首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An inverse relationship between low-density lipoprotein uptake and cell density was observed in rat hepatocyte monolayers incubated with lipoprotein-deficient serum. This was also true for cell association, binding and degradation of low-density lipoproteins. Compactin stimulated cell association and degradation of low-density lipoproteins both at low and high concentrations. Insulin, on the other hand, had no consistent effect on low-density lipoprotein cell association or degradation.  相似文献   

2.
The inhibitory effects of myricitrin on the oxidation of human low-density lipoprotein were investigated before and after its degradation by simulated digestion. Myricitrin strongly inhibited the low-density lipoprotein oxidation induced by either 2,2'-azobis (2-amidinopropane) dihydrochloride or CuSO4 in a concentration-dependent manner. Myricitrin was very stable under an acidic condition (pH 1.8) corresponding to the gastric environment, but it was easily degraded under an alkaline condition (pH 8.5) corresponding to the intestinal environment. However, degraded myricitrin also had a strong inhibitory effect on the oxidative degradation of alpha-tocopherol, cholesterol and apolipoprotein B-100 in low-density lipoprotein. Our study revealed that myricitrin was degraded into many components under a mildly alkaline condition, but the degraded myricitrin still retained the free radical-scavenging and copper-chelating activities toward low-density lipoprotein.  相似文献   

3.
Skin fibroblast cultures from patients with I-cell disease (mucolipidosis II) are characterized by multiple lysosomal enzyme deficiencies The present studies deal with the consequences of these deficiencies with respect to the metabolism of plasma low-density lipoproteins. Degradation of the protein moiety was defective in I-cells compared with control cells, but the binding and internalization of low density lipoprotein were much less affected. Measurements of low-density lipoprotein degradation in homogenates demonstrated directly for the first time a deficiency of acid proteinase activity in I-cell fibroblasts. Comparison of results in 6-h incubations with those in 24-h incubations showed accumulation of intracellular low-density lipoprotein in I-cell fibroblasts and an accelerating rate of degradation, possibly attributable to intracellular accumulation of low-density lipoprotein substrate. The significance of these findings with respect to low-density lipoprotein metabolism in vivo is discussed.  相似文献   

4.
Nonenzymatic covalent binding (glycation) of reactive aldehydes (from glucose or metabolic processes) to low-density lipoproteins has been previously shown to result in lipid accumulation in a murine macrophage cell line. The formation of such lipid-laden cells is a hallmark of atherosclerosis. In this study, we characterize lipid accumulation in primary human monocyte-derived macrophages, which are cells of immediate relevance to human atherosclerosis, on exposure to low-density lipoprotein glycated using methylglyoxal or glycolaldehyde. The time course of cellular uptake of low-density lipoprotein-derived lipids and protein has been characterized, together with the subsequent turnover of the modified apolipoprotein B-100 (apoB) protein. Cholesterol and cholesteryl ester accumulation occurs within 24 h of exposure to glycated low-density lipoprotein, and increases in a time-dependent manner. Higher cellular cholesteryl ester levels were detected with glycolaldehyde-modified low-density lipoprotein than with methylglyoxal-modified low-density lipoprotein. Uptake was significantly decreased by fucoidin (an inhibitor of scavenger receptor SR-A) and a mAb to CD36. Human monocyte-derived macrophages endocytosed and degraded significantly more (125)I-labeled apoB from glycolaldehyde-modified than from methylglyoxal-modified, or control, low-density lipoprotein. Differences in the endocytic and degradation rates resulted in net intracellular accumulation of modified apoB from glycolaldehyde-modified low-density lipoprotein. Accumulation of lipid therefore parallels increased endocytosis and, to a lesser extent, degradation of apoB in human macrophages exposed to glycolaldehyde-modified low-density lipoprotein. This accumulation of cholesteryl esters and modified protein from glycated low-density lipoprotein may contribute to cellular dysfunction and the increased atherosclerosis observed in people with diabetes, and other pathologies linked to exposure to reactive carbonyls.  相似文献   

