首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Mainly from cell culture studies, a series of genes that have been suggested to be characteristic of different types of adipocytes have been identified. Here we have examined gene expression patterns in nine defined adipose depots: interscapular BAT, cervical BAT, axillary BAT, mediastinic BAT, cardiac WAT, inguinal WAT, retroperitoneal WAT, mesenteric WAT, and epididymal WAT. We found that each depot displayed a distinct gene expression fingerprint but that three major types of depots were identifiable: the brown, the brite, and the white. Although differences in gene expression pattern were generally quantitative, some gene markers showed, even in vivo, remarkable depot specificities: Zic1 for the classical BAT depots, Hoxc9 for the brite depots, Hoxc8 for the brite and white in contrast to the brown, and Tcf21 for the white depots. The effect of physiologically induced recruitment of thermogenic function (cold acclimation) on the expression pattern of the genes was quantified; in general, the depot pattern dominated over the recruitment effects. The significance of the gene expression patterns for classifying the depots and for understanding the developmental background of the depots is discussed, as are the possible regulatory functions of the genes.  相似文献   

2.
The widespread prevalence of obesity has lead to extensive research on white adipose tissue (WAT), which frequently uses the C57BL/6J mouse strain as a model. In many studies, results obtained in one WAT depot are often extrapolated to all WAT. However, functional differences among WAT depots are now becoming apparent. Thus, to identify the molecular mechanisms responsible for WAT depot-specific differences under "normal" conditions, four C57BL/6J mouse WAT depots (inguinal, mesenteric, epididymal, and retroperitoneal) were analyzed. Depot proteomic profiles, along with weights, protein contents, adipocyte sizes and oxidative stress were determined. Mesenteric WAT had almost twice the protein content of the other depots analyzed. Mean adipocyte size was highest in epididymal and lowest in mesenteric and inguinal depots. The proteome of inguinal WAT displayed low levels of enzymes involved in ATP generation, glucose and lipid metabolism, and antioxidant proteins. Higher levels of these proteins were observed in mesenteric and epididymal WAT, with variable levels in the retroperitoneal depot. Some of these proteins showed depot-specific correlations with plasma levels of insulin, leptin, and adiponectin. In agreement with the proteomic data, levels of the antioxidant protein heat shock protein β1 (HSPβ1) also were lower in inguinal WAT when analyzed by western blotting and immunohistochemistry. Also, lipid peroxidation products showed similar trends. Our results are consistent with lower triglyceride turnover and lower oxidative stress in inguinal than mesenteric and epididymal WAT. The observed WAT depot-specific differences provide clues as to the mechanisms leading to these depots' respective diverse functions.  相似文献   

3.
Although not simultaneously, resistin expression in white adipose tissue (WAT) and resistin plasma concentration have been shown to increase in pregnant rats. To clarify the involvement of sex hormones in such increases, we administered for 3-5 days progesterone, estradiol, or human chorionic gonadotropin (hCG) to female rats in dioestrus II. Progesterone increased resistin expression retroperitoneal WAT but lacked effect in parametrial or subcutaneous depots. It also increased resistin plasma concentration. Estradiol decreased resistin expression in both parametrial and inguinal WAT but was without effect on retroperitoneal depots. It did not alter plasma resistin. Human hCG increased resistin expression in all the visceral depots examined - parametrial, inguinal and retroperitoneal - but did not change plasma resistin. These results show that hormonal influences in resistin expression are depot-dependent and can run separately from changes in its plasma concentration. Besides, the locally restricted effect of progesterone in resistin expression compared with that of hCG suggests it is not the only hormone enhancing resistin expression in early pregnancy. However, it could enhance resistin release in late pregnancy. Estradiol could be involved in the decrease of resistin expression in late pregnancy. Finally, since hCG acts through LH receptors, our results suggest that they are present in WAT and that they control resistin expression.  相似文献   

