首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Rat cytochrome P-450MC cDNA was expressed in Saccharomyces cerevisiae AH22, SHY3 and NA87-11A cells under the control of the yeast ADH1 promoter and terminator. Although the three yeast strains transformed with the constructed expression plasmid, pAMC1, contained approximately three copies of the plasmid, the levels of both P-450MC mRNA and the corresponding protein in the AH22 cells carrying plasmid pAMC1 were 1.4- to 1.7-fold and 2-fold higher than in the other two strains, respectively. The P-450MC protein was purified from the microsomal fraction of AH22 cells carrying pAMC1 by a rapid purification method. The apparent molecular weight, chromatographic behavior, spectral properties, substrate specificity and immunochemical properties of the purified P-450MC protein were indistinguishable from those of rat liver P-450MC-I and P-450MC-II (Sasaki, T., et al. (1984) J. Biochem. 96, 117-126). The NH2-terminal amino acid sequence of the purified protein up to 10 residues was the same as those of P-450MC-I and P-450MC-II. In addition, HPLC analysis of the microsomal fraction of AH22 cells containing pAMC1 indicated that the synthesized P-450MC protein corresponds to P-450MC-II, but not P-450MC-I. With another purification method, we obtained the cleaved P-450MC protein which lacked the NH2-terminal 30 amino acids of intact P-450MC. The spectral properties and monooxygenase activities towards benzo(a)pyrene and 7-ethoxycoumarin of the cleaved P-450MC were nearly the same as those of intact P-450MC.  相似文献   

4.
T Iwase  T Sakaki  Y Yabusaki  H Ohkawa  Y Ohta  S Kawato 《Biochemistry》1991,30(34):8347-8351
Rat liver cytochrome P-450IA1 and/or yeast NADPH-cytochrome P-450 reductase was expressed genetically in yeast microsomes. The ratio of P-450IA1 to the reductase was about 17:1 and 1:2 without and with coexpression of the reductase, respectively. Rotational diffusion of P-450IA1 was examined by observing the flash-induced absorption anisotropy, r(t), of the heme.CO complex. In only P-450IA1-expressed microsomes, 28% of P-450IA1 was rotating with a rotational relaxation time (phi) of about 1200 microseconds. The mobile population was increased to 43% by the presence of the coexpressed reductase, while phi was not changed significantly. Increased concentration of KCl from 0 to 1000 mM caused considerable mobilization of P-450IA1. The results demonstrate a proper incorporation of P-450IA1 molecules into yeast microsomal membranes. The significant mobilization of P-450IA1 by the presence of reductase suggests a possible transient association of P-450IA1 with the reductase.  相似文献   

5.
Experimental hepatomas induced with 5,9-dimethyldibenzo[c,g]carbazole in female XVIInc/Z mice display a strong microsomal steroid 15 alpha-hydroxylation activity. A cytochrome P-450 isoenzyme (cytochrome P-450tu), specific for this activity, has been isolated by an HPLC derived method using various Fractogel TSK and hydroxyapatite supports. On SDS polyacrylamide gel electrophoresis the purified protein appeared as one major band with an apparent Mr of 50,000. Its specific cytochrome P-450 content was 7.55 nmol/mg protein. As deduced from the visible spectrum, the heme iron of the isolated P-450tu was to 72% in the high-spin state. The CO-bound reduced form showed an absorption maximum at 450 nm. In addition to the stereospecific 15 alpha-hydroxylation of progesterone (2.3 min-1) and testosterone (2.5 min-1), the enzyme catalyzed also 7-ethoxycoumarin O-deethylation, benzphetamine N-demethylation and aniline 4-hydroxylation. Its N-terminal amino-acid sequence (21 residues) was identical to that of cytochrome P-450(15) alpha, isolated by Harada and Negishi from liver microsomes of 129/J mice. P-450tu differed from P-450(15) alpha by its higher molecular weight, its 40-times lower steroid 15 alpha-hydroxylation and its 4-times higher benzphetamine N-demethylation.  相似文献   

