共查询到20条相似文献,搜索用时 10 毫秒
1.
Oral administration of different concentrations of Strontium chloride to laboratory bred mice in vivo induced chromosomal aberrations in bone marrow cell metaphase preparations. The degree of clastogenicity was directly proportional to concentration used at 6, 12, and 24 h of treatment. Duration of treatment could only be related positively in the lower doses. The females showed greater susceptibility than the males at all concentrations used. 相似文献
2.
3.
Adenovirus-mediated BMP2 expression in human bone marrow stromal cells 总被引:13,自引:0,他引:13
Olmsted EA Blum JS Rill D Yotnda P Gugala Z Lindsey RW Davis AR 《Journal of cellular biochemistry》2001,82(1):11-21
Recombinant adenoviral vectors have been shown to be potential new tools for a variety of musculoskeletal defects. Much emphasis in the field of orthopedic research has been placed on developing systems for the production of bone. This study aims to determine the necessary conditions for sustained production of high levels of active bone morphogenetic protein 2 (BMP2) using a recombinant adenovirus type 5 (Ad5BMP2) capable of eliciting BMP2 synthesis upon infection and to evaluate the consequences for osteoprogenitor cells. The results indicate that high levels (144 ng/ml) of BMP2 can be produced in non-osteoprogenitor cells (A549 cell line) by this method and the resultant protein appears to be three times more biologically active than the recombinant protein. Surprisingly, similar levels of BMP2 expression could not be achieved after transduction with Ad5BMP2 of either human bone marrow stromal cells or the mouse bone marrow stromal cell line W20-17. However, human bone marrow stromal cells cultured with 1 microM dexamethasone for four days, or further stimulated to become osteoblast-like cells with 50 microg/ml ascorbic acid, produced high levels of BMP2 upon Ad5BMP2 infection as compared to the undifferentiated cells. The increased production of BMP2 in adenovirus transduced cells following exposure to 1 microM dexamethasone was reduced if the cells were not given 50 microg/ml ascorbic acid. When bone marrow stromal cells were allowed to become confluent in culture prior to differentiation, BMP2 production in response to Ad5BMP2 infection was lost entirely. Furthermore, the increase in BMP2 synthesis seen during differentiation was greatly decreased when Ad5BMP2 was administered prior to dexamethasone treatment. In short, the efficiency of adenovirus mediated expression of BMP2 in bone marrow stromal cells appears to be dependent on the differentiation state of these cells. 相似文献
4.
Yueying Li Jing He Fengchao Wang Zhenyu Ju Sheng Liu Yu Zhang Zhaohui Kou Yanfeng Liu Tao Cheng Shaorong Gao 《遗传学报》2010,37(7):431-439
Embryonic stem cells (ESCs) are a potential source of generating transplantable hematopoietic stem and progenitor cells, which in turn can serve as "seed" cells for hematopoietic regeneration. In this study, we aimed to gauge the ability of mouse ESCs directly differentiating into hematopoietic cells in adult bone marrow (BM). To this end, we first derived a new mouse ESC line that constitutively expressed the green fluorescent protein (GFP) and then injected the ESCs into syngeneic BM via intra-tibia. The progeny of the transplanted ESCs were then analyzed at different time points after transplantation. Notably, however, most injected ESCs differentiated into non-hematopoietic cells in the BM whereas only a minority of the cells acquired hematopoietic cell surface markers. This study provides a strategy for evaluating the differentiation potential of ESCs in the BM micro-environment, thereby having important implications for the physiological maintenance and potential therapeutic applications of ESCs. 相似文献
5.
NK cells in allogeneic bone marrow transplantation 总被引:4,自引:0,他引:4
Voutsadakis IA 《Cancer immunology, immunotherapy : CII》2003,52(9):525-534
NK cells, until recently an ignored subset of lymphocytes, have begun to emerge as important cytotoxic effectors. It is now accepted that NK cells together with T cells constitute major actors in graft-versus-leukemia reaction after allogeneic bone marrow transplantation (BMT). Over the last several years the mechanisms regulating the activation of NK cells have been the subject of intense investigations encouraged by the clinical implications that these studies will have. This article provides a general overview of NK-cells biology and regulation pertinent to their function in allogeneic BMT, followed by a review of the in vivo preclinical and clinical evidence for the beneficial effect of NK cells in the adoptive immunotherapy of leukemia. 相似文献
6.
7.
