首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
L-谷氨酸是世界上第一大宗氨基酸产品,广泛应用于食品医药及化工等行业。以谷氨酸高产菌谷氨酸棒杆菌(Corynebacterium glutamicum) G01为出发菌株,首先通过敲除主要副产物丙氨酸合成相关基因-丙氨酸氨基转移酶编码基因(alaT),降低了发酵副产物丙氨酸含量。其次,α-酮戊二酸节点碳流量对谷氨酸合成起重要作用,因此,采用核糖体结合位点(ribosome-binding site,RBS)序列优化降低了α-酮戊二酸脱氢酶的活性,强化了谷氨酸合成代谢流。同时通过筛选不同来源的谷氨酸脱氢酶,加强了α-酮戊二酸内源转化为谷氨酸的能力。接着,对谷氨酸转运蛋白进行理性设计,提高了谷氨酸的外排能力。最后,对基于以上策略构建的整合菌株进行了5 L发酵罐发酵优化,通过梯度升温结合分批补料策略,谷氨酸产量为(136.33±4.68) g/L,较原始菌的产量(96.53±2.32) g/L提高了41.2%;糖酸转化率为55.8%,较原始菌的44.2%提高了11.6%;且降低了副产物丙氨酸的含量。以上策略一定程度上提高了谷氨酸的产量与糖酸转化率,可为谷氨酸生产菌株的代谢改造提供参考。  相似文献   

2.
5-氨基乙酰丙酸 (5-aminolevulinic acid,5-ALA) 在医药和农业等领域有着广泛作用,目前主要采用大肠杆菌或谷氨酸棒杆菌以微生物发酵法合成。为了进一步提高谷氨酸棒杆菌合成5-ALA的能力,对其C4代谢途径进行了系统代谢改造。首先分别在谷氨酸棒杆菌中异源表达荚膜红杆菌和沼泽红假单胞菌的5-氨基乙酰丙酸合成酶ALAS,选择酶活相对较高的沼泽红假单胞菌的RphemA基因作为关键合成酶基因,并筛选到能显著增强RphemA的酶活性的核糖体结合位点RBS5。重组菌株ALAS的比酶活可达 (221.87±3.10) U/mg,且5-ALA产量提高了14.3%;随后通过敲除α-酮戊二酸脱氢酶抑制蛋白基因 (odhI) 和琥珀酸脱氢酶基因 (sdhA),促进了前体琥珀酰CoA向5-ALA途径的流动;通过sRNA抑制hemB表达减少了5-ALA的降解;并且过表达半胱氨酸/O-乙酰丝氨酸转运蛋白eamA提高了5-ALA的输出效率;使用重组菌株C. glutamicum 13032/?odhI/?sdhA-sRNAhemB-RBS5RphemA-eamA摇瓶发酵,5-ALA最高产量达11.90 g/L,较出发菌株提高了57%。最后,在5 L发酵罐中进行补料分批发酵,48 h内5-ALA的产量达25.05 g/L,为目前以葡萄糖为碳源发酵的最高产量。本研究构建了高产5-ALA重组谷氨酸棒杆菌,具有良好的工业应用前景。  相似文献   

3.
【目的】提高谷氨酸棒状杆菌(Corynebacterium glutamicum)ATCC13032厌氧条件下的丁二酸产量,并降低发酵产物中副产物的含量。【方法】以谷氨酸棒状杆菌(Corynebacterium glutamicum)ATCC13032为出发菌,首先敲除乳酸形成的关键酶乳酸脱氢酶基因(ldh),构建ldh缺失株谷氨酸棒状杆菌ATCC13032Δldh;然后以缺失株谷氨酸棒状杆菌ATCC13032Δldh为出发菌,敲除该菌的丙酮酸脱氢酶系的E1p酶基因(aceE),构建一株双缺失突变菌株谷氨酸棒状杆菌ATCC13032ΔldhΔaceE。【结果】与供试菌比较,谷氨酸棒状杆菌ATCC13032Δldh的丁二酸产量和转化率分别提高了94.9%和32%,并且主要的副产物乳酸产量由出发菌产量的63.5 g/L降低到很微量的程度。丙酮酸脱氢酶的失活并不能完全消除副产物乙酸的形成,但乙酸的产量较ATCC13032Δldh降低了37.9%,丁二酸的产量略有提高。【结论】该重组菌具有较强的丁二酸生产工业化潜力,并且该研究方法为微生物代谢育种提供参考。  相似文献   

