首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recombinant virus‐like particles (VLPs) represent a safe and effective vaccine strategy. We previously described a stable transgenic plant system for inexpensive production and oral delivery of VLP vaccines. However, the relatively low‐level antigen accumulation and long‐time frame to produce transgenic plants are the two major roadblocks in the practical development of plant‐based VLP production. In this article, we describe the optimization of geminivirus‐derived DNA replicon vectors for rapid, high‐yield plant‐based production of VLPs. Co‐delivery of bean yellow dwarf virus (BeYDV)‐derived vector and Rep/RepA‐supplying vector by agroinfiltration of Nicotiana benthamiana leaves resulted in efficient replicon amplification and robust protein production within 5 days. Co‐expression of the P19 protein of tomato bush stunt virus, a gene silencing inhibitor, further enhanced VLP accumulation by stabilizing the mRNA. With this system, hepatitis B core antigen (HBc) and Norwalk virus capsid protein (NVCP) were produced at 0.80 and 0.34 mg/g leaf fresh weight, respectively. Sedimentation analysis and