首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A variety of different in vivo and in vitro technologies provide comprehensive insights in protein-protein interaction networks. Here we demonstrate a novel approach to analyze, verify and quantify putative interactions between two members of the S100 protein family and 80 recombinant proteins derived from a proteome-wide protein expression library. Surface plasmon resonance (SPR) using Biacore technology and functional protein microarrays were used as two independent methods to study protein-protein interactions. With this combined approach we were able to detect nine calcium-dependent interactions between Arg-Gly-Ser-(RGS)-His6 tagged proteins derived from the library and GST-tagged S100B and S100A6, respectively. For the protein microarray affinity-purified proteins from the expression library were spotted onto modified glass slides and probed with the S100 proteins. SPR experiments were performed in the same setup and in a vice-versa approach reversing analytes and ligands to determine distinct association and dissociation patterns of each positive interaction. Besides already known interaction partners, several novel binders were found independently with both detection methods, albeit analogous immobilization strategies had to be applied in both assays.  相似文献   

2.
A surface plasmon resonance (SPR) based natural glycan microarray was developed for screening of interactions between glycans and carbohydrate-binding proteins (CBPs). The microarray contained 144 glycan samples and allowed the real-time and simultaneous screening for recognition by CBPs without the need of fluorescent labeling. Glycans were released from their natural source and coupled by reductive amination with the fluorescent labels 2-aminobenzamide (2AB) or anthranilic acid (AA) followed by high-performance liquid chromatography (HPLC) fractionation making use of the fluorescent tag. The released and labeled glycans, in addition to fluorescently labeled synthetic glycans and (neo)glycoproteins, were printed on an epoxide-activated chip at fmol amounts. This resulted in covalent immobilization, with the epoxide groups forming covalent bonds to the secondary amine groups present on the fluorescent glycoconjugates. The generated SPR glycan array presented a subset of the glycan repertoire of the human parasite Schistosoma mansoni. In order to demonstrate the usefulness of the array in the simultaneous detection of glycan-specific serum antibodies, the anti-glycan antibody profiles from sera of S. mansoni-infected individuals as well as from non-endemic uninfected controls were recorded. The SPR screening was sensitive for differences between infection sera and control sera, and revealed antibody titers and antibody classes (IgG or IgM). All SPR analyses were performed with a single SPR array chip, which required regeneration and blocking of the chip before the application of a serum sample. Our results indicate that SPR-based arrays constructed from glycans of natural or synthetic origin, pure or as mixture, can be used for determining serum antibody profiles as possible markers for the infection status of an individual.  相似文献   

3.
Mitchell JS  Wu Y  Cook CJ  Main L 《Steroids》2006,71(7):618-631
Thioether-linked 3-mercaptopropionic acid derivatives of 17beta-estradiol and estrone were formed at the A-ring 4-position of the steroids by substitution of their 4-bromo analogues. The carboxylic acid terminal was used to link to an oligoethylene glycol (OEG) chain of 15-atoms in length. The OEG derivative of 17beta-estradiol was then in situ immobilized on a carboxymethylated dextran-coated gold sensor surface used to detect refractive index changes upon protein binding to the surface by surface plasmon propagation in a BIAcore surface plasmon resonance (SPR) instrument. Two other estradiol-OEG derivatives with Mannich reaction linkage at the 2-position and hemisuccinate linkage at the 3-position were also immobilized on the sensor surfaces for comparison. Binding performance between these immobilized different positional conjugates and monoclonal anti-estradiol antibody, raised from a 6-position conjugate, clearly demonstrated that both 2- and 4-conjugates, not conjugated through existing functional groups, gave strong antibody bindings, whereas the 3-conjugate through an existing functional group (3-OH) gave very little binding (2% compared to the 2-conjugate). Both 2- and 4-position conjugates were then applied in a highly sensitive estradiol SPR immunoassay with secondary antibody mediated signal enhancement that gave up to a 9.5-fold signal enhancement of primary antibody binding, and a detection limit of 25 pg/mL was achieved for a rapid and convenient flow-through immunoassay of estradiol.  相似文献   

