首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nerve growth factor (NGF) promotes neuronal survival and differentiation and stimulates neurite outgrowth. NGF is synthesized as a precursor, proNGF, which undergoes post-translational processing to generate mature beta-NGF. It has been assumed that, in vivo, NGF is largely processed into the mature form and that mature NGF accounts for the biological activity. However, we recently showed that proNGF is abundant in CNS tissues whereas mature NGF is undetectable, suggesting that proNGF has biological functions beyond its role as a precursor. To determine whether proNGF exhibits biological activity, we mutagenized the precursor-processing site and expressed unprocessed, cleavage-resistant proNGF protein in insect cells. Survival and neurite outgrowth assays on murine superior cervical ganglion neurons and PC12 cells indicated that proNGF exhibits neurotrophic activity similar to mature 2.5S NGF, but is approximately fivefold less active. ProNGF binds to the high-affinity receptor, TrkA, as determined by cross-linking to PC12 cells, and is also slightly less active than mature NGF in promoting phosphorylation of TrkA and its downstream signaling effectors, Erk1/2, in PC12 and NIH3T3-TrkA cells. These data, coupled with our previous report that proNGF is the major form of NGF in the CNS, suggest that proNGF could be responsible for much of the biological activity normally attributed to mature NGF in vivo.  相似文献   

2.
Nerve growth factor (NGF) is initially synthesized as a precursor, proNGF, that is cleaved to release its C-terminal mature form. Recent studies suggested that proNGF is not an inactive precursor but acts as a signaling ligand distinct from its mature counterpart. proNGF and mature NGF initiate opposing biological responses by utilizing both distinct and shared receptor components. In this study, we carried out structural and biochemical characterization of proNGF interactions with p75NTR and sortilin. We crystallized proNGF complexed to p75NTR and present the structure at 3.75-Å resolution. The structure reveals a 2:2 symmetric binding mode, as compared with the asymmetric structure of a previously reported crystal structure of mature NGF complexed to p75NTR and the 2:2 symmetric complex of neurotrophin-3 (NT-3) and p75NTR. Here, we discuss the possible origins and implications of the different stoichiometries. In the proNGF-p75NTR complex, the pro regions of proNGF are mostly disordered and two hairpin loops (loop 2) at the top of the NGF dimer have undergone conformational changes in comparison with mature NT structures, suggesting possible interactions with the propeptide. We further explored the binding characteristics of proNGF to sortilin using surface plasmon resonance and cell-based assays and determined that calcium ions promote the formation of a stable ternary complex of proNGF-sortilin-p75NTR. These results, together with those of previous structural and mechanistic studies of NT-receptor interactions, suggest the potential for distinct signaling activities through p75NTR mediated by different NT-induced conformational changes.  相似文献   

3.
During adulthood, the neurotrophin Nerve Growth Factor (NGF) sensitizes nociceptors, thereby increasing the response to noxious stimuli. The relationship between NGF and pain is supported by genetic evidence: mutations in the NGF TrkA receptor in patients affected by an hereditary rare disease (Hereditary Sensory and Autonomic Neuropathy type IV, HSAN IV) determine a congenital form of severe pain insensitivity, with mental retardation, while a mutation in NGFB gene, leading to the aminoacid substitution R100W in mature NGF, determines a similar loss of pain perception, without overt cognitive neurological defects (HSAN V). The R100W mutation provokes a reduced processing of proNGF to mature NGF in cultured cells and a higher percentage of neurotrophin secreted is in the proNGF form. Moreover, using Surface Plasmon Resonance we showed that the R100W mutation does not affect NGF binding to TrkA, while it abolishes NGF binding to p75NTR receptors. However, it remains to be clarified whether the major impact of the mutation is on the biological function of proNGF or of mature NGF and to what extent the effects of the R100W mutation on the HSAN V clinical phenotype are developmental, or whether they reflect an impaired effectiveness of NGF to regulate and mediate nociceptive transmission in adult sensory neurons. Here we show that the R100 mutation selectively alters some of the signaling pathways activated downstream of TrkA NGF receptors. NGFR100 mutants maintain identical neurotrophic and neuroprotective properties in a variety of cell assays, while displaying a significantly reduced pain-inducing activity in vivo (n = 8–10 mice/group). We also show that proNGF has a significantly reduced nociceptive activity, with respect to NGF. Both sets of results jointly contribute to elucidating the mechanisms underlying the clinical HSAN V manifestations, and to clarifying which receptors and intracellular signaling cascades participate in the pain sensitizing action of NGF.  相似文献   