5.
Two monensin-resistant clones show similar low-density lipoprotein binding activity but less internalization or degradation of low-density lipoprotein than the parental Balb/3T3 or other resistant clone. Sterol synthesis from radioactive acetate in the resistant mutant, MO-5, is inhibited by more than 70% of control in the presence of tenfold higher amounts of low-density lipoprotein than the dose that inhibits the parental Balb/3T3 to similar level. 3-Hydroxy-3-methylglutaryl coenzyme A reductase activity of Balb/3T3 and MO-5 is inhibited by 48% and 27% of control, respectively, in the presence of 10 micrograms/ml of low-density lipoprotein. Colloidal silica gradient centrifugation shows that transport of low-density lipoprotein from the surface membrane to the lysosome is much slower in MO-5 cells than in Balb/3T3 cells. Down regulation of low-density lipoprotein receptors on the cell surface in Balb/3T3 is observed by exposing the cells to 5-15 micrograms/ml low-density lipoprotein, whereas only slight if any down regulation is observed when MO-5 cells are treated with low-density lipoprotein. The altered endocytosis of low-density lipoprotein behaves as a dominant trait in hybrids of MO-5 and THO2-2, a derivative of Balb/3T3 resistant to both ouabain and 6-thioguanine.  相似文献   

6.
Pathogenic mutations in the low-density lipoprotein receptor prevent cholesterol uptake and cause familial hypercholesterolemia. In comparison to the biogenesis and endocytic trafficking of this receptor and some of its mutants, their degradation mechanisms are not well understood. Therefore, to gain some insights into this aspect, we analyzed the effects of proteasomal and lysosomal inhibitors on the levels of the wild type low-density lipoprotein receptor and a mutant form, C358Y, which was prevalent in a sample of Spanish familial hypercholesterolemia patients. In transfected cells, the mutant C358Y exhibited lower activity than the wild type receptor, as well as retarded post-translational processing of its precursor to the mature form. Interestingly, about 30% of the mutant precursor was degraded by a lysosomal pathway. Moreover, its mature form was more rapidly degraded than the wild type receptor (half lives of 5.3 and 10.9 h, respectively) and its degradation was exclusively dependent on a lysosomal pathway. In contrast, the mature form of the wild type receptor was mainly degraded by proteasomes and, to a minor extent (30%), by lysosomes. We conclude that a single mutation in the low-density lipoprotein receptor switches the degradation of the mature receptor from a proteasomal to a lysosomal pathway which degrades the protein at a faster rate. This suggests cooperation of proteasomes and lysosomes in the degradation of the low-density lipoprotein receptor and adds an intriguing new aspect to our understanding of receptor-mediated endocytosis.  相似文献   

7.
Removal of the terminal sialic acid residues from many serum glycoproteins results in exposure of their penultimate galactose residues and rapid clearance from circulation by the liver. Low-density lipoprotein is a glycoprotein containing 21 galactose and 9 sialic acid residues per particle. Studies in this laboratory and others have shown that both the liver and extrahepatic tissues contribute to the degradation of low-density lipoprotein. This study was undertaken to determine whether desialylation of pig low-density lipoprotein alters its removal from circulation. Low-density lipoprotein was incubated at 37 degrees C with an agarose-bound neuraminidase, proteinase-free, from Clostridium perfringens. After 18 h at pH 5.0, 70% of the sialic acid residues were removed. The desialylated 131I-labelled and native 125I-labelled low-density lipoproteins were simultaneously injected into a pig, and their disappearance from plasma was followed for 96 h. The turnovers of the two were identical. In contrast, neuraminidase-treated fetuin was cleared about 200-fold faster than native fetuin. Studies were also performed in cultured rat hepatocytes. Rates of degradation of native and neuraminidase-treated low-density lipoprotein were similar, whereas asialo-fetuin was degraded at six to ten times the rate of native fetuin. Thus desialylation does not appear to alter low-density-lipoprotein catabolism by hepatic or extrahepatic cells.  相似文献   