4.
We report a novel in vitro high-throughput (HTP) kinase assay using surface plasmon resonance (SPR). In vitro tyrosine phosphorylation was performed in a microtiter plate, after which the substrate was captured with an antibody on a sensor chip and phosphotyrosine (pTyr) was detected with an anti-pTyr antibody. The capture and pTyr detection steps were performed using a Biacore A100, which is a sensitive and high-performance flow-cell-based SPR biosensor. This system allowed multiple sample processing (1000 samples/day) and high-quality data sampling. We compared the abilities of the HTP-SPR method and a standard radioisotope assay by measuring the phosphorylation of several substrate proteins by the Fyn tyrosine kinase. Similar results were obtained with both methods, suggesting that the HTP-SPR method is reliable. Therefore, the HTP-SPR method described in this study can be a powerful tool for a variety of screening analyses, such as kinase activity screening, kinase substrate profiling, and kinase HTP screening of kinase inhibitors.  相似文献   

5.
A novel method for sensitivity enhancement of spectral surface plasmon resonance (SPR) biosensors was presented by reducing the refractive index of the sensing prism in the analysis of protein arrays. Sensitivity of spectral SPR biosensors with two different prisms (BK-7, fused silica) was analyzed by net shifts of resonance wavelength for specific interactions of GST–GTPase binding domain of p21-activated kinase-1 and anti-GST on a mixed thiol surface. Sensitivity was modulated by the refractive index of the sensing prism of the spectral SPR biosensors with the same incidence angle. The sensitivity of a spectral SPR biosensor with a fused silica prism was 1.6 times higher than that with a BK-7 prism at the same incidence angle of 46.2°. This result was interpreted by increment of the penetration depth correlated with evanescent field intensity at the metal/dielectric interface. Therefore, it is suggested that sensitivity enhancement is readily achieved by reducing the refractive index of the sensing prism of spectral SPR biosensors to be operated at long wavelength ranges for the analysis of protein arrays.  相似文献   

6.
Liu Z  Yang L  Liu L  Chong X  Guo J  Ma S  Ji Y  He Y 《Biosensors & bioelectronics》2011,30(1):180-187
With the development of the microarray technology, demands for array detection techniques become higher and higher. For many microarrays, several biomolecular interactions occur simultaneously and the interplay of various factors that affect these interactions remains poorly understood. Detecting such interactions with a single technique can often be a difficult and complicated process. In this work we propose a combined technique which enables simultaneous angle-interrogation surface plasmon resonance (SPR) sensing and hyperspectral fluorescence imaging. This tandem technique offers two-dimensional imaging of the whole array plane. The refractive index information obtained from SPR sensing and the physicochemical properties obtained from fluorescence imaging provide a comprehensive analysis of biological events on the array-chip. In addition, SPR and fluorescence detection techniques confirm each other in experimental results to exclude false-positive or false-negative cases. In terms of SPR sensing performance, the refractive index resolution is 3.86 × 10−6 refractive index units (RIU), and the detection limit is 104 cfu/ml of Escherichia coli bacteria. The resolving power and detection sensitivity of fluorescence imaging are approximately 20 μm and 0.61 fluors/μm2, respectively. Finally, two model experiments, detecting the DNA hybridization and biotin–avidin interactions respectively, demonstrate the biomedical application of this system.  相似文献   

7.
In this study, an immunosensor chip utilizing surface plasmon resonance (SPR) and cyclic voltammetry (CV) was fabricated for detecting carcinoembryonic antigen (CEA). Specifically, we applied in parallel an SPR instrument and a CV device to monitor the assembly of carcinoembryonic antibody (anti-CEA) on a protein A-conjugated surface and the subsequent ligand reaction. The immunosensor chips were constructed by various concentrations of protein A. To determine the surface characteristics of different self-assembly monolayers (SAMs), several quantitative and kinetic measurements were carried out. The extent of immobilization of anti-CEA and the immune response of anti-CEA antibody against CEA were measured using the SPR instrument and CV device. The terminal functional groups of protein A have different effects on the adsorption and covalent binding of immunoprotein depending on the steric hindrance. Through the parallel measurements, we demonstrate that SPR and CV are sensitive to measure the antigen–antibody binding capacity.  相似文献   