武妍周罗刘瑞琪黎明 《现代生物医学进展》2011,11(2):368-370
孕期应激对子代产生的影响是多方面的,这种影响是复杂的。研究表明,出生前的应激经历可导致出生后子代长期的免疫功能改变。这些改变追其根源与骨髓淋巴干细胞的改变有关。本文综述了大鼠孕期经历应激的子代骨髓淋巴干细胞所受的影响及免疫系统的相关改变,并根据现有的研究提出假说,为进一步研究孕期应激导致子代免疫系统改变的机理研究提供新的思路。 相似文献
8.
骨髓内皮细胞无血清条件培养液对骨髓内皮细胞增殖的促进作用 总被引:2,自引:0,他引:2
本文通过制备小鼠骨髓内皮细胞无血清条件培养液(serum-free murine bone marrow endothelial cell conditioned medium, mBMEC-CM),经超滤分为分子量>10 kDa组分和<10 kDa组分,分别观察mBMEC-CM原液及其组分以及外源性细胞因子对小鼠骨髓内皮细胞集落生成的影响。用Wright’S Giemsa染色计数内皮细胞集落及检测骨髓内皮细胞的vWF,通过[3H]- TdR掺入量,观察mBMEC-CM原液及其组分以及外源性细胞因子对小鼠骨髓内皮细胞增殖的影响,并用分子杂交方法检测内皮细胞表达的细胞因子,从几个方面来研究mBMEC-CM对骨髓内皮细胞增殖的作用。结果显示,骨髓内皮细胞vWF 检测阳性。mBMEC-CM原液及其分子量>10 kDa组分能刺激骨髓内皮细胞集落增殖,且能明显增加骨髓内皮细胞[3H]-TdR 掺入量;分子量<10 kDa组分对骨髓内皮细胞集落增殖无明显刺激作用,也不能增加骨髓内皮细胞[3H]-TdR掺入量。外源加入IL-6、IL-11、SCF、GM-CSF、VEGF、bFGF 6种细胞因子能明显刺激骨髓内皮细胞集落增殖,SCF、VEGF、bFGF能明显增加骨髓内皮细胞[3H]-TdR掺入量。Atlas array膜杂交实验显示骨髓内皮细胞内源性表达GM-CSF、SCF、MSP-1、endothelin-2、thymosin β10、connective tissue GF、PDGF-A chain、MIP-2α、PlGF、neutrophil activating protein ENA-78、INF-γ、IL-1、IL-6、IL-13、IL-11、inhibin-α等细胞因子的mRNA。上述结果提示,骨髓内皮细胞无血清条件培养液对骨髓内皮细胞增殖具有促进作用。 相似文献
9.
A. M. Jha Akhilesh C. Singh M. Kumari Bharti 《Mutation Research - Genetic Toxicology and Environmental Mutagenesis》2002,521(1-2):11-17
Clastogenicity of carbazole was evaluated by employing mouse in vivo chromosomal aberration (CA) test. Carbazole administered intraperitoneally (i.p.) at the rate of 25, 50, 100, 150 and 200 mg/kg b.w. to Swiss albino mice in vivo resulted in mitotic depression and induction of chromosomal aberrations. Dose related decrease in mitotic index (MI) and increase in the frequencies of chromosomal aberrations per cell (CAs/cell) and percent abnormal cells were recorded in bone marrow cells. However, statistically significant reduction in MI and increase in CAs/cell and percent abnormal cells were found only for the two higher doses. The results obtained indicate that carbazole or its metabolite, if any, is moderately clastogenic in the bone marrow cells of Swiss albino mice. 相似文献
10.
11.
12.
Yagi K Sumiyoshi N Nakashima Y Michibayashi N Kawase M Miura Y Mizoguchi T 《Cytotechnology》1998,26(1):5-12
A hierarchial co-culture, in which rat hepatocytes and non-parenchymal liver cells (NPLCs) were separated by a collagen layer and which was designed to mimic the in vivo microenvironment, was carried out with the aim of developing a module for bio-artificial liver support. Compared with a monolayer co-culture and hepatocytes cultured alone in a monolayer, higher urea synthesis activity was maintained for 6 d in the hierarchical co-culture. When a rat hepatoma cell line H4-II-E-C3, which retains the induction of tyrosine aminotransferase (TAT), was co-cultured in a monolayer with NPLCs, dose-dependent stimulation of TAT induction was observed. In a hierarchical co-culture, NPLCs further stimulated TAT induction in H4-II-E-C3 cells. Since peritoneal macrophages could stimulate TAT induction in hepatocytes in both monolayer and hierarchical co-cultures, bone marrow cells, which can proliferate and differentiate into macrophages in vitro, were investigated as a possible substitute for NPLCs. Bone marrow cells isolated from rat femurs were cultivated in the presence of IL-3 and macrophage colony-stimulating factor (M-CSF), and co-cultured with hepatocytes. Urea synthesis and TAT induction of hepatocytes were stimulated in the co-culture. The co-culture of bone marrow and H4-II-E-C3 cells, both of which have proliferation ability in vitro, was also shown to be effective in stimulating liver functions. The hierarchical configuration, in which two cell types can communicate with the soluble factor(s) through a collagen layer, was found to be more effective than a monolayer in long-term co-culture. 相似文献
13.