4.
Degeneration of cholinergic basal forebrain neurons (CBFN) is a hallmark in the pathology of Alzheimer's disease (AD). Critically depending upon the neurotrophic support through nerve growth factor (NGF), CBFN in the AD brain face elevated concentrations of the pro-form of NGF (proNGF) and suffer from an imbalance between TrkA and p75(NTR) expression. Research for the underlying mechanisms of CBFN death suggested a pro-apoptotic activity of proNGF. However, this finding could not be confirmed by all investigators and other studies even observed a neurotrophic function of proNGF. In the presence of these controversial findings we investigated the activity of proNGF in PC12 cells with specific emphasis on its neurotoxic versus neurotrophic action. In this study, we show that proNGF can mediate TrkA receptor signaling directly, yet in the manner of a partial agonist with a lower maximum activity than NGF. A pro-apoptotic activity of proNGF could not be confirmed in our cellular system. Interestingly and surprisingly, pre-incubation with proNGF at low, sub-active concentrations inhibited TrkA-mediated neurotrophic NGF signaling in PC12 cells. Our data support a novel hypothesis for the role of elevated proNGF levels in CBFN pathology in AD. Thus, proNGF can indirectly contribute to the slow neurodegeneration in AD by reducing NGF-mediated trophic support.  相似文献   

5.
Nerve Growth Factor is an essential protein that supports neuronal survival during development and influences neuronal function throughout adulthood, both in the central and peripheral nervous system. The unprocessed precursor of NGF, proNGF, seems to be endowed with biological functions distinct from those of the mature protein, such as chaperone-like activities and apoptotic and/or neurotrophic properties. We have previously suggested, based on Small Angle X-ray Scattering data, that recombinant murine proNGF has features typical of an intrinsically unfolded protein. Using complementary biophysical techniques, we show here new evidence that clarifies and widens this hypothesis through a detailed comparison of the structural properties of NGF and proNGF. Our data provide direct information about the dynamic properties of the pro-peptide and indicate that proNGF assumes in solution a compact globular conformation. The N-terminal pro-peptide extension influences the chemical environment of the mature protein and protects the protein from proteolytic digestion. Accordingly, we observe that unfolding of proNGF involves a two-steps mechanism. The distinct structural properties of proNGF as compared to NGF agree with and rationalise a different functional role of the precursor.  相似文献   

6.
Nerve growth factor (NGF) promotes cell survival via binding to the tyrosine kinase receptor A (TrkA). Its precursor, proNGF, binds to p75(NTR) and sortilin receptors to initiate apoptosis. Current disagreement exists over whether proNGF acts neurotrophically following binding to TrkA. As in Alzheimer's disease the levels of proNGF increase and TrkA decrease, it is important to clarify the properties of proNGF. Here, wild-type and cleavage-resistant mutated forms (M) of proNGF were engineered and their binding characteristics determined. M-proNGF and NGF bound to p75(NTR) with similar affinities, whilst M-proNGF had a lower affinity than NGF for TrkA. M-proNGF behaved neurotrophically, albeit less effectively than NGF. M-proNGF addition resulted in phosphorylation of TrkA and ERK1/2, and in PC12 cells elicited neurite outgrowth and supported cell survival. Conversely, M-proNGF addition to cultured cortical neurons initiated caspase 3 cleavage. Importantly, these biological effects were shown to be mediated by unprocessed M-proNGF. Surprisingly, binding of the pro region alone to TrkA, at a site other than that of NGF, caused TrkA and ERK1/2 phosphorylation. Our data show that M-proNGF stimulates TrkA to a lesser degree than NGF, suggesting that in Alzheimer brain the increased proNGF : NGF and p75(NTR) : TrkA ratios may permit apoptotic effects to predominate over neurotrophic effects.  相似文献   