8.
Stimulation of the proliferation of human skin fibroblasts by platelet-derived growth factor increased the binding and degradation of low-density lipoproteins at cell densities of 2000-30,000 cells/cm2. Binding and degradation of low-density lipoprotein was an inverse function of cell density in both proliferating and quiescent cells, indicating that the effect of cell density on the LDL receptor has proliferation-dependent and proliferation-independent components. The effect of medium conditioned by confluent fibroblasts on LDL metabolism was tested to determine if the effects of cell density on LDL metabolism might be mediated by cellular secretion products. Fibroblast-conditioned medium increased LDL metabolism, suggesting secretion products do not mediate these effects of cell density. These data indicate that regulation of the low-density lipoprotein receptor is not a simple on/off response to growth stimulation, but is responsive to extracellular cues such as cell density.  相似文献   

9.
The metabolism of high-density lipoprotein (HDL) in cells of five human cancer cell lines maintained in monolayer culture was investigated. In cells of some of the lines there was evidence of high-affinity binding sites for HDL, whereas in others this could not be demonstrated. However, in one cell line, viz., HEC-B-296 (human endometrial carcinoma), degradation of the protein component of HDL was demonstrated. The proteolytic activity was specific for HDL in so far as human serum albumin was not degraded by these cells. However, this degradative process did not involve internalization of the HDL molecule and degradation was not mediated by lysosomal proteolytic enzymes. HDL, when present in the medium, did not affect the degradation of low-density lipoprotein and low-density lipoprotein did not affect the degradation of HDL. HDL did not affect significantly cholesterol biosynthesis or cholesteryl ester biosynthesis as estimated from the activity of the regulatory enzymes, 3-hydroxy-3-methylglutaryl coenzyme A reductase and acyl-CoA:cholesterol acyltransferase. The degradation of HDL by HEC-B-296 cells was inhibited, to various degrees, when trypsin inhibitor or a protease inhibitor such as leupeptin, was present in the culture medium. It is concluded that degradation of the protein component of HDL by human neoplastic cells of the HEC-B-296 line was the result of activity of a proteolytic enzyme that is present on the external surface of the cells.  相似文献   

10.
Low-Density Lipoprotein Receptor on Endothelium of Brain Capillaries   总被引:5,自引:1,他引:4  
The presence of lipoproteins, apolipoproteins, and their receptors in the brain could provide a system for cholesterol homeostasis, as they do in other tissues. This study was undertaken to determine whether plasma low-density lipoprotein, the major carrier of cholesterol, is involved in the delivery of lipids through the blood-brain barrier. 125I-Labeled low-density lipoprotein bound to a specific receptor on the endothelium of brain capillaries when it was injected immediately postmortem into bovine brain circulation. In contrast, no specific binding of 125I-low density lipoprotein was found when the incubations were performed with isolated capillaries. Incubations of endothelial or basement membranes of brain capillaries with 125I-low density lipoprotein demonstrated a high-affinity association of low-density lipoprotein with the membranes of bovine cerebral endothelial cells. The specificity of the low-density lipoprotein binding was determined in several ways using a dot blot assay. This receptor shows the same characteristics as the low-density lipoprotein receptor on human fibroblasts. The molecular weight of the bovine brain capillary low-density lipoprotein receptor (132,000) was determined by ligand blotting. These results demonstrated the occurrence of a low-density lipoprotein receptor on the endothelial cells of brain capillaries.  相似文献   

