced this activity significantly in heart, whereas only the age caused a decrease in ecNOS activity in liver tissue. Lipopolysaccharides (LPS) induced calcium-insensitive iNOS activity in both young and old rats. The induction was significantly higher (up to 10-fold) in liver as compared to heart. Although the maximum induction of iNOS in young rats was almost similar in diabetic tissues as compared to control animals, there was a lag period for induction of iNOS in diabetic tissues. In old diabetic rats, the induction by LPS was almost completely abolished. These results suggest that diabetes causes either no change or a decrease in ecNOS activity and impairment in the induction of iNOS by LPS in rat heart and liver.  相似文献   

11.
 The presence of NADPH diaphorase staining was compared with the immunohistochemical localization of four NADPH-dependent enzymes – neuronal (type I), inducible (type II), and endothelial (type III) nitric oxide synthase (NOS) and cytochrome P450 reductase. Cell types that were immunoreactive for the NADPH-dependent enzymes were also stained for NADPH diaphorase, suggesting that endothelial and neuronal NOS and cytochrome P450 reductase all show NADPH diaphorase activity in formaldehyde-fixed tissue. However, in some tissues, the presence of NADPH diaphorase staining did not coincide with the presence of any of the NADPH-dependent enzymes we examined. In vascular endothelial cells, the punctate pattern of staining observed with NADPH diaphorase histochemistry was identical to that seen following immunohistochemistry using antibodies to endothelial NOS. In enteric and pancreatic neurons and in skeletal muscle, the presence of NADPH diaphorase staining correlated with the presence of neuronal NOS. In the liver, sebaceous glands of the skin, ciliated epithelium, and a subpopulation of the cells in the subserosal glands of the trachea, zona glomerulosa of the adrenal cortex, and epithelial cells of the lacrimal and salivary glands, the presence of NADPH diaphorase staining coincided with the presence of cytochrome P450 reductase immunoreactivity. In epithelial cells of the renal tubules and zona fasciculata and zona reticularis of the adrenal cortex, NADPH diaphorase staining was observed that did not coincide with the presence of any of the enzymes. Inducible NOS was not observed in any tissue. Thus, while tissues that demonstrate immunoreactivity for neuronal and endothelial NOS also stain positively for NADPH diaphorase activity, the presence of NADPH diaphorase staining does not reliably or specifically indicate the presence of one or more NOS isoforms. Accepted: 2 September 1996  相似文献   

12.
Treatment with Bacillus Calmette Guerin (BCG) bladder instillations is an established treatment modality for superficial urinary bladder cancer and carcinoma in situ (CIS), but the anti-tumor mechanisms following BCG instillations remain largely unknown. Previous data show increased nitric oxide (NO) concentrations in the urinary bladder from patients treated with BCG suggesting that NO-formation may be involved in the BCG mediated effect. In the present study we evaluated 11 patients with urinary bladder cancer who had received BCG treatment and 11 tumor free control subjects. We performed immunohistochemistry, Western blot and real-time polymerase chain reaction (PCR) on bladder biopsies to establish inducible nitric oxide synthase (iNOS) protein levels and localization as well as iNOS mRNA expression. Endogenous NO formation in the bladder was also measured. In patients with bladder cancer who had received BCG treatment iNOS-like immunoreactivity was found in the urothelial cells but also in macrophages in the submucosa. Furthermore, endogenously formed NO was significantly increased (p<0.001) in the BCG treated patients and they had a ten-fold increase in mRNA expression for iNOS compared to healthy controls (p=0.003). In conclusion iNOS was found to be localized to the urothelium and macrophages underlying it. Our study also confirms elevated levels of endogenously formed NO and increased mRNA expression and protein levels for iNOS in patients with BCG treated bladder cancer. These data further support the notion that NO may be involved in the anti-tumor mechanism that BCG exerts on bladder cancer cells.  相似文献   

13.
Poladia DP  Bauer JA 《Biochimie》2004,86(8):543-551
BACKGROUND: Urinary bladder dysfunction is a complication in diabetes but the mechanisms involved are undefined. Here, we investigated roles of oxidative stress and oxidant driven signaling pathways in a murine model of diabetes, with an emphasis on urothelial vs. smooth muscle regional changes. METHODS: Mice were dosed with streptozotocin (150 mg/kg) or vehicle and studied at 5 weeks. Functional changes were assessed by in vitro cystometry. Immunohistochemical methods and automated digital imaging was used for morphometric and histochemical analysis of bladder tissue regions. RESULTS: We detected significant increases in protein 3-nitrotyrosine in both urothelium and smooth muscle regions during diabetes, demonstrating an increased prevalence of reactive nitrogen species. In light of nitric oxide synthase (NOS) isoforms as potential contributors to increased protein nitration, all three NOS isoforms were studied; region specific increases in NOS1 (urothelium and smooth muscle), NOS2 (urothelium only) but no alterations in NOS3 isoform were detected during diabetes. In contrast, p21-Rac1 (coordinating protein of NADPH oxidase) was significantly increased only in smooth muscle (diabetic vs. controls). We also investigated phosphorylation of ERK, JNK, p38 and Akt using immunohistochemical techniques; each of these was increased during diabetes but with different distributions in the two major regions of bladder tissues viz the smooth muscle and urothelium. CONCLUSIONS: The STZ mouse model of diabetes exhibits bladder dysfunction and structural changes similar to human. Reactive nitrogen species formation occurs in this setting and region specific assessments also revealed that urothelial changes and smooth muscle changes are discrete with respect to mechanisms of reactive nitrogen species (increased production of NO vs. superoxide anion) and activation of oxidant related stress signaling pathways.  相似文献   