7.
The nerve growth factor (NGF) precursor, proNGF, is implicated in various neuropathological states. ProNGF signals apoptosis by forming a complex with the receptors p75 and sortilin, however, it can also induce neurite growth, proposed to be mediated by the receptor of mature NGF, tyrosine kinase receptor A (TrkA). The way in which these dual effects occur in adult neurons is unclear. We investigated the neurotrophic effects of proNGF on peptidergic sensory neurons isolated from adult mouse dorsal root ganglia and found that proNGF stimulated neurite extension and branching, requiring p75, sortilin and TrkA. Neurite growth rarely occurred in sortilin-expressing neurons but was commonly observed in TrkA-positive, sortilin-negative neurons that associated closely with sortilin-positive glia. ProNGF was unable to induce local trophic effects at growth cones where sortilin-positive glia was absent. We propose that in adult sensory neurons the neurotrophic response to proNGF is mediated by NGF and TrkA, and that peri-somatic glia may participate in sortilin- and p-75 dependent cleavage of proNGF. The potential ability of local glial cells to provide a targeted supply of NGF may provide an important way to promote trophic (rather than apoptotic) outcomes under conditions where regeneration or sprouting is required.  相似文献   

8.
ProNGF, the precursor of mature nerve growth factor (NGF), is the most abundant form of NGF in the brain. ProNGF and mature NGF differ significantly in their receptor interaction properties and in their bioactivity. ProNGF increases markedly in the cortex of Alzheimer''s disease (AD) brains and proNGF\NGF imbalance has been postulated to play a role in neurodegeneration. However, a direct proof for a causal link between increased proNGF and AD neurodegeneration is lacking. In order to evaluate the consequences of increased levels of proNGF in the postnatal brain, transgenic mice expressing a furin cleavage-resistant form of proNGF, under the control of the neuron-specific mouse Thy1.2 promoter, were derived and characterized. Different transgenic lines displayed a phenotypic gradient of neurodegenerative severity features. We focused the analysis on the two lines TgproNGF#3 and TgproNGF#72, which shared learning and memory impairments in behavioral tests, cholinergic deficit and increased Aβ-peptide immunoreactivity. In addition, TgproNGF#3 mice developed Aβ oligomer immunoreactivity, as well as late diffuse astrocytosis. Both TgproNGF lines also display electrophysiological alterations related to spontaneous epileptic-like events. The results provide direct evidence that alterations in the proNGF/NGF balance in the adult brain can be an upstream driver of neurodegeneration, contributing to a circular loop linking alterations of proNGF/NGF equilibrium to excitatory/inhibitory synaptic imbalance and amyloid precursor protein (APP) dysmetabolism.  相似文献   

9.
Pro-forms of growth factors have received intensive scientific attention recently because in some cases different biological activities have been ascribed compared with the mature growth factors. Examples are the pro-apoptotic role of the nerve growth factor (NGF) proform (proNGF) or the latency of the transforming growth factor (TGF)-beta pro-form (proTGF-beta). To investigate a possible biological function of the pro-form of bone morphogenetic protein (BMP)-2, a member of the TGF-beta family, mature BMP-2, proBMP-2, and the isolated pro-peptide were recombinantly produced in Escherichia coli cells, and a biophysical comparison was performed. Protocols were developed that allowed efficient refolding and subsequent purification of the proteins. ProBMP-2 could be processed to an N-terminally truncated form of BMP-2, digit removed BMP-2 (drBMP-2), that possessed biological activity, i.e. it induced ectopic bone formation. Bone inducing activity was also displayed by proBMP-2. The three proteins were characterized both by fluorescence and CD spectroscopy. From these analyses, predominant beta-sheet secondary structural elements in the pro-peptide were deduced. The thermodynamic stability of the pro-peptide was determined by chemical unfolding assays. As in the case of NGF/proNGF, the mature part of BMP-2 stabilized the structure of the pro-peptide moiety. However, in contrast to NGF/proNGF, the pro-peptide did not stimulate oxidative folding of the mature part in vitro.  相似文献   