4.
Previous studies have illustrated the importance of leptin receptor (OB-Rb) mediated action on adipocytes in the regulation of body weight. The aim of the present study was to investigate in male and female rats the effects of high-fat (HF) diet feeding on the expression levels of OB-Rb in different depots of white adipose tissue (WAT), and its relation to fatty acid oxidation capacity. Male and female Wistar rats were fed until the age of 6 months with a normal-fat (NF) or non-isocaloric HF-diet (10 and 45% calories from fat, respectively). At this age, the weight of three different fat depots (retroperitoneal, mesenteric and inguinal) and the expression levels of OB-Rb, PPARα and CPT1 in these depots were measured. HF-diet feeding resulted in an increase in the weight of the different fat depots, the retroperitoneal depot being the one with the greatest increase in both sexes. In this depot, HF-diet feeding resulted in a significant decrease in OB-Rb mRNA levels, more marked in male than in female rats. In the mesenteric depot, the effects of HF-diet feeding on OB-Rb mRNA levels were sex-dependent: they decreased in males rats (associated with a decrease in PPARα and CPT1 mRNA levels), but increased in female rats. In the inguinal depot, OB-Rb expression was not affected by HF-diet feeding. These results show that a chronic intake of an HF-diet altered the expression of OB-Rb in WAT in a depot and sex-dependent manner. The decreased expression of OB-Rb in the internal depots of male rats under HF-diet feeding, with the resulting decrease in leptin sensitivity, can help to explain the higher tendency of males to suffer from obesity-linked disorders under HF-diet conditions.  相似文献   

5.
6.
7.
8.
Resistin mRNA levels are downregulated by estrogen in vivo and in vitro   总被引:4,自引:0,他引:4  
Resistin, a hormone secreted by adipocytes, is suggested to be an important link between obesity and diabetes. The aim of this study was to evaluate the regulatory effect of estrogen on adipocyte resistin gene expression in ovariectomized (OVX) rats and in isolated rat adipocytes in vitro. Subcutaneous injection of estradiol benzoate reduced resistin mRNA levels in adipocytes isolated from the inguinal, parametrial, perirenal, retroperitoneal, or periovarian fat deposits of OVX rats, while an in vitro study showed that estradiol treatment decreased resistin mRNA levels in cultured rat periovarian fat adipocytes. Results of Western blotting analysis also showed that estrogen decreased adipose resistin contents in vivo and in vitro. These data suggest that estrogen is a pivotal negative regulator of resistin gene expression.  相似文献   

9.
Triacylglycerol/fatty acid substrate cycling was measuredin vivo in brown adipose tissue (BAT) and white adipose tissue (WAT) of fed, starved and refed rats. Starvation (24 h) significantly decreased the rate of cycling in BAT, and refeeding chow diet led to a rapid, 6-fold increase in cycling. Cycling rate in WAT was much lower than in BAT, and was not influenced by fasting or refeeding. Similar rates of cycling were found in epididymal, mesenteric, subcutaneous, and scapular WAT depots. Sympathetic denervation of interscapular BAT abolished the response of the tissue to refeeding, as did acute suppression of insulin secretion. Similarly, rats fasted for 3 days showed no acute increase in the activity of the cycle following refeeding.  相似文献   

10.
11.
Progesterone affects lipid metabolism in adipose tissue and influences fat distribution in human. The aim of the study was to analyze the effect of progesterone on rat body and fat mass and on expression of genes encoding adipokines involved in the regulation of energy homeostasis. The results presented here indicate that progesterone administration to females caused increase in body and inguinal white adipose tissue mass. The increase of inguinal white adipose tissue mass is associated with the hypertrophy of adipocyte. The same dose of progesterone caused increase of its circulating concentration in males, however it barely reached the value observed in non-treated control females and did not have any effect on body and fat mass. The elevated circulating progesterone concentration was associated with an approximately 6- and 2-fold increase of leptin and resistin mRNA level respectively, and 2-fold decrease of adiponectin mRNA level only in inguinal white adipose tissue of females. RU 486, specific antagonist of progesterone receptor, abolished the effect of progesterone on the adipokine mRNA level in inguinal adipose tissue. In males, the elevated circulating progesterone concentration showed no effects on leptin, resistin or adiponectin mRNA level in inguinal, retroperitoneal or epididymal adipose tissue. Moreover, the results presented in this paper demonstrate a relatively high level of progesterone receptor mRNA in inguinal white adipose tissue of females, which was down-regulated in response to progesterone administration. In retroperitoneal adipose tissue of control females progesterone receptor mRNA level was approximately 3-fold lower as compared to inguinal adipose tissue. In inguinal, epididymal and retroperitoneal white adipose tissue of males progesterone receptor mRNA was hardly detected. Our results suggest that depot- and sex-dependent responsiveness of adipose tissue to the pharmacological dose of progesterone is controlled by both circulating concentration of progesterone and the white adipose tissue progesterone receptor level.  相似文献   