8.
A surface plasmon resonance (SPR) sensor probe with integrated reference surface is described. In order to fabricate the integrated reference surface, two dielectric layers with different thickness were deposited on the single gold SPR sensor surface via plasma polymerization of hexamethyldisiloxane. The working sensor surface was a 34 nm dielectric layer with immobilized bovine serum albumin (BSA) antigen and an adjacent thin 1 nm dielectric layer without BSA provided reference surface. A specific immunoreaction of anti-BSA antibody was detected after immersion of the SPR probe into sample solution. Simultaneous observation of reference and working surface response enabled determination of the immunoreaction without the need for the baseline measurement. Moreover, compensation of nonspecific adsorption could be confirmed using anti-human serum albumin antibody.  相似文献   

9.
The fabrication of protein A film on self-assembled monolayer was done for the construction of immunosensor using surface plasmon resonance (SPR) measurement. The layer of heterobifunctional linker, N-succinimidyl-3-(2-pyridyldithio)propionate (SPDP) was self-assembled on the gold (Au) surface. Due to the succinimidyl functional group in SPDP to be reacted with amine (NH2) group of protein A, the covalent immobilization of protein A was subsequently induced toward Au surface. The characteristics of film formation were investigated using SPR with respect to the various concentrations of SPDP and protein A. The optimal concentration for the film formation was found to be 0.1 mg/mL of SPDP and 0.1 mg/mL of protein A, respectively. The surface topography of protein A layer using atomic force microscopy showed that the heteromolecular layer was formed successfully. The antibody, anti-bovine serum albumin (BSA), was immobilized onto protein A layer, and the fabricated antibody layer was applied for the detection of BSA. The extent of BSA–antibody binding was measured using SPR and its lower detection limit of BSA was 100 pM.  相似文献   

10.
A surface plasmon resonance (SPR) imaging system was constructed and used to detect the affinity-tagged recombinant proteins expressed in Escherichia coli. With regards to model proteins, the hexahistidine-ubiquitin-tagged human growth hormone (His(6)-Ub-hGH), glutathione S-transferase-tagged human interleukin-6 (GST-hIL6), and maltose-binding protein-tagged human interleukin-6 (MBP-hIL6) expressed in E. coli were analyzed. The cell lysates were spotted on gold thin films coated with 11-mercaptoundecanol (MUOH)/dextran derivatized with Ni(II)-iminodiacetic acid (IDA-Ni(II)), glutathione, or cyclodextrin. After a brief washing of the gold chip, SPR imaging measurements were carried out in order to detect the bound affinity-tagged fusion proteins. Using this new approach, rapid high-throughput expression analysis of the affinity-tagged proteins were obtained. The SPR imaging protein chip system used to measure the expression of affinity-tagged proteins in a high-throughput manner is expected to be an attractive alternative to traditional laborious and time-consuming methods, such as SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blots.  相似文献   

11.
In recent years, in situ protein synthesis microarray technologies have enabled protein microarrays to be created on demand just before they are needed. In this paper, we utilized the TUS-TER immobilization technology to allow label-free detection with real-time kinetics of protein–protein interactions using surface plasmon resonance imaging (SPRi). We constructed an expression-ready plasmid DNA with a C-terminal TUS fusion tag to directionally immobilize the in situ synthesized recombinant proteins onto the surface of the biosensor. The expression plasmid was immobilized on the polyethylene imine-modified gold surface, which was then coupled with a cell-free expression system on the flow cell of the SPRi instrument. The expressed TUS fusion proteins bind on the surface via the immobilized TER DNA sequence with high affinity (∼3–7 × 10−13 M). The expression and immobilization of the recombinant in situ expressed proteins were confirmed by probing with specific antibodies. The present study shows a new low cost method for in situ protein expression microarrays that has the potential to study the kinetics of protein–protein interactions. These protein microarrays can be created on demand without the problems of stability associated with protein arrays used in the drug discovery and biomarker discovery fields.  相似文献   

12.
Surface plasmon resonance (SPR) measurements were used to screen refolding conditions to identify a physicochemical environment which gives an acceptable refolding yield for samples of glutathione-S-transferase (GST) denatured in 6 M guanidine hydrochloride and 32 mM dithiothreitol. The SPR measurements were performed on carboxymethylcellulose coated chips that could accommodate two separate flow paths. One side of the chip was derivatized with immobilized glutathione and the other with goat anti-GST antibody. This created a dual-derivatized chip capable of showing both the presence of GST and providing a measure of enzyme activity. The dual-derivatized chip could be regenerated using a two-step washing procedure and reused to analyze multiple samples from a screening study of protein refolding conditions. SPR measurements have been shown to be suitable for screening protein refolding conditions due to the high sensitivity, ease of chip regeneration and the ability to incorporate a control in the experimental design. The combination of such advantages with the high-throughput automated SPR systems currently available may be a valuable approach to determine conditions suitable for protein refolding following insoluble expression in a bacterial host.  相似文献   