4.
采用基因组改组的方法选育获得的一株耐温谷氨酸棒杆菌F343,并比较了F343与其出发菌株S9114在39℃发酵谷氨酸时的发酵特性和代谢流量。结果表明:耐温菌F343的比生长速率、比谷氨酸积累速率可维持在较高的水平;通过发酵中后期代谢流量分析发现耐温菌F343在磷酸烯醇式丙酮酸(PEP)节点处,磷酸烯醇式丙酮酸羧化酶(PEPc)催化的CO_2回补支路反应代谢流增加;α-酮戊二酸(KG)节点处,谷氨酸氢酶(GDH)催化的产生谷氨酸的支路代谢通量增加。此外,高温发酵谷氨酸时,耐温菌F343高温发酵谷氨酸过程产生的乳酸等副产物较出发菌株S9114少。通过改善种子质量,F343在高温发酵30 h产酸达到10.1%,较出发菌株提高67%。  相似文献   

5.
本研究以谷氨酸棒杆菌(Corynebacterium glutamicum)标准菌株ATCC 13032染色体为模板,设计引物PCR扩增高丝氨酸脱氢酶编码基因(hom),在hom基因内部插入一段来源于质粒pET28a的卡那霉素抗性基因(Km),得到基因元件hom::Km;通过电击转化法将hom::Km转入出发菌株替换原菌株的hom,在含卡那霉素的平板上挑取阳性转化子,通过PCR验证得到高丝氨酸脱氢酶缺陷的重组菌。发酵结果表明重组菌C.g- hom::Km -8发酵60小时赖氨酸产量达到4.7 g/L,是出发菌株谷氨酸棒杆菌ATCC 13032(0.7 g/L)的6.7倍。  相似文献   

6.
为实现谷氨酸棒杆菌工业化生产γ-氨基丁酸(GABA),对L-谷氨酸工业生产菌S9114进行代谢途径改造。通过构建一株工程菌株S9114/p JYW-4-gad B1-gad B2,将来源于短乳杆菌Lb85菌株的谷氨酸脱羧酶编码基因gad B1和gad B2进行共表达,实现发酵72 h后发酵液中GABA含量达到32.8 g/L,GABA糖酸转化率达到47.3%。通过敲除该菌株的谷丙转氨酶编码基因ala T,使工程菌株S9114Δala T/p JYW-4-gad B1-gad B2发酵液中L-丙氨酸浓度降低5.5%,进一步降低了发酵副产物的含量。研究结果为利用谷氨酸棒杆菌实现工业化生产γ-氨基丁酸提供了有价值的参考。  相似文献   

7.
[目的]了解乙醛酸循环在地衣芽胞杆菌WX-02生物合成聚谷氨酸中作用,为聚谷氨酸生产提供新的解决方法。[方法]采用基因工程手段,以地衣芽胞杆菌WX-02为原始菌株,分别增强表达和敲除异柠檬酸裂解酶ace A基因,检测发酵过程中聚谷氨酸产量、生物量、胞内外代谢物和相关基因转录量。[结果]增强表达异柠檬酸裂解酶ace A基因后,胞内谷氨酸浓度显著升高(483.42 ng/m L/Log(CFU)),溢流代谢产物减少(乙酸5.41 g/L、乙偶姻5.82 g/L、2,3-丁二醇7.31 g/L),聚谷氨酸生物合成产量为11.74 g/L,相比原始菌株提高15%。谷氨酸脱氢酶roc G基因、谷氨酸消旋酶glr基因和聚谷氨酸合成酶复合体中pgs B基因转录水平相对原始菌株分别提高1.61倍、1.32倍和1.24倍。[结论]增强乙醛酸循环可以降低地衣芽胞杆菌WX-02乙酸等溢流代谢产物合成,提高胞内谷氨酸合成能力,并上调聚谷氨酸合成酶基因转录水平,最终提高聚谷氨酸生物合成产量。  相似文献   

8.
lysC、asdA基因分别编码的天冬氨酸激酶(Aspartate kinase,AK)和天冬氨酸半醛脱氢酶(Aspartate semi-aldehyde dehydrogenase,ASD)是L-苏氨酸合成途径中两个关键限速酶基因,其中AK受到代谢产物赖氨酸与苏氨酸的协同抑制。以选育获得的一株谷氨酸棒状杆菌T11(Corynebacterium glutamicum T11)为出发菌株,通过构建lysC-asdA串联表达盒,并对其关键限速酶基因lysC进行定点突变,突变位点为Ala279Thr,获得抗反馈抑制突变型编码基因lysCr-asdA,将其插入含强启动子tac的穿梭表达载体pZ8-1中成功构建串联表达质粒pZ8-1-lysCr-asdA转化出发菌株,筛选获得工程菌株T11/pZ8-1-lysCr-asdA。摇瓶发酵其L-苏氨酸产量达到7.18 g/L,较出发菌株提高27.8%。进一步的30 L发酵罐补料分批发酵结果显示,发酵60 h L-苏氨酸产量达65.5 g/L,糖酸转化率达到39.5%,较出发菌株分别提高29.5%和33.9%,为后续的进一步构建高产L-苏氨酸的谷氨酸棒杆菌工程菌株提供强有力的基础。  相似文献   