10.
The unprocessed precursor of the Nerve Growth Factor (NGF), proNGF, has additional functions, besides its initially described role as a chaperone for NGF folding. The precursor protein endows apoptotic and/or neurotrophic properties, in contrast to the mature part. The structural and molecular basis for such distinct activities are presently unknown. Aiming to gain insights into the specific molecular interactions that govern rm‐proNGF biological activities versus those of its mature counterpart, a structural study by synchrotron small angle X‐ray scattering (SAXS) in solution was carried out. The different binding properties of the two proteins were investigated by surface plasmon resonance (SPR) using, as structural probes, a panel of anti‐NGF antibodies and the soluble forms of TrkA and p75NTR receptors. SAXS measurements revealed the rm‐proNGF to be dimeric and anisometric, with the propeptide domain being intrinsically unstructured. Ab initio reconstructions assuming twofold symmetry generated two types of structural models, a globular “crab‐like” and an elongated shape that resulted in equally good fits of the scattering data. A novel method accounting for possible coexistence of different conformations contributing to the experimental scattering pattern, with no symmetry constraints, suggests the “crab‐like” to be a more likely proNGF conformation. To exploit the potential of chemical stabilizers affecting the existing conformational protein populations, SAXS data were also collected in the presence of ammonium sulphate. An increase of the proNGF compactness was observed. SPR data pinpoints that the propeptide of proNGF may act as an intrinsically unstructured protein domain, characterized by a molecular promiscuity in the interaction/binding to multiple partners (TrkA and p75NTR receptors and a panel of neutralizing anti‐NGF antibodies) depending on the physiological conditions of the cell. These data provide a first insight into the structural basis for the selectivity of mouse short proNGF, versus NGF, towards its binding partners. Proteins 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

11.
Nerve growth factor (NGF) regulates maintenance, survival, and function of not only neuronal cells but also various kinds of non-neuronal cells. Here we clearly demonstrated that mouse aortic endothelial cells (AEC) produced bioactive NGF, and the production was enhanced by a proinflammatory cytokine, interleukin (IL)-1beta. AEC expressed both high affinity (TrkA) and low affinity (p75(NGFR)) receptors for NGF. Exogenously added NGF induced rapid phosphorylation of TrkA tyrosine kinase. Addition of anti-NGF neutralizing antibody resulted in an increase in the proportion of AEC in S and G(2)/M phases and in a hypodiploid range. Since the vascular endothelium plays a pivotal role in inflammatory conditions, these results strongly suggest that NGF, whose production is enhanced at the affected site, may contribute to maintenance, survival, and function of vascular endothelial cells by autocrine and/or paracrine mechanisms.  相似文献   

12.
Nerve growth factor (NGF), a member of the neurotrophin family, is an all-beta-sheet protein with a characteristic structure motif, the cystine knot. Unfolding of NGF in 6 M GdnHCl has been described previously to involve an initial partial loss of structure and a subsequent very slow conversion to a second, completely unfolded state. This latter conversion was postulated to represent a back-threading of the disulfide bond that passes through the cystine knot (loop threading hypothesis). Here, this hypothesis was questioned with the pro form of the protein (proNGF). In proNGF, the mature part is preceded by the 103-amino acid pro-peptide. Consequently, loop threading of the N-terminally extended protein should be significantly delayed. However, unfolding kinetics of proNGF monitored by RP-HPLC, intrinsic fluorescence, and NMR spectroscopy were comparable to those of mature NGF. Time-resolved (1)H-(15)N HSQC spectra revealed a slow time-dependent loss of residual structure of which the kinetics correlated well with the transition observed by RP-HPLC. Refolding from the completely unfolded state led to a partial recovery of natively folded proNGF. In summary, the sequential unfolding of proNGF only marginally differed from that of mature NGF. Therefore, it is very unlikely that a loop threading mechanism is the cause of the slow unfolding step.  相似文献   

13.
In this mini-review I summarize our research efforts in ascertaining the possible neuro-reparative properties of the GM1 ganglioside and its cooperative effects with NGF in stroke-lesion models. We also review aspects of our NGF investigations which have recently led to the discovery that NGF is released in an activity-dependent manner in the form of its precursor molecule, proNGF. These studies support the notion that in the CNS NGF metabolism conversion and degradation occur in the extracellular milieu. We have also validated this pathway in vivo demonstrating that the pharmacological inhibition of the pro-to mature NGF conversion results in the brain accumulation of proNGF and loss and atrophy of cortical cholinergic synapses. Furthermore, we have gathered neurochemical evidence for a compromise of this newly discovered NGF metabolic pathway in Alzheimer’s disease, explaining the vulnerability of NGF-dependent forebrain cholinergic neurons in this disease despite normal NGF synthesis and abundance of NGF precursor.  相似文献   