14.
OBJECTIVE: Neuroendocrine (NE) cells are uncommon in primary adenocarcinoma (AC) and other glandular lesions of the bladder, with no recent study series concerning its significance in differential diagnosis, prognosis or biologic significance. STUDY DESIGN: Sixteen primary bladder AC (enteric-type [n = 71, mucinous [n = 6] and not otherwise specified [NOS] [n = 31), 4 cases of urothelial carcinoma with glandular differentiation, 20 cases of glandular cystitis and 3 urachal remnants with intestinal metaplasia constituted the study series. In addition, 20 specimens of normal-looking urothelium, 15 conventional urothelial carcinomas and 5 small cell carcinoma (SCC) cases were included for comparison. NE differentiation included detection of chromogranin A, neuron-specific enolase (NSE) and synaptophysin by immunohistochemistry. The statistical analysis included the chi2 or Fisher exact test. RESULTS: Chromogranin A-positive cells were present in 60% (11 of 16) of primary AC, all of enteric or mucinous type, but not in any of the 3 NOS-type AC investigated. NE differentiation in bladder AC subtypes resulted in highly significant differences between enteric or mucinous vs. NOS type (p = 0.0023). NE differentiation was also different in urachal vs. nonurachal AC (p = 0.020) and primary bladder AC vs. conventional invasive urothelial carcinoma (p < 0.001). Synaptophysin-positive cells were seen in 2 (12.5%) of the 16 primary AC cases, and NSE was negative in the 16 primary bladder AC. All urachal remnants and 70% of glandular cystitis examples had chromogranin A-immunoreactive cells. One of 4 urothelial carcinomas with glandular differentiation had chromogranin A-immunoreactive cells, but this was not significant when compared with primary AC (p = 0.1). Normal-looking bladder urothelium and conventional urothelial carcinoma specimens had no chromogranin A-immunoreactive cells. The 5 SCC cases investigated were positive for chromogranin A. No correlation was found between NE differentiation and outcome of primary bladder AC or urothelial carcinoma with glandular differentiation. CONCLUSION: Primary bladder AC, cystitis glandularis and urachal remnants with intestinal metaplasia showed variable degrees of NE differentiation, with no apparent clinical correlation or prognostic significance. However, the absence of NE differentiation in NOS-type primary bladder AC may help in better defining this uncommon subtype of primary bladder AC.  相似文献   

15.
BACKGROUND: Nitric oxide (NO) is an inorganic gas produced by a family of NO synthase (NOS) proteins. The presence and the distribution of inducible-NOS (NOS II or iNOS), and NADPH-diaphorase (NADPH-d), a marker for NOS catalytic activity, were determined in muscle sections from control, DMD, and BMD patients. MATERIALS AND METHODS: NADPH-d reactivity, iNOS- and nNOS (NOS I)-immunolocalization were studied in muscles from mdx mice before and after somatic gene transfer of dystrophin or utrophin. RESULTS: In control patients, few fibers (<2%) demonstrated focal accumulation of iNOS in sarcolemma. In DMD patients, a strong iNOS immunoreactivity was observed in some necrotic muscle fibers as well as in some mononuclear cells, and regenerating muscle fibers had diffusely positive iNOS immunoreactivity. In DMD patients, NADPH-d reactivity was increased and mainly localized in regenerating muscle fibers. In mdx mice quadriceps, iNOS expression was mainly observed in regenerating muscle fibers, but not prior to 4 weeks postnatal, and was still present 8 weeks after birth. The expression of dystrophin and the overexpression of utrophin using adenovirus-mediated constructs reduced the number of iNOS-positive fibers in mdx quadriceps muscles. The correction of some pathology in mdx by dystrophin expression or utrophin overexpression was independent of the presence of nNOS. CONCLUSIONS: These results suggest that iNOS could play a role in the physiopathology of DMD and that the abnormal expression of iNOS could be corrected by gene therapy.  相似文献   