6.
Two cDNA clones, 2C19 and 4C1, were isolated from a lung cDNA library of 3-methylcholanthrene (MC)-treated hamster by using rat P-450c cDNA as a probe. The cDNA determined from 2C19 and 4C1 was 2,916 bp long and contained an entire coding region for 524 amino acids with a molecular weight of 59,408. The deduced amino acid sequence showed a 85% identity with that of rat P-450c indicating 2C19 and 4C1 encode the hamster P-450IA1 protein. Another cDNA clone, designated H28, was isolated from a MC-induced hamster liver cDNA library by using the hamster lung 2C19 or 4C1 cDNA clone as a probe. H28 was 1,876 bp long and encoded a polypeptide of 513 amino acids with a molecular weight of 58,079. The N-terminal 20 residues deduced from nucleotide sequence of H28 were identical to those determined by sequence analysis of purified hamster hepatic P-450MCI. The high similarity of the nucleotide and deduced amino acid sequences between H28 and P-450IA2 of other species indicated that H28 encoded a P-450 protein which belongs to the P-450IA2 family. Northern blot analysis revealed that the mRNAs for hamster P-450IA1 and IA2 were about 2.9 and 1.9 kb long, respectively. Hamster P-450IA1 mRNA was induced to the same level in lungs as in livers by MC treatment, whereas hamster P-450IA2 mRNA was induced and expressed only in hamster liver.  相似文献   

7.
Expression of cytochrome P-450d by Saccharomyces cerevisiae   总被引:1,自引:0,他引:1  
Rat liver microsomal cytochrome P-450d was abundantly expressed in the yeast Saccharomyces cerevisiae by using a yeast-Escherichia coli shuttle vector consisting of rat liver P-450d cDNA and yeast acid phosphatase promoter. The expressed cytochrome P-450d was immunologically crossed with rat liver P-450d. The hydroxylase activity of estra-1,3,5(10)-triene-3, 17 beta-diol was 11 nmol/min per nmol P-450d, which is comparable to that reported previously for rat liver P-450d. The expressed P-450d content was nearlyt 1% of total yeast protein as estimated from immunoblotting, hydroxylase activity and optical absorpton of the reduced CO form.  相似文献   

8.
A cDNA library was constructed from liver mRNA of a beta-naphthoflavone-induced rabbit. Two clones pLM4-1 and pLM6-1 containing 2.2-kbp inserts that hybridized at low stringincy with a mouse P1 P-450 probe were selected. The clone pLM4-1 was fully sequenced and found to contain a full-length cDNA coding for cytochrome P-450 LM4. Partial sequence and restriction mapping made it possible to identify pLM6-1 as coding for the major part of cytochrome P-450 LM6. Cloned LM4-1 cDNA was reformed by deletion of the 5' and 3' non-coding regions before insertion into yeast expression vectors PYe DP1/10. A similar operation was performed on pLM6-1 cDNA after replacement of the missing N-terminus-coding sequences by homologous sequences form the pLM4-1 clone resulting in a chimeric cytochrome P-450 coding sequence. Expression of cloned rabbit cytochrome P-450 into transformed yeast was optimized by studying the effect of the nature of the DNA sequence just preceding the initiation codon on the level of cytochrome P-450 production. Yeast synthesized cytochromes P-450 were characterized by immunoblotting, spectra and catalytic activity determinations. Cloned cytochrome P-450 LM4 was found by all criteria to be identical to the authentic rabbit one. The chimeric cytochrome P-450 that contains the 143 N-terminal amino acids of cytochrome P-450 LM4 and the remaining 375 amino acids of cytochrome P-450 LM6 was found to exhibit most of the authentic cytochrome P-450 LM6 catalytic properties. Enzymatic and evolutionary implications of these results are discussed.  相似文献   