14.
A new protein expressed in bone marrow cells and osteoblasts with implication in osteoblast recruitment 总被引:2,自引:0,他引:2
To study osteoblast recruitment from bone marrow cells, a rat femur cDNA library was screened by in situ hybridization for novel mRNA sequences that are frequently expressed in both marrow cells and osteoblasts. One isolated clone, called RP59, is described here. Northern blots indicated two bands of 2.6 and 2.8 kb in femur and spleen, tissues containing high amounts of immature mesenchymal cells, and no or little expression in other tissues. The cDNA sequence revealed a reading frame for a repetitive protein composed of arrays of 14-mers and phased phosphorylation sites. Antisera versus RP59 detected a single band of 90 kDa by Western blotting of femur extract. Immunohistochemistry indicated strong RP59 presence in the cytoplasm of bone marrow cells and weaker presence in nuclei of osteoblasts. Intermediate stages were found between strongly labeled, round, free bone marrow cells and weaker labeled, fibroblast-like young osteoblasts associated with bone matrix. These data indicated that marrow cells with high RP59 content were recruited into growing bone tissue. RP59 may help to study the transition of bone marrow cell to osteoblast in more detail. 相似文献
15.
Ying Qi FengYan Zhang Ge Song XueRong Sun RuZhang Jiang MengFei Chen Jian Ge 《中国科学:生命科学英文版》2010,53(5):573-580
The purpose of the present study was to determine the best cholinergic neuronal differentiation method of rhesus monkey bone marrow mesenchymal stem cells(BMSCs).Four methods were used to induce differentiation,and the groups were assigned accordingly:basal inducing group(culture media,bFGF,and forskolin);SHH inducing group(SHH,inducing group);RA inducing group(RA,basal inducing group);and SHH+RA inducing group(SHH,RA,and basal inducing group).All groups displayed neuronal morphology and increased expressio... 相似文献
16.
The prognosis of patients with myocardial infarction (MI) and resultant chronic heart failure remains extremely poor despite advances in optimal medical therapy and interventional procedures. Animal experiments and clinical trials using adult stem cell therapy following MI have shown a global improvement of myocardial function. Bone marrow-derived mesenchymal stem cells (MSCs) hold promise for cardiac repair following MI, due to their multilineage, self-renewal and proliferation potential. In addition, MSCs can be easily isolated, expanded in culture, and have immunoprivileged properties to the host tissue. Experimental studies and clinical trials have revealed that MSCs not only differentiate into cardiomyocytes and vascular cells, but also secrete amounts of growth factors and cytokines which may mediate endogenous regeneration via activation of resident cardiac stem cells and other stem cells, as well as induce neovascularization, anti-inflammation, anti-apoptosis, anti-remodelling and cardiac contractility in a paracrine manner. It has also been postulated that the anti-arrhythmic and cardiac nerve sprouting potential of MSCs may contribute to their beneficial effects in cardiac repair. Most molecular and cellular mechanisms involved in the MSC-based therapy after MI are still unclear at present. This article reviews the potential repair mechanisms of MSCs in the setting of MI. 相似文献
17.
Hypotransferrinemic (HP) mice have a splicing defect inthe transferrin gene, resulting in <1% of the normal plasma levels of transferrin. They have severe anemia, suggesting that transferrin is essential for iron uptake by erythroid cells in the bone barrow. To clarify the significance of transferrin on iron delivery to the bone marrow, iron concentration and 59Fe distribution were determined in 7-day-old HP mice. Iron concentration in the femur, bone containing the bone marrow, of HP mice was approximately twice higher than in wild type mice. Twenty-four h after injection of 59FeCl3, 59Fe concentration in the bone and bone marrow of HP mice was also twice higher than in wild type mice. The present findings indicate that iron is abnormally delivered to the bone marrow of HP mice. However, the iron seems to be unavailable for the production of hemoglobin. These results suggest that transferrin-dependent iron uptake by erythroid cells in the bone marrow is essential for the development of erythrocytes. 相似文献
18.