12.
Go AG  Chow KH  Hwang IS  Tang F 《Peptides》2007,28(4):920-927
Male Sprague-Dawley rats were subcutaneously injected with 2.5mg/kg phenylephrine or 2.5mg/kg isoproterenol or both (2.5mg/kg for each drug) for 4 days, twice a day. Samples of scapular brown adipose tissue (BAT) and epididymal white adipose tissue (WAT) were collected for the measurement of adrenomedullin (AM) levels and the gene expression of preproAM, calcitonin receptor like receptor (CRLR) and its activity modifying proteins (RAMPs) by radioimmunoassay and RT-PCR. These values were compared with those in the rats that received 0.9% saline. The gene expression of AM and AM receptor components in BAT are much less than that in epididymal WAT. In BAT there were an increase in AM peptide level after a combined treatment of alpha(1) and beta adrenoceptor agonists and increases in preproAM mRNA levels for rats treated with alpha(1) and beta receptor agonists alone or in combination. Both CRLR and RAMP2 mRNA levels of alphabeta group were increased significantly. In WAT, AM peptide level, RAMP1 and RAMP2 mRNA expression levels were augmented in the alpha group while CRLR mRNA level was enhanced in the beta group. The levels of AM, its receptor and RAMPs are much less in BAT than in WAT but adrenergic stimulation has a greater effect on the AM and its receptor components in BAT than those in WAT. AM stimulates lipolysis and increases the level of uncoupling protein-1 (UCP-1) in BAT. It may therefore enhance thermogenesis by increasing the availability of free fatty acids substrate as well as the UCP-1 level on the mitochondrial membrane.  相似文献   

13.
Objective: Obesity is thought to result from an interaction between genotype and environment. Excessive adiposity is associated with a number of important comorbidities; however, the risk of obesity‐related disease varies with the distribution of fat throughout the body. The aim of this study was to map quantitative trait loci (QTLs) associated with regional fat depots in mouse lines divergently selected for food intake corrected for body mass. Research Methods and Procedures: Using an F2 intercross design (n = 457), the dry mass of regional white (subcutaneous, gonadal, retroperitoneal, and mesenteric) adipose tissue (WAT) and brown adipose tissue (BAT) depots were analyzed to map QTLs. Results: The total variance explained by the mapped QTL varied between 12% and 39% for BAT and gonadal fat depots, respectively. Using the genome‐wide significance threshold, nine QTLs were associated with multiple fat depots. Chromosomes 4 and 19 were associated with WAT and BAT and chromosome 9 with WAT depots. Significant sex × QTL interactions were identified for gonadal fat on chromosomes 9, 16, and 19. The pattern of QTLs identified for the regional deposits showed the most similarity between retroperitoneal and gonadal fat, whereas BAT showed the least similarity to the WAT depots. Analysis of total fat mass explained in excess of 40% of total variance. Discussion: There was limited concordance between the QTLs mapped in our study and those reported previously. This is likely to reflect the unique nature of the mouse lines used. Results provide an insight into the genetic basis of regional fat distribution.  相似文献   