9.
启动子是重要的转录调控元件,广泛用于工业菌株的代谢工程改造。谷氨酸棒杆菌Corynebacterium glutamicum是重要的氨基酸生产菌株,但已报道的组成型强启动子较少。对谷氨酸高产菌Corynebacterium glutamicum SL4发酵过程的10个时间点样品进行转录组测序,筛选在发酵过程中稳定转录并且转录水平最高的10个基因;分别克隆其启动子序列至红色荧光蛋白(RFP)报告系统,通过荧光强度表征启动子在SL4菌株中的强度,再在野生型C. glutamicum ATCC 13869和ATCC 13032中验证部分启动子的通用性;并采用LacZ蛋白进一步评价强启动子的表达效果。结果显示,成功筛选到3个可以通用的组成型启动子P_(cysK)、P_(gapA)和P_(fumC)。其中P_(cysK)的表达强度最高,与诱导型强启动子P_(tac)对比,在SL4和13869菌株中均达到其2倍(RFP)和4倍(LacZ)以上;在ATCC 13032菌株中,P_(cysK)的表达强度为P_(tac)的0.3-0.4倍。Pcys K首次被报道为强启动子,可用于谷氨酸棒杆菌强化合成途径的代谢工程改造。  相似文献   

10.
一步法生产1,5-戊二胺谷氨酸棒杆菌基因工程菌的构建   总被引:3,自引:0,他引:3  
1,5-戊二胺是一种重要的化工原料,发酵法生产1,5-戊二胺是一条新颖且具有潜在竞争力的生产途径。以蜂房哈夫尼菌(Hafnia alvei)AS1.1009基因组为模板,通过PCR扩增,得到大小约为2.2kb的赖氨酸脱羧酶基因ldc。以大肠杆菌(Escherichia coli)/谷氨酸棒杆菌(Corynebacterium glutamicum)穿梭质粒pXMJl9为载体,将扩增得到的目的基因片段克隆至谷氨酸棒杆菌C.glutamicum TK260512,获得重组菌株C.glutamicum TK260512/pXMJl9-ldc.在摇瓶发酵水平上,通过IPTG诱导ldc基因的表达,并采用反相高效液相色谱方法测定了发酵液中1,5-戊二胺的含量,结果显示,经36h发酵,工程菌C.glutamicum TK260512/pXMJ19-ldc的1,5-戊二胺产量为0.96g/L。  相似文献   

11.
12.
13.
14.
通过对6种藓类植物,即褶叶青藓(Brachythecium salebrosum(Web.et Mohr.)B.S.G.)、湿地匐灯藓(Plagiomnium acutum(Lindb.)Kop.)、侧枝匐灯藓(Plagiomnium maximoviczii(Lindb.)Kop.)、大凤尾藓(Fissidensnobilis Griff.)、大羽藓(Thuidium cymbifolium(Doz.et Molk.)B.S.G.)和大灰藓(Hypnum plumaeforme Wils.)嫩茎和老茎的石蜡切片和显微观察发现,同一藓类植株的嫩茎和老茎,茎结构稳定,不同种藓类植物茎横切面具有不同特征.植物体茎横切面形状、表层细胞的层数、细胞大小和细胞壁厚薄、皮层细胞大小和形状、中轴的有无以及比例等特征可以作为藓类植物的分科分类依据之一.  相似文献   

15.
16.
17.
18.
In experiments on Black Sea skates (Raja clavata), the potential of the receptor epithelium of the ampullae of Lorenzini and spike activity of single nerve fibers connected to them were investigated during electrical and temperature stimulation. Usually the potential within the canal was between 0 and –2 mV, and the input resistance of the ampulla 250–400 k. Heating of the region of the receptor epithelium was accompanied by a negative wave of potential, an increase in input resistance, and inhibition of spike activity. With worsening of the animal's condition the transepithelial potential became positive (up to +10 mV) but the input resistance of the ampulla during stimulation with a positive current was nonlinear in some cases: a regenerative spike of positive polarity appeared in the channel. During heating, the spike response was sometimes reversed in sign. It is suggested that fluctuations of the transepithelial potential and spike responses to temperature stimulation reflect changes in the potential difference on the basal membrane of the receptor cells, which is described by a relationship of the Nernst's or Goldman's equation type.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. I. M. Sechenov, Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Pacific Institute of Oceanology, Far Eastern Scientific Center, Academy of Sciences of the USSR, Vladivostok. Translated from Neirofiziologiya, Vol. 12, No. 1, pp. 67–74, January–February, 1980.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号