16.
The acute regulation of estrogen synthetase (aromatase), the cytochrome P450 enzyme system responsible for estrogen production, is not well explored. We report here that aromatase, but not NADPH-cytochrome c (P450) reductase, activity from human term placental microsomes decreased when incubated in phosphate-free buffer at 37 degrees C. Aromatase activity was stabilized by phosphate buffer or by the phosphatase inhibitors tartaric acid or EDTA, but not NaF, in phosphate-free buffer. Alkaline phosphatase also inhibited aromatase in phosphate-free buffer relative to phosphate buffer, but the inactivation appears to be due primarily to proteolytic solubilization of NADPH-cytochrome c reductase from the microsomes by proteases within the alkaline phosphatase preparation. Based on these data, we suggest that the cytochrome P450 component of aromatase may be regulated acutely by phosphorylation-dependent processes.  相似文献   

17.
Inhibitors of mammalian cytochrome P450 and P450 reductase were used to investigate the enzymes in flounder (Platichthys flesus) hepatic microsomes involved in the stimulation of NAD(P)H-dependent iron/EDTA-mediated 2-keto-4-methiolbutyric acid (KMBA) oxidation (hydroxyl radical production) by the redox cycling compounds menadione and nitrofurantoin. Inhibitors were first tested for their effects on flounder microsomal P450 and flavoprotein reductase activities. Ellipticine gave type II difference binding spectra (app. Ks 5.36 μM; ΔA max 0.16 nmol-1 P450) and markedly inhibited NADPH-cytochrome c reductase, NADPH-cytochrome P450 reductase, and monooxygenase (benzo[a]pyrene metabolism) activities. 3-aminopyridine adenine dinucleotide phosphate (AADP; competitive inhibitor of P450 reductase) inhibited NADPH-cytochrome c but not NADH-cytochrome c or NADH-ferricyanide reductase activities. Alkaline phosphatase (inhibitor of rabbit P450 reductase) stimulated NADPH-cytochrome c reductase activity seven fold but had less effect on NADH-reductase activities. AADP inhibited nitrofurantoin- and menadione-stimulated KMBA oxidation by 45 and 17%, respectively, indicating the involvement of P450 reductase at least in the former. In contrast, ellipticine had relatively little effect, possibly because, unlike cytochrome c, the smaller xenobiotic molecules can access the hydrophilic binding site of P450 reductase. Alkaline phosphatase stimulated NAD(P)H-dependent basal and xenobiotic-stimulated KMBA oxidation, showing general consistency with the results for reductase activities. Overall, the studies indicate both similarities (ellipticine, AADP) and differences (alkaline phosphatase) between the flounder and rat hepatic microsomal enzyme systems.  相似文献   

18.
Contractile dysfunction of the respiratory muscles plays an important role in the genesis of respiratory failure during sepsis. Nitric oxide (NO), a free radical that is cytotoxic and negatively inotropic in the heart and skeletal muscle, is produced in large amounts during sepsis by a NO synthase inducible (iNOS) by LPS and/or cytokines. The aim of this study was to investigate whether iNOS was induced in the diaphragm of Escherichia coli endotoxemic rats and whether inhibition of iNOS induction or of NOS synthesis attenuated diaphragmatic contractile dysfunction. Rats were inoculated intravenously (IV) with 10 mg/kg of E. coli endotoxin (LPS animals) or saline (C animals). Six hours after LPS inoculation animals showed a significant increase in diaphragmatic NOS activity (L-citrulline production, P < 0.005). Inducible NOS protein was detected by Western-Blot in the diaphragms of LPS animals, while it was absent in C animals. LPS animals had a significant decrease in diaphragmatic force (P < 0.0001) measured in vitro. In LPS animals, inhibition of iNOS induction with dexamethasone (4 mg/kg IV 45 min before LPS) or inhibition of NOS activity with N(G)-methyl-L-arginine (8 mg/kg IV 90 min after LPS) prevented LPS-induced diaphragmatic contractile dysfunction. We conclude that increased NOS activity due to iNOS was involved in the genesis of diaphragmatic dysfunction observed in E. coli endotoxemic rats.  相似文献   

19.
20.
Cholesterol 7 alpha-hydroxylase activity was completely inhibited by incubation with alkaline phosphatase in a reconstituted enzyme system containing a cytochrome P-450, NADPH-cytochrome P-450 reductase and phospholipid. On the other hand, cAMP-dependent protein kinase stimulated cholesterol 7 alpha-hydroxylase activity by 2.5-fold. The modulation of cholesterol 7 alpha-hydroxylase activity was dependent on the amount of phosphatase or kinase added. The phosphatase inhibited enzyme activity was partially reversed by the treatment with protein kinase. These experiments indicate that the reconstituted cholesterol 7 alpha-hydroxylase activity is reversibly regulated by phosphorylation/dephosphorylation mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号