14.
15.
Circulating leptin levels are higher in women than in men. The aim of the study has been to determine in rats the putative existence of sex-associated differences in leptin expression in different adipose tissue depots (gonadal, retroperitoneal, mesenteric and inguinal white adipose tissue and interscapular brown adipose tissue) and the relationship with circulating leptin levels. Adult male and female Wistar rats acclimated to 22 degrees C or to 28 degrees C were used. Leptin mRNA expression was assessed by northern blot and serum leptin levels by enzyme-linked immunosorbent assay (ELISA). Contrary to what happens in humans, we report here that male rats acclimated to standard animal house conditions (22 degrees C) have a higher leptin concentration in blood than female rats. This situation cannot be explained by a greater size of the fat depots in males, because the adiposity index is similar in both genders, but are rather associated to higher leptin specific mRNA expression by the white adipose tissue. Around thermoneutral conditions (28 degrees C), sex related differences in leptin mRNA expression disappear, but the gender difference in circulating leptin levels remains. In addition, leptin mRNA expression is higher in both genders in thermoneutral conditions but this is not reflected in changes in the circulating leptin levels. In conclusion, this study shows that rat circulating leptin levels are finely regulated, and not exclusively dependent on leptin mRNA expression, but other mechanisms are also involved, possibly regarding leptin rate of degradation.  相似文献   

16.
White adipose tissue (WAT) has been examined to determine whether the gene encoding metallothionein (MT), a low-molecular-weight stress response protein, is expressed in the tissue and whether MT may be a secretory product of adipocytes. The MT-1 gene was expressed in epididymal WAT, with MT-1 mRNA levels being similar in lean and obese (ob/ob) mice. MT-1 mRNA was found in each of the main adipose tissue sites (epididymal, perirenal, omental, subcutaneous), and there was no major difference between depots. Separation of adipocytes from the stromal-vascular fraction of WAT indicated that the MT gene (MT-1 and MT-2) was expressed in adipocytes themselves. Treatment of mice with zinc had no effect on MT-1 mRNA levels in WAT, despite strong induction of MT-1 expression in the liver. MT-1 gene expression in WAT was also unaltered by fasting or norepinephrine. However, administration of a beta(3)-adrenoceptor agonist, BRL-35153A, led to a significant increase in MT-1 mRNA. On differentiation of fibroblastic preadipocytes to adipocytes in primary culture, MT was detected in the medium, suggesting that the protein may be secreted from WAT. It is concluded that WAT may be a significant site of MT production; within adipocytes, MT could play an antioxidant role in protecting fatty acids from damage.  相似文献   

17.
Objective: Resistin was recently identified as a hormone secreted by adipocytes that is under hormonal and nutritional control. This hormone has been suggested to be the link between obesity and type 2 diabetes. The aim of this study was to assess the influence of gender, gonadal status, thyroid hormones, pregnancy, and food restriction on resistin mRNA levels in adipose tissue of rats. Research Methods and Procedures: We have determined resistin mRNA expression by Northern blot analysis in all experimental sets. Results: Resistin mRNA expression is influenced by age, with the highest hormone levels existing at 45 days after birth and decreasing thereafter. Resistin mRNA expression is higher in men than in women. Moreover, we studied the effect of orchidectomy and ovariectomy in rats of different ages and showed that gonadal hormones increase adipose tissue resistin mRNA expression in male rats. Resistin is also regulated by thyroid hormones; it is severely decreased in hyperthyroid rats. Our results clearly show that chronic food restriction (30% of ad libitum food intake) led to a decrease in adipose tissue mRNA levels in normal cycling female rats and pregnant rats. In pregnancy, resistin mRNA levels were enhanced particularly at midgestation. Discussion: Our observations indicate that resistin is influenced by gender, gonadal status, thyroid hormones, and pregnancy. These findings suggest that resistin could explain the decreased insulin sensitivity during puberty and could be the link between sex steroids and insulin sensitivity. Moreover, resistin could mediate the effect of thyroid hormones on insulin resistance and the state of insulin resistance present during pregnancy.  相似文献   