11.
PURPOSE OF REVIEW: The aim of this article is to review, analyze and interpret the growing body of evidence on circulating oxidized low-density lipoprotein and its relationship to diagnosis and prognosis of cardiovascular disease. RECENT FINDINGS: Previous studies focused on indirect measures of oxidative stress such as susceptibility of low-density lipoprotein to oxidation and measurement of autoantibodies to oxidized low-density lipoprotein. The generation of monoclonal antibodies recognizing distinct oxidation-specific epitopes has allowed the development of sensitive and specific assays to measure circulating oxidized low-density lipoprotein. Recent work in human populations has demonstrated that circulating oxidized low-density lipoprotein is associated with preclinical atherosclerosis, coronary and peripheral arterial atherosclerosis, acute coronary syndromes and vulnerable plaques. Several studies have also suggested that elevated levels of oxidized low-density lipoprotein are a prognostic indicator of cardiovascular outcomes. In addition, it has been shown that lipoprotein(a) is the primary carrier of oxidized phospholipids in the circulation of humans, suggesting additional mechanisms through which lipoprotein(a) may be pro-atherogenic. SUMMARY: Research on circulating oxidized low-density lipoprotein biomarkers is rapidly accelerating and providing novel insights into the pathophysiology of cardiovascular disease. Future studies will further assess the clinical utility of oxidized low-density lipoprotein biomarkers by determining their prognostic value in the diagnosis and prognosis of cardiovascular disease and will also evaluate the relative merit of specific assays by performing comparative studies.  相似文献   

12.
Ligand-immunoblotting was used to detect distinct receptors for native low-density lipoprotein and for acetylated low-density lipoprotein on microvillous membranes from human term placentas. Antisera directed against native and modified low-density lipoproteins were prepared in rabbits and their specificities were assessed by immunodiffusion and immunoelectrophoresis. The receptor for low-density lipoprotein was detected as a 160 kDa protein and that for acetylated low-density lipoprotein as a 200 kDa protein. These receptors were compared with their counterparts in cultured human skin fibroblasts, bovine adrenal cortex and J774 macrophage-like cells. This is the first investigation that visualizes the presence of receptors for both native and modified low-density lipoproteins in a steroidogenic tissue.  相似文献   

13.
The interaction of C-reactive protein with low-density lipoprotein is considered to be one of the key properties that link C-reactive protein with atherosclerosis. However the data obtained to date are controversial, and hence make it difficult to conclude actual physiological or pathological impact of such interaction. The incompatible findings could be ascribed to the different structural state of C-reactive protein and/or low-density lipoprotein. We investigated in detail the interaction of various C-reactive protein isoforms with native and modified low-density lipoprotein. Our data showed "C-reactive protein" could indeed interact with each of native low-density lipoprotein, oxidized or enzymatically modified low-density lipoprotein, but that interaction occurs primarily when C-reactive protein is conformed in a modified form and not pentameric structure. Low level of modified C-reactive protein "contaminant" could confer C-reactive protein obvious low-density lipoprotein binding capacity. Interaction of modified C-reactive protein and low-density lipoprotein was mediated synergistically by both electrostatic association with ApoB and hydrophobic insertion into lipid layer. When complexed with modified C-reactive protein, macrophage binding/uptake of native and oxidized low-density lipoprotein was either increased 150% or decreased 35%, respectively. Thus the interaction of modified C-reactive protein with low-density lipoprotein may contribute to the regulation of low-density lipoprotein metabolism and foam cell formation in arterial wall. These results highlight an active role of modified C-reactive protein in atherosclerotic process.  相似文献   

14.
A method for isolating low-density lipoprotein by combining diafiltration and ultracentrifugation is described. Diafiltration separates plasma components by use of an ultrafiltration membrane that excludes particles of molecular weight greater than 300,000. The retentate is concentrated three- to fourfold by ultrafiltration, allowing large-scale preparation of low-density lipoprotein. Low-density lipoprotein prepared in this manner is similar in physical, chemical, and biologic properties to low-density lipoprotein isolated by sequential density ultracentrifugation alone. When low-density lipoprotein, prepared by either method, was added to human umbilical vein endothelial cell cultures, no cytotoxicity was observed. The techniques described reduce the demand on multiple rotors and ultracentrifuges for large-scale preparation of low-density lipoprotein suitable and often needed for tissue culture studies.  相似文献   