13.
Palau W  Di Primo C 《Biochimie》2012,94(9):1891-1899
Complexes involving three DNA strands were used to demonstrate that the single-cycle kinetics (SCK) method, which consists in injecting sequentially samples at increasing concentrations and until now used exclusively to investigate bimolecular complexes by surface plasmon resonance, can be extended to the kinetic analysis of ternary complexes. DNA targets, B, were designed with sequences of variable lengths on their 3' sides that recognise a surface-immobilized biotinylated DNA anchor, A. These targets displayed on their 5' sides sequences that recognise DNA oligonucleotides of variable lengths, C, namely the analytes. Combinations of B and C DNA oligonucleotides on A generated ternary complexes each composed of two Watson-Crick helices displaying different kinetic properties. The target-analyte B-C duplexes were formed by sequentially injecting three increasing concentrations of the analytes C during the dissociation phase of the target B from the anchor A. The sensorgrams for the target-analyte complexes dissociating from the functionalized surface were successfully fitted by the SCK method while the target dissociated from the anchor, i.e. on a decaying surface. Within the range of applicability of the method which is driven by the rate of dissociation of the target from the anchor, the rate and equilibrium constants characteristic of these target-analyte duplexes of the ternary complexes did not depend on how fast the targets dissociated from the immobilized DNA anchor. In addition the results agreed very well with those obtained when such duplexes were analysed directly as bimolecular complexes, i.e. when the target, modified with a biotin, was directly immobilized onto a streptavidin sensor chip surface rather than captured by an anchor. Therefore the method we named SCKODS (Single-Cycle Kinetics On a Decaying Surface) can also be used to investigate complexes formed during a dissociation phase, in a ternary complex context. The SCKODS method can be combined with the SCK one to fully characterize the two bimolecular complexes of a ternary complex.  相似文献   

14.
Despite their clinical importance, detailed analysis of ligand binding at G-protein coupled receptors (GPCRs) has proved difficult. Here we successfully measure the binding of a GPCR, neurotensin receptor-1 (NTS-1), to its ligand, neurotensin (NT), using surface plasmon resonance (SPR). Specific responses were observed between NT and purified, detergent-solublised, recombinant NTS-1, using a novel configuration where the biotinylated NT ligand was immobilised on the biosensor surface. This SPR approach shows promise as a generic approach for the study of ligand interactions with other suitable GPCRs.  相似文献   

15.
In this study, we fabricated a novel variable wavelength surface plasmon resonance (SPR) sensor, which detects resonance conditions such as a maximum attenuation wavelength, measuring change of microscopic refractive index. Such a change was measured to detect a salmonella antigen–antibody reaction and a penicillinase–penicillin reaction. Our experiments were performed after immobilizing a salmonella antibody on the sensor chip. We measured the shift in resonant wavelength during the antigen–antibody reaction for 30 min by injecting 5 × 107 cells/ml concentration of salmonella antigen solution into the sample chamber. Also, after immobilizing penicillinase on the sensor chip, we measured the shift in resonant wavelength during the reaction. Penicillin solution at 10 mM was injected into the sample chamber. The shift of resonant wavelength for each experiment was measured using a white light source, multimode optical fiber, a part of sensor chip and an optical spectrum analyzer.As a result, the resonant wavelength shifted about 0.26 nm/min owing to the salmonella antibody–antigen reaction. Thus, we could detect the change in wavelength (0.8 nm/min) through the interaction of penicillin and penicillinase for 15 min using variable wavelength SPR sensor.  相似文献   