14.
This review summarizes the present knowledge concerning the retinal localization of the nerve growth factor (NGF), its precursor proNGF, and the receptors TrkA and p75NTR in the developing and mature rodent retina. We further discuss the changes in the expression of NGF and the receptors in experimental models of retinal disorders and diseases like inherited retinitis pigmentosa, retinal detachment, glaucoma, and diabetic retinopathy. Since proNGF is now recognized as a bioactive signaling molecule which induces cell death through p75NTR activation, the role of proNGF in the induction of retinal cell loss under neurodegenerative conditions is also highlighted. In addition, we present the evidences for a potential therapeutic intervention with NGF for the treatment of retinal neurodegenerative diseases. Different strategies have been developed and experimentally tested in mice and rats in order to reduce cell loss and Müller cell gliosis, e.g., increasing the availability of endogenous NGF, administration of exogenous NGF, activation of TrkA, and inhibition of p75NTR. Here, we discuss the several lines of evidence supporting a protective effect of NGF on retinal cell loss, with specific emphasis on photoreceptor and retinal ganglion cell degeneration. A better understanding of the mechanisms underlying the effects of NGF and proNGF in the modulation of neurodegeneration and gliosis in the retina will help to develop efficient therapeutic strategies for various retinal diseases.  相似文献   

15.
Nerve growth factor (NGF) is generated from a precursor, proNGF, that is proteolytically processed. NGF preferentially binds a trophic tyrosine kinase receptor, TrkA, while proNGF binds a neurotrophin receptor (NTR), p75NTR, that can have neurotoxic activity. Previously, we along with others showed that the soluble protein α2-macroglobulin (α2M) is neurotoxic. Toxicity is due in part to α2M binding to NGF and inhibiting trophic activity, presumably by preventing NGF binding to TrkA. However, the mechanisms remained unclear. Here, we show ex vivo and in vivo three mechanisms for α2M neurotoxicity. First, unexpectedly the α2M-NGF complexes do bind TrkA receptors but do not induce TrkA dimerization or activation, resulting in deficient trophic support. Second, α2M makes stable complexes with proNGF, conveying resistance to proteolysis that results in more proNGF and less NGF. Third, α2M-proNGF complexes bind p75NTR and are more potent agonists than free proNGF, inducing tumor necrosis factor alpha (TNF-α) production. Hence, α2M regulates proNGF/p75NTR positively and mature NGF/TrkA negatively, causing neuronal death ex vivo. These three mechanisms are operative in vivo, and α2M causes neurodegeneration in a p75NTR- and proNGF-dependent manner. α2M could be exploited as a therapeutic target, or as a modifier of neurotrophin signals.  相似文献   

16.
Nerve growth factor mediates neuronal survival, synaptogenesis, and synaptic remodeling. We utilized primary hippocampal cultures to investigate the intrinsic motifs of proNGF that might contribute to its processing and subsequent allocation to a regulated versus constitutive secretory pathway. The addition of a carboxypeptidase E motif to proNGF did not alter the secretion of NGF. However, mutagenesis of proNGF proteolytic processing sites had significant effects on the final NGF product and its secretion. The furin recognition site (R118-S-K-R121) is essential for the proper processing of proNGF to its 13.5kDa mature product and mutating the furin site exposed an alternative processing site resulting in an intermediate NGF product of approximately 22kDa. Finally, inhibiting the processing of proNGF abolished regulated secretion of the resulting NGF product. These experiments demonstrate that hippocampal neurons harbor multiple pathways to process proNGF of which the furin consensus sequence is the preferred processing site.  相似文献   

17.
Nodal proteins are secreted signaling factors of the transforming growth factor beta (TGFbeta) family with essential roles in embryonic development in vertebrates. Mutations affecting the Nodal factors have severe consequences in mammals and fish. Furthermore, increased Nodal levels have been associated with melanoma tumor progression. Like other TGFbeta-related proteins, Nodal factors consist of a pro-domain and a mature domain. The pro-domain of mouse Nodal protein stabilizes its precursor. However, the mechanisms by which the pro-domains exert their activities are unknown. Here, we characterize the zebrafish Nodal-related factor Cyclops (Cyc) and find unexpected functions for the pro-domain in regulating Cyc activity. We identified a lysosome-targeting region in the Cyc pro-domain that destabilizes the precursor and restricts Cyc activity, revealing the molecular basis for the short-range signaling activities of Cyc. We show that both the pro- and mature-domains of Cyc regulate its stability. We also characterize a mutation in the pro-domain of human NODAL (hNODAL) that underlies congenital heterotaxia. Heterologous expression of mutant hNODAL increases expression of Nodal-response genes. Our studies reveal unexpected roles for the pro-domain of the Nodal factors and provide a possible mechanism for familial heterotaxia.  相似文献   