15.
Receptor-mediated endocytosis of low-density lipoproteins, their transport within endosomes, and subsequent degradation in lysosomes are essential components of the molecular system for cholesterol homeostasis in vertebrate cells. The system under study is also an example of clathrin-mediated endocytosis, a possible way of cell communication with the environment. Construction of a detailed mathematical model of this system would allow comprehensive study of mechanisms and kinetics of molecular processes and evaluation of the effect of various mutations, disorders, and environmental changes on the system operation. Receptor-mediated endocytosis of low-density lipoprotein particles and their subsequent degradation in the cell have been modeled. A network of mono-and bimolecular reactions best describing the system has been proposed. The results of calculation of kinetic parameters of the molecular system obtained with the model are in agreement with experimental evidence.  相似文献   

16.
PURPOSE OF REVIEW: This review discusses whether the relationship of small dense low-density lipoprotein to cardiovascular risk is direct, due to the atherogenic properties of the particle, or a reflection of concomitant abnormalities in high-density lipoprotein and plasma triglyceride. RECENT FINDINGS: Recent studies have examined whether low-density lipoprotein size distribution or concentration of small low-density lipoprotein is related more strongly to risk. It appears that the latter is a better predictor in major surveys, although in smaller cohort studies particle size shows a strong association with atherosclerosis burden. While the main causes of the formation of small dense low-density lipoprotein are relatively well understood, novel metabolic factors may also play a role, and pharmacologic interventions such as glitazones may have a direct regulatory impact. SUMMARY: Evidence links abnormalities in low-density lipoprotein structure to cardiovascular risk. The plasma concentration of small dense low-density lipoprotein is likely to be more informative than relative low-density lipoprotein particle size, and although methods are available for quantitation of this subfraction, there is considerable room for improvement. It is not yet clear how knowledge of the small dense low-density lipoprotein concentration may add to risk prediction.  相似文献   

17.
We tested the effects of fibroblast cell density and proliferation on the activities of acid cholesterol esterase and cathepsins, the lysosomal enzymes which degrade low-density lipoprotein. Rates of cell proliferation were increased by: (1) fibroblast conditioned medium, (2) increasing the time since subculture from 3 to 7 days, and (3) decreasing the plating density of cells. Cathepsin activity was consistently decreased as cellular proliferation was increased by these various methods. Changes in acid cholesterol esterase activity were more variable. For example, acid cholesterol esterase activity was consistently a positive function of cell density only at densities under 3 micrograms protein/cm2, while cathepsin activity increased up to densities of 16 micrograms protein/cm2. However, the activities of both enzymes were lower at cell densities of under 3 micrograms cell protein/cm2 compared to confluent cultures. Sparse fibroblast cultures may provide a unique model system to study low-density lipoprotein metabolism since, at low cell density, LDL receptor activity is high while lysosomal activity is low, making it possible that lysosomal degradation could become the rate-limiting step in the process of LDL degradation rather than receptor-mediated internalization of the lipoprotein. This might then allow an accumulation of lipoprotein-derived cholesteryl esters in the cell. Such a model could be relevant to the propensity of arterial cells to become foam cells during atherogenesis.  相似文献   

18.
Ratushny  A. V.  Likhoshvai  V. A. 《Biophysics》2008,51(1):95-99

Receptor-mediated endocytosis of low-density lipoproteins, their transport within endosomes, and subsequent degradation in lysosomes are essential components of the molecular system for cholesterol homeostasis in vertebrate cells. The system under study is also an example of clathrin-mediated endocytosis, a possible way of cell communication with the environment. Construction of a detailed mathematical model of this system would allow comprehensive study of mechanisms and kinetics of molecular processes and evaluation of the effect of various mutations, disorders, and environmental changes on the system operation. Receptor-mediated endocytosis of low-density lipoprotein particles and their subsequent degradation in the cell have been modeled. A network of mono-and bimolecular reactions best describing the system has been proposed. The results of calculation of kinetic parameters of the molecular system obtained with the model are in agreement with experimental evidence.