Ex vivo differentiation of human adult bone marrow stem cells into cardiomyocyte-like cells 总被引:27,自引:0,他引:27
Shim WS Jiang S Wong P Tan J Chua YL Tan YS Sin YK Lim CH Chua T Teh M Liu TC Sim E 《Biochemical and biophysical research communications》2004,324(2):481-488
Bone marrow mesenchymal stem cells have been shown to transdifferentiate into cardiomyocytes after 5-azacytidine treatment or co-culturing with rodent cardiomyocytes. We investigate if adult human bone marrow stem cells can be differentiated ex vivo into cardiomyocyte-like cells (CLCs) independent of cytotoxic agents or co-culturing technique. Sternal bone marrow was collected from 16 patients undergoing coronary artery bypass surgery. Mesenchymal stem cells were differentiated in a cardiomyogenic differentiation medium containing insulin, dexamethasone, and ascorbic acid. Differentiation towards CLCs was determined by induced expression of cardiomyocyte-specific proteins. Differentiated CLCs expressed multiple structural and contractile proteins that are associated with cardiomyocytes. Thin filament associated myofibrillar proteins were detected early in the cells, with cardiac troponin I, sarcomeric tropomyosin, and cardiac titin among the first expressed. Some CLCs were found to develop into a nascent cardiomyocyte phenotype with cross-striated myofibrils characterized by alpha-actinin-positive Z bands after 4-5 passages in differentiated culture. These lineage-defined CLCs may be potentially useful for repairing damaged myocardium. 相似文献
19.
Shobha Mareddy James Broadbent Ross Crawford Yin Xiao 《Journal of cellular biochemistry》2009,106(5):776-786
Mesenchymal stem cells (MSCs) have attracted immense research interest in the field of regenerative medicine due to their ability to be cultured for successive passages and multi‐lineage differentiation. The molecular mechanisms governing MSC self‐renewal and differentiation remain largely unknown. The development of sophisticated techniques, in particular clinical proteomics, has enabled researchers in various fields to identify and characterize cell specific biomarkers for therapeutic purposes. This study seeks to understand the cellular and sub‐cellular processes responsible for the existence of stem cell populations in bone marrow samples by revealing the whole cell proteome of the clonal cultures of bone marrow‐derived MSCs (BMSCs). Protein profiling of the MSC clonal populations was conducted by Two‐Dimensional Liquid Chromatography/Matrix‐Assisted Laser Desorption/Ionisation (MALDI) Mass Spectrometry (MS). A total of 83 proteins were identified with high confidence of which 11 showed differential expression between subpopulations, which included cytoskeletal and structural proteins, calcium binding proteins, cytokinetic proteins, and members of the intermediate filament family. This study generated a proteome reference map of BMSCs from the clonal populations, which will be valuable to better understand the underlying mechanism of BMSC self‐renewal and differentiation. J. Cell. Biochem. 106: 776–786, 2009. © 2009 Wiley‐Liss, Inc. 相似文献
20.
Inflammatory T cells rapidly induce differentiation of human bone marrow stromal cells into mature osteoblasts 总被引:3,自引:0,他引:3
Activated T cells secrete multiple osteoclastogenic cytokines which play a major role in the bone destruction associated with rheumatoid arthritis. While the role of T cells in osteoclastogenesis has received much attention recently, the effect of T cells on osteoblast formation and activity is poorly defined. In this study, we investigated the hypothesis that in chronic inflammation activated T cells contribute to enhanced bone turnover by promoting osteoblastic differentiation. We show that T cells produce soluble factors that induce alkaline phosphatase activity in bone marrow stromal cells and elevated expression of mRNA for Runx2 and osteocalcin. This data indicate that T cell derived factors have the capacity to stimulate the differentiation of bone marrow stromal cells into the osteoblast phenotype. RANKL mRNA was undetectable under any conditions in highly purified bone marrow stromal cells. In contrast, RANKL was constitutively expressed in primary osteoblasts and only moderately up-regulated by activated T cell conditioned medium. Interestingly, both bone marrow stromal cells and osteoblasts expressed mRNA for RANK, which was strongly up-regulated in both cell types by activated T cell conditioned medium. Although, mRNA for the RANKL decoy receptor, osteoprotegerin, was also up-regulated by activated T cell conditioned medium, it's inhibitory effects may be mitigated by a simultaneous rise in the osteoprotegerin competitor TNF-related apoptosis-inducing ligand. Based on our data we propose that during chronic inflammation, T cells regulate bone loss by a dual mechanism involving both direct stimulation of osteoclastogenesis, by production of osteoclastogenic cytokines, and indirectly by induction of osteoblast differentiation and up-regulation of bone turnover via coupling. 相似文献