9.
We have purified and characterized a phenobarbital (PB)-inducible hepatic mitochondrial cytochrome P-450 (P-450), termed P-450mt4, which is distinctly different from the previously characterized mitochondrial isoforms. The level of induction of P-450mt4 by PB in the male livers is nearly 20-fold, as against a marginal induction in the female livers, suggesting that it may be a male predominant isoform. P-450mt4 shows a close resemblance to microsomal P-450b (the major PB-inducible form) with respect to electrophoretic migration (apparent molecular mass of 50 kDa) and immunological cross-reactivity, although it exhibits a distinct isoelectric pH (pI 6.9 vs 6.5 for P-450b), peptide fingerprint pattern, and amino acid composition. Further, the N-terminal sequence analysis shows over 90% positional identity (39 out of 42) between P-450mt4 and P-450b, suggesting that it is a close relative of the P-450 IIB gene family. In vitro reconstitution experiments show that P-450mt4 can metabolize a wide range of substrates such as benzphetamine, (dimethylamino)antipyrine, aflatoxin B1, and vitamin D3, exclusively in the presence of mitochondrial-specific ferredoxin and ferredoxin reductase as electron carriers. P-450mt4 is translated as a 53-kDa precursor, which is transported into mitochondria under in vitro conditions and processed into a mature 50-kDa protein. These results provide conclusive evidence for the occurrence of a male-specific P-450 belonging to the IIB gene family in rat liver mitochondria.  相似文献   

10.
Purified rat liver microsomal cytochrome P-450 and NADPH-cytochrome P-450 reductase were co-reconstituted in phosphatidylcholine-phosphatidylethanolamine-phosphatidylserine vesicles using a cholate dialysis technique. The co-reconstitution of the enzymes was demonstrated in proteoliposomes fractionated by centrifugation in a glycerol gradient. The proteoliposomes catalyzed the N-demethylation of a variety of substrates. Rotational diffusion of cytochrome P-450 was measured by detecting the decay of absorption anisotropy r(t), after photolysis of the heme.CO complex by a vertically polarized laser flash. The rotational mobility of cytochrome P-450, when reconstituted alone, was found to be dependent on the lipid to protein ratio by weight (L/P450) (Kawato, S., Gut, J., Cherry, R. J., Winterhalter, K. H., and Richter, C. (1982) J. Biol. Chem. 257, 7023-7029). About 35% of cytochrome P-450 was immobilized and the rest was rotating with a mean rotational relaxation time phi 1 of about 95 mus in L/P450 = 1 vesicle. In L/P450 = 10 vesicles, about 10% of P-450 was immobile and the rest was rotating with phi 1 congruent to 55 mus. Co-reconstitution of equimolar amounts of NADPH-cytochrome P-450 reductase into the above vesicles results in completely mobile cytochrome P-450 with a phi 1 congruent to 40 mus. Only a small decrease in the immobile fraction of cytochrome P-450 is observed when the molar ratio of cytochrome P-450 to the reductase is 5. The results suggest the formation of a monomolecular 1:1 complex between cytochrome P-450 and NADPH-cytochrome P-450 reductase in the liposomes.  相似文献   

11.
Determination of the heme and protein portions of phenobarbital (PB)-inducible and 3-methylcholanthrene inducible forms of cytochrome P-450, P-450(PB-1), and P-450(MC-1), in the liver microsomes of drug-treated animals indicated the presence of 20-30% of apo-cytochrome P-450 in both cases. Inhibition of protein synthesis by cycloheximide injection to the rats did not significantly inhibit the incorporation of delta-amino[14C]levulinic acid (ALA) into the heme of P-450(PB-1) or P-450(MC-1) in the liver, indicating that the heme incorporation into microsomal cytochrome P-450 is not tightly coupled with the synthesis of the apo-cytochrome. When heme-labeled cytosol prepared from [14C]ALA-injected rats was incubated with non-radioactive microsomes in vitro, a significant amount of labeled heme was incorporated into microsomal P-450(PB-1), whereas the incorporation into P-450(MC-1) was much less. The in vitro transfer of heme from cytosol to microsome-bound cytochrome P-450 was stimulated by the addition of an NADPH-generating system to the incubation mixtures, and inhibited when the microsomes were solubilized with sodium cholate and Emulgen-913. Although the in vitro incubation of heme-labeled microsomes with non-radioactive cytosol resulted in some release of labeled heme from the microsomes, no reversible transfer of heme between cytochrome P-450 molecules bound to separate microsomal vesicles was detected when heme-labeled microsomes were incubated with non-radioactive microsomes in the presence and absence of cytosol.  相似文献   