16.
An immunosensor for the detection of Vibrio cholerae O1 was developed on the basis of surface plasmon resonance (SPR). A protein G layer was fabricated by means of the chemical coupling between the free amine (-NH2) groups of protein G and the activated carboxyl groups present on a self-assembled monolayer (SAM) consisting of a mixture of 11-mercaptoundecanoic acid (MUA) and hexanethiol (molar ratio of 1:2). A monoclonal antibody, which was confirmed to be specific to V. cholera O1 by the Western blotting technique, was immobilized on the protein G layer. The formation of the SAM, the protein G layer and the sequential binding of the antibody against V. cholera O1 were investigated with SPR spectroscopy. As the number of fabricated layers increased, the minimum angle of plasmon resonance was increased accordingly. The target bacteria, V. cholera O1, was measured with the fabricated immunosensor, whose detection range was between 105 and 109 cells/mL.  相似文献   

17.
Three nucleic acid-protein complexes of 1:1 stoichiometry were analyzed by surface plasmon resonance on a Biacore biosensor to test whether or not proteins and nucleic acids yielded similar refractive index increments on binding. The expected maximum response in resonance units, (RU(exp))(max), and the observed one, (RU(obs))(max), on saturation of immobilized targets by interacting partners were compared to determine the ratio of (deltan/deltaC)(protein) to (deltan/deltaC)(nucleic acid), where n is the refractive index at the surface and C is the concentration of one partner. Our results suggest that proteins and nucleic acids behave similarly and that the discrepancy between the expected and observed maximum responses for such complexes reflects inaccurate evaluation of the binding responses. Therefore, no correction of the instrument response is required for protein and nucleic acid interaction studies on a Biacore biosensor.  相似文献   

18.
Carbon nanotube-assisted enhancement of surface plasmon resonance signal   总被引:1,自引:0,他引:1  
We describe a method of amplifying the biosensing signal in surface plasmon resonance (SPR)-based immunoassays using an antibody–carbon nanotube (CNT) conjugate. As a model system, human erythropoietin (EPO) and human granulocyte macrophage colony-stimulating factor (GM–CSF) were detected by sandwich-type immunoassays using an SPR biosensor. For the amplification of the SPR signal, the CNT was conjugated with a polyclonal antibody, and then the conjugates were reacted with antibodies coupled with the target proteins. This amplification strategy increases the dynamic range of the immunoassays and enhances the detection sensitivity. The SPR immunoassays, combined with the CNT-assisted signal amplification method, provided a wide dynamic range over four orders of magnitude for both EPO and GM–CSF (0.1–1000 ng/ml). The CNT amplification method is expected to realize the detection of picogram levels and a wide dynamic detection range of multiple proteins, enabling it to offer a robust analysis tool for the development of biopharmaceutical production.  相似文献   

19.
Functionalization of a gold surface is usually accomplished by covalent binding via self-assembled monolayers (SAMs) on the gold surface, followed by attachment of flexible polymeric linker layers such as dextran hydrogels. However, these techniques require multiple steps and also have nonspecific interactions and steric problems. In this study, a self-assembled carboxylated terthiophene monolayer was formed onto a gold surface to create a sensitive and stable surface plasmon resonance (SPR) biosensing system. Compared with a commercial carboxymethyl dextran chip (CM5), the terthiophene SAM surface provided more than six times more antibody-binding signals and nearly three times the SPR assay sensitivity for progesterone (P4).  相似文献   

20.
Ro HS  Koh BH  Jung SO  Park HK  Shin YB  Kim MG  Chung BH 《Proteomics》2006,6(7):2108-2111
We have developed a surface plasmon resonance (SPR)-based protein microarray to study protein-protein interactions in a high-throughput mode. As a model system, triple protein interactions have been explored with human papillomaviral E6 protein, tumor suppressor p53, and ubiquitin ligase E6AP. Human papillomavirus (HPV) is known to be a causative agent of cervical cancer. Upon infection, the viral E6 protein forms a heterotrimeric protein complex with p53 and E6AP. The formation of the complex eventually results in the degradation of p53. In the present study, a GST-fused E6AP protein was layered onto a glutathione (GSH)-modified gold chip surface. The specific binding of GST-E6AP protein onto the gold chip surface was facilitated through the affinity of GST to its specific ligand GSH. The interacting proteins (E6 and/or p53) were then spotted. Detection of the interaction was performed using a SPR imaging (SPRI) technique. The resulting SPRI intensity data showed that the protein-protein interactions of E6AP, E6, and p53 were detected in a concentration-dependent manner, suggesting that the SPRI-based microarray system can be an effective tool to study protein-protein interactions where multiple proteins are involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号