18.
White adipose tissue (WAT) is innervated by the sympathetic nervous system. A role for WAT sympathetic noradrenergic nerves in lipid mobilization has been suggested. To gain insight into the involvement of nerve activity in the delipidation process, WAT nerves were investigated in rat retroperitoneal and epididymal depots after prolonged fasting. A significant increase in tyrosine hydroxylase (TH) content was found in epididymal and, especially, retroperitoneal WAT by Western blotting. Accordingly, an increased immunoreactivity for TH was detected by immunohistochemistry in epididymal and, especially, retroperitoneal vascular and parenchymal noradrenergic nerves. Neuropeptide Y (NPY)-containing nerves were found around arteries and in the parenchyma. Double-staining experiments and confocal microscopy showed that most perivascular and some parenchymal noradrenergic nerves also contained NPY. Detection of protein gene product (PGP) 9.5, a general marker of peripheral nerves, by Western blotting and PGP 9.5-TH by double-staining experiments showed significantly increased noradrenergic nerve density in fasted retroperitoneal, but not epididymal depots, suggesting that formation of new nerves takes place in retroperitoneal WAT in fasting conditions. On the whole, these data confirm the important role of sympathetic noradrenergic nerves in WAT lipid mobilization during fasting but also raise questions about the physiological role of regional-dependent nerve adjustments and their functional significance in relation to white adipocyte secretory products.  相似文献   

19.

Background

Cumulating evidence underlines the role of adipose tissue metallothionein (MT) in the development of obesity and type 2 diabetes. Fasting/refeeding was shown to affect MT gene expression in the rodent liver. The influence of nutritional status on MT gene expression in white adipose tissue (WAT) is inconclusive. The aim of this study was to verify if fasting and fasting/refeeding may influence expression of MT genes in WAT of rats.

Results

Fasting resulted in a significant increase in MT1 and MT2 gene expressions in retroperitoneal, epididymal, and inguinal WAT of rats, and this effect was reversed by refeeding. Altered expressions of MT1 and MT2 genes in all main fat depots were reflected by changes in serum MT1 and MT2 levels. MT1 and MT2 messenger RNA (mRNA) levels in WAT correlated inversely with serum insulin concentration. Changes in MT1 and MT2 mRNA levels were apparently not related to total zinc concentrations and MTF1 and Zn transporter mRNA levels in WAT. Fasting or fasting/refeeding exerted no effect on the expression of MT3 gene in WAT. Addition of insulin to isolated adipocytes resulted in a significant decrease in MT1 and MT2 gene expressions. In contrast, forskolin or dibutyryl-cAMP (dB-cAMP) enhanced the expressions of MT1 and MT2 genes in isolated adipocytes. Insulin partially reversed the effect of dB-cAMP on MT1 and MT2 gene expressions.

Conclusions

This study showed that the expressions of MT1 and MT2 genes in WAT are regulated by nutritional status, and the regulation may be independent of total zinc concentration.
  相似文献   

20.
AimsOur aim was to evaluate the effect of exercise training (TR) on adipocyte-size-dependent expression of leptin and adiponectin.Main methodsMale Wistar rats were divided into 2 groups, sedentary control (CR) and TR group, and both monitored for 9 weeks. Adipocytes isolated from epididymal, retroperitoneal, and inguinal fat depots were independently separated into 3 fractions of different cell size, and the relationships between adipocyte size and either leptin or adiponectin mRNA were determined by real-time RT-PCR analysis.Key findingsIn epididymal and inguinal adipose tissue, positive relationships between adipocyte size and both leptin and adiponectin mRNA expression were found. Comparison of TR and CR rats showed no significant effect of TR on the slopes of the linear regression lines of correlation between leptin mRNA and adipocyte size in either adipose tissue, whereas the slopes of the regression line of correlation between adipocyte size and adiponectin mRNA were greater in TR group. Leptin levels per milliliter of plasma were significantly lower in TR than CR rats, whereas leptin levels adjusted to the 3 fat depots did not differ. TR did not affect adiponectin levels in plasma, whereas adiponectin levels adjusted to the 3 fat depots were significantly greater in TR than CR group.SignificanceTR-induced reduction in leptin mRNA expression was closely associated with smaller adipocyte size. However, TR amplified the adipocyte-size-dependent expression of adiponectin mRNA, suggesting that TR-induced alterations in adiponectin mRNA may also be mediated by factor(s) other than adipocyte size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号