  相似文献   

19.
A high-affinity heparin subfraction accounting for 8% of whole heparin from bovine lung was isolated by low-density lipoprotein (LDL)-affinity chromatography. When compared to whole heparin, the high-affinity subfraction was relatively higher in molecular weight (11,000 vs. 17,000) and contained more iduronyl sulfate as hexuronic acid (76% vs. 86%), N-sulfate ester (0.75 vs. 0.96 mol/mol hexosamine), and O-sulfate ester (1.51 vs. 1.68 mol/mol hexosamine). Although both heparin preparations formed insoluble complexes with LDL quantitatively in the presence of 30 mM Ca2+, the concentrations of NaCl required for 50% reduction in maximal insoluble complex formation was markedly higher with high-affinity subfraction (0.55 M vs. 0.04 M). When compared to complex of 125I-LDL and whole heparin (H-125I-LDL), complex of 125I-LDL and high-affinity heparin subfraction (HAH-125I-LDL) produced marked increase in the degradation of lipoproteins by macrophages (7-fold vs. 1.4-fold over native LDL, after 5 h incubation) as well as cellular cholesteryl ester synthesis (16.7-fold vs. 2.2-fold over native LDL, after 18 h incubation) and content (36-fold vs. 2.7-fold over native LDL, after 48 h incubation). After a 5 h incubation, macrophages accumulated 2.3-fold more cell-associated radioactivity from HAH-125I-LDL complex than from [125I]acetyl-LDL. While unlabeled HAH-LDL complex produced a dose-dependent inhibition of the degradation of labeled complex, native unlabeled LDL did not elicit any effect even at a 20-fold excess concentration. Unlabeled particulate LDL aggregate competed for 33% of degradation of labeled complex; however, cytochalasin D, known inhibitor of phagocytosis, did not effectively inhibit the degradation of labeled complex. Unlabeled acetyl-LDL produced a partial (33%) inhibition of the degradation of labeled complex. These results indicate that (1) the interaction of high-affinity heparin subfraction with LDL leads to scavenger receptor mediated endocytosis of the lipoprotein, and stimulation of cholesteryl ester synthesis and accumulation in the macrophages; and (2) with respect to macrophage recognition and uptake, HAH-LDL complex was similar but not identical to acetyl-LDL. These observations may have implications for atherogenesis, because both mast cells and endothelial cells can synthesize heparin in the arterial wall.  相似文献   

20.
We have studied the biochemical mechanism of insulin action on glucose transport in the rat adipocyte. Plasma membranes and low-density microsomes were prepared by differential ultracentrifugation of basal and insulin-stimulated cells. The photochemical cross-linking agent hydroxysuccinimidyl-4-azidobenzoate was used to covalently bind [3H]cytochalasin B to the glucose transporter which migrated as a 45-50-kDa protein on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Isoelectric focusing of the eluted 40-55-kDa proteins revealed two peaks of D-glucose-inhibitable [3H]cytochalasin B radioactivity focusing at pH 6.4 and 5.6 when low-density microsomes were used as the starting material. In contrast, only one D-glucose inhibitable peak, focusing at pH 5.6, was found in plasma membranes. Pretreatment of the cells with insulin led to a marked redistribution of the pH 5.6 form of the glucose transporter from low-density microsomes to plasma membranes with no effect on the pH 6.4 form of the glucose transporter. Following isolation from the isoelectric focusing and sodium dodecyl sulfate-polyacrylamide gels, both glucose transporter isoforms were shown to cross-react with an antiserum raised against the purified human erythrocyte glucose transporter. Following incubation of [3H]cytochalasin B-labeled low-density microsomal and plasma membranes with neuraminidase, the pH 5.6 transporter isoform was shifted on isoelectric focusing to a more basic pH, while the pH 6.4 isoform was not affected. These data demonstrate that: there is a heterogeneity of glucose transporter species in the intracellular pool while the plasma membrane transporters are more uniform in structure. The pH 5.6 glucose transporter isoform is translocated by insulin from the low-density microsomes to the plasma membrane but the pH 6.4 isoform is not sensitive to insulin. Differential sensitivity of the glucose transporter isoforms to neuraminidase suggests that the heterogeneity is at least partially due to differences in glycosylation state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号