12.
The membrane-bound flavoprotein NADPH:cytochrome P-450 (cytochrome c) reductase, that functions in electron transfer to cytochrome P-450 mono-oxygenases, was purified from a cell suspension culture of the higher plant Catheranthus roseus . Anti-serum raised against the purified protein was found to inhibit NADPH:cytochrome c reductase activity as well as the activities of the cytochrome P-450 enzymes geraniol 10-hydroxylase and trans -cinnamate 4-hydroxylase, which are involved in alkaloid biosynthesis and phenylpropanoid biosynthesis, respectively. Immunoscreening of a C. roseus cDNA expression library resulted in the isolation of a partial NADPH: cytochrome P-450 reductase cDNA clone, which was identified on the basis of sequence homology with NADPH:cytochrome P-450 reductases from yeast and animal species. The identity of the cDNA was confirmed by expression in Escherichia coli as a functional protein capable of NADPH-dependent reduction of cytochrome c and neotetrazolium, two in vitro substrates for the reductase. The N-terminal sequence of the reductase, which was not present in the cDNA clone, was determined from a genomic NADPH: cytochrome P-450 reductase clone. It was demonstrated that the reductase probably is encoded by a single copy gene. A sequence comparison of this plant NADPH:cytochrome P-450 reductase with the corresponding enzymes from yeast and animal species showed that functional domains involved in binding of the cofactors FMN, FAD and NADPH are highly conserved between all kingdoms. In C. roseus cell cultures a rapid increase of the reductase steady state mRNA level was observed after the addition of fungal elicitor preparations that are known to induce cytochrome P-450-dependent biosynthetic pathways.  相似文献   

13.
The absence of antibodies to cholesterol 7 alpha-hydroxylase (EC 1.14.13.17), the rate-determining enzyme for bile acid synthesis, has significantly compromised studies on this protein. Nine antibodies raised against proteins from the cytochrome P-450 gene families (P450I, P450IIA, P450IIB, P450IIC and P450III) were tested as inhibitors of 7 alpha-hydroxylase activity. An antibody raised against a male-predominant P-450 (PB2a, P450h) from the P450IIC gene subfamily was an effective inhibitor of activity in liver microsomal fractions from rat, mouse and hamster. The inhibition could be reversed by the addition of PB2a antigen, indicating structural similarity between cholesterol 7 alpha-hydroxylase and proteins within the P450IIC subfamily. Western blot analysis of hepatic microsomal fractions with the PB2a antibody gave three bands, two of which, like cholesterol 7 alpha-hydroxylase, did not inhibit sexual dimorphism. The intensity of one of the bands (apparent Mr 54,000) correlated with changes observed in activity due to diet [Spearman correlation of 0.800 (P less than 0.01)]. These findings suggest that cholesterol 7 alpha-hydroxylase is a form of P-450 which shares structural similarity with cytochromes P-450 in the P450IIC gene subfamily and that its feedback regulation by bile acid involves protein induction rather than simply post-translational modification.  相似文献   

14.
A rabbit cytochrome P-450IIE2 full-length cDNA was cloned into a yeast episomal plasmid (YEp13) between the copper-responsive yeast metallothionein gene promoter (CUP1) and the iso-1-cytochrome c gene terminator (CYC1), and the cytochrome P-450 was expressed in Saccharomyces cerevisiae. The microsomal fraction prepared from copper-treated cells exhibited a ferrous carbonyl difference spectrum with an absorption maximum at 451 nm and contained approximately 0.07 nmol of P-450IIE2 per mg of protein. The P-450IIE2 protein expressed in yeast microsomes was catalytically competent as judged by the NADPH-dependent deethylation of N-nitrosodiethylamine and by the oxidation of butanol. Cholate solubilization and polyethylene glycol fractionation of yeast microsomal P-450IIE2 yielded a preparation with a markedly lower specific content than that of intact microsomes, but, when 4-methylpyrazole was included during solubilization, the holoenzyme was completely stabilized.  相似文献   

15.
The ethanol-inducible form of cytochrome P-450 (P-450IIE1) has previously been shown to exhibit an unusually high rate of oxidase activity with the subsequent formation of reactive oxygen species, e.g., hydrogen peroxide, and to be the main contributor of microsomal oxidase activity in liver microsomes from acetone-treated rats [Ekstr?m & Ingelman-Sundberg (1989) Biochem. Pharmacol. (in press)]. The results here presented indicate that oxygen exposure of rats causes an about 4-fold induction of P-450IIE1 in rat liver and lung microsomes. The induction in liver was not accompanied by any measurable increase in the P-450IIE1 mRNA levels, but the enhanced amount of P-450IIE1 accounted for 60% of the net 50% increase in the level of hepatic P-450 as determined spectrophotometrically. The induction of P-450IIE1 was maximal after 60 h of O2 exposure, and concomitant increases in the rates of liver microsomal CCl4-dependent lipid peroxidation, O2 consumption, NADPH oxidation, O2- formation, H2O2 production, and NADPH-dependent microsomal lipid peroxidation were seen. Liver microsomes from oxygen-treated rats had very similar properties to those of microsomes isolated from acetone-treated rats with respect to the P-450IIE1 content and catalytic properties, but different from those of thyroxine-treated animals. Treatment of rats with the P-450IIE1 inducer acetone in combination with oxygen exposure caused a potentiation of the NADPH-dependent liver and lung microsomal lipid peroxidation and decreased the survival time of the rats. The results reached indicate a role for cytochrome P-450 and, in particular, for cytochrome P-450IIE1 in oxygen-mediated tissue toxicity.  相似文献   

16.
We administered triacetyloleandomycin (TAO) to rats and found that this macrolide antibiotic is the most efficacious inducer of liver microsomal cytochrome P-450 (P-450) examined to date. Liver microsomes prepared from TAO-treated rats contained greater than 5.0 nmol of P-450/mg of protein and a single induced protein as judged by analysis on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This protein comigrated with P-450p, the major form of P-450 induced in liver microsomes of rats treated with pregnenolone-16 alpha-carbonitrile (PCN) or dexamethasone (DEX). On immunoblots of such gels developed with antibodies to P-450p, the TAO-induced protein reacted strongly as a single band. There was strict parallelism between the amount of immunoreactive P-450p in liver microsomes prepared from untreated rats or from rats treated with phenobarbital, TAO, DEX, or PCN, the ability of these microsomes to catalyze conversion of TAO to a metabolite which forms a spectral complex, and the ethylmorphine and erythromycin demethylase activities. Antibodies to P-450p specifically blocked microsomal TAO metabolite complex formation and ethylmorphine and erythromycin demethylase activities. Moreover, anti-P-450p antibodies completely immunoprecipitated solubilized TAO metabolite complexes prepared by detergent treatment of liver microsomes obtained from TAO-treated rats. Finally, we found that the major form of P-450 isolated from liver microsomes of TAO-treated rats and purified to homogeneity was indistinguishable from purified P-450p as judged by molecular weights, spectral characteristics, enzymatic activities, ability to bind TAO, peptide maps, and amino-terminal amino acid sequences. We concluded that, in addition to glucocorticoids, macrolide antibiotics are specific inducers of P-450p.  相似文献   

17.
Cytochrome P-450, designated as P-450-MK2, was purified to an electrophoretic homogeneity from polychlorinated biphenyl (PCB)-treated female crab-eating monkeys. P-450-MK2 catalyzed nifedipine and nilvadipine oxidations, at a rate comparable to human P-450-HM1. The N-terminal amino acid sequence of P-450-MK2 was highly homologous to those of P-450-HM1 and NF 25. The antibodies to P-450-HM1 recognized P-450-MK2 and effectively inhibited the activity of testosterone 6 beta-hydroxylase in monkey liver microsomes. These results suggest that a form of cytochrome P-450 corresponding to human P-450-HM1 or P-450NF which belongs to the P450 III gene family is also present in liver microsomes of crab-eating monkeys.  相似文献   

18.
A cDNA, p1-88, was cloned from a library constructed using rabbit liver mRNA. Sequence analysis indicates that p1-88 is highly similar (congruent to 95%) to the cDNA, p1-8, that encodes rabbit liver cytochrome P-450 1 and that had been isolated from the same library. The predicted amino acid sequence of the protein encoded by p1-88, P-450 IIC4, differs at 25 of 487 amino acids from that encoded by p1-8. P-450 IIC4 was synthesized in vitro using rabbit reticulocyte lysate primed with RNA transcribed from the coding sequence of p1-88 using a bacteriophage T7 RNA polymerase/promoter system. P-450 IIC4 reacts with two monoclonal antibodies that recognize P-450 1 and exhibits the same relative electrophoretic mobility as P-450 1. In contrast, the reactivity of a third monoclonal antibody recognizing P-450 1, 1F11, toward P-450 IIC4 synthesized in vitro is greatly diminished. The latter antibody extensively inhibits hepatic progesterone 21-hydroxylase activity and recognizes phenotypic differences among rabbits in the microsomal concentration of P-450 1. This difference in the immunoreactivity of P-450 IIC4 and P-450 1 with the 1F11 antibody suggests that P-450 IIC4 does not contribute significantly to hepatic progesterone 21-hydroxylase activity. S1 nuclease mapping demonstrates that the expression of mRNAs corresponding to p1-88 are expressed to equivalent extents in rabbits exhibiting high and low expression of mRNAs corresponding to p1-8. Thus, P-450 1 differs from the protein encoded by p1-88, in its regulation, immunoreactivity, and by inference its catalytic properties although the amino acid sequences of P-450 1 and P-450 IIC4 are highly similar (congruent to 95%).  相似文献   

19.
P-450 human-2 is a human cytochrome P-450 that is immunochemically related to a constitutive male-specific cytochrome P-450 (P-450-male) and the phenobarbital-inducible P-450b/e in rat liver. By screening a human liver cDNA library in bacteriophage lambda gt11, we isolated a clone with an insert length of 1,847 bases (pHY13). The clone was sequenced and shown to code for a protein of 487 amino acids. The N-terminal 11-amino-acid sequence was in agreement with the protein sequence of P-450 human-2. The nucleotide sequence of pHY13 showed less than 50% similarity with those of human cytochrome P-450s, pHP-450(1), HLp, P-450NF, P1-450 4, and P3(450), but the nucleotide sequence of pHY13 is 80% similar to the reported sequence of rat cytochrome P-450, P-450(M-1). In addition, the coding sequence of pHY13 showed close similarity to that of MP-8, which was recently reported as the sequence corresponding to human cytochrome P-450MP, although no apparent similarity was observed in their 3' non-coding sequences except for the first 75 bases and the expected length of the complete sequences. These results, together with the immunochemical data, indicate that P-450 human-2 is closely related, but not identical, to P-450MP, and may belong to the category of developmentally regulated constitutive cytochrome P-450s.  相似文献   

20.
Cytochrome P-450cam catalyzes the stereospecific methylene hydroxylation of camphor to form 5-exohydroxycamphor and is encoded by the camC gene on the CAM plasmid of Pseudomonas putida, ATCC 17453. The cytochrome P-450cam structural gene has been cloned by mutant complementation in P. putida (Koga, H., Rauchfuss, B., and Gunsalus, I. C. (1985) Biochem. Biophys. Res. Commun. 130, 412-417). We report the complete nucleotide sequence of the camC gene along with 155 base pairs of 5' and 175 base pairs of 3' flanking sequence. Upon comparison of the amino acid sequence derived from the gene sequence to the one obtained from the purified protein (Haniu, M., Armes, L. G., Yasunobu, K. T., Shastry, B. A., and Gunsalus, I. C. (1982) J. Biol. Chem. 257, 12664-12671), five differences were found. The most significant was the addition of a Trp and a Thr residue between Val-54 and Arg-55, thereby increasing the amino acid numbering scheme by 2 after Val-54, bringing the total number of amino acids to 414. Other differences were: Gln-274----Glu-276, Ser-359----His-361, and Asn-405----Asp-407. N-terminal amino acid sequence analysis of the cloned cytochrome P-450cam enzyme expressed in Escherichia coli under the lac promoter showed a faithful translation of the hemo-protein, with the N-terminal Met removed by processing as found in P. putida. Purification to homogeneity of the cloned protein was accomplished by the method used for the CAM plasmid-encoded enzyme of P. putida. The G + C content of the camC gene was found to be 59.0%, caused by a preferred usage of G and C terminated codons. The gene encoding putidaredoxin reductase, camA, was located 22 nucleotides downstream from the cytochrome P-450cam gene. The camA gene initiated with a novel GUG codon, the first such initiator documented in Pseudomonas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号