18.
Nerve growth factor (NGF) promotes proliferation via its high affinity receptor (TrkA). Its precursor proNGF promotes apoptosis via the pan-neurotrophin-receptor p75. Recently, we have identified NGF and p75 as important hair growth terminators. However, if proNGF is involved or if NGF can also promote hair growth via TrkA is unclear. By RT-PCR we found that NGF/proNGF mRNA levels peak during early anagen in murine back skin, whereas NGF/proNGF protein levels peak during catagen, indicating high turnover in early anagen and protein accumulation in catagen. By immunohistochemistry, NGF and TrkA are found in the proliferating compartments of the epidermis and hair follicle throughout the cycle. In contrast, strong proNGF is found in the highly differentiated inner root sheath and adjacent to the p75+ regressing epithelial strand in catagen. Commercial 7S NGF, which contains both NGF and proNGF, promotes anagen development in organ-cultured early anagen mouse skin, whereas it promotes catagen development in late anagen skin. Together, our findings suggest an anagen-promoting or anagen-supporting role for NGF/TrkA, and a catagen-promoting role for proNGF/p75 interactions. This has important implications for the future design of specific neurotrophin receptor ligands as novel pharmaceuticals in the modification of tissue remodeling processes such as hair growth or wound healing.  相似文献   

19.
The uncleaved, pro-form of nerve growth factor (proNGF) functions as a pro-apoptotic ligand for the p75 neurotrophin receptor (p75NTR). However, some reports have indicated that proneurotrophins bind and activate Trk receptors. In this study, we have examined proneurotrophin receptor binding and activation properties in an attempt to reconcile these findings. We show that proNGF readily binds p75NTR expressed in HEK293T cells but does not interact with TrkA expressed under similar circumstances. Importantly, proNGF activates TrkA tyrosine phosphorylation, induces Erk and Akt activation, and causes PC12 cell differentiation. We show that inhibiting endocytosis or furin activity reduced TrkA activation induced by proNGF but not that induced by mature NGF and that proNGF123, a mutant form of NGF lacking dibasic cleavage sites in the prodomain, does not induce TrkA phosphorylation in PC12 cells. Therefore, endocytosis and cleavage appear to be prerequisites for proNGF-induced TrkA activity. We also found that proBDNF induces activation of TrkB in cerebellar granule neurons and that proBDNF cleavage by furin and metalloproteases facilitates this effect. Taken together, these data indicate that under physiological conditions, proneurotrophins do not directly bind or activate Trk receptors. However, endocytosis and cleavage of proneurotrophins produce processed forms of neurotrophins that are capable of inducing Trk activation.  相似文献   

20.
Sortilin was first identified based on its activity as part of intracellular protein sorting machinery. Recently, it was discovered that sortilin also acts as a cell surface receptor for the propeptide form of nerve growth factor (proNGF), progranulin, and neurotensin. The interaction of sortilin to these neurotrophic ligands is linked to diseases of the nervous system that lead to neurodegeneration and neuropathic pain. Blocking of the interaction of sortilin to these ligands may prevent or slow the progress of these nervous system disorders. In vitro screening assays for blocking compounds or peptides are part of the standard set of tools for drug discovery. However, assays for sortilin biology are not readily available to determine if the selected blocking agent inhibits sortilin activity on the surface of cells. We have developed a sortilin specific cell based assay to identify compounds that specifically block interaction between sortilin and proNGF prodomain. The assay system records both the presence of sortilin on the cell surface and the interaction with the pro domain of NGF. Fluorescent images of the sortilin expressing cells are analyzed for the presence of pro domain of NGF. Sortilin-positive and sortilin-negative cells within one well are concomitantly and automatically analyzed. Sortilin—pro domain interaction can be blocked dose dependently by neurotensin and synthetic compounds. The assay will facilitate the discovery of entities interfering with the binding of sortilin to the NGF pro domain. This assay can be modified to screen for inhibitors of the binding of ligands to other complex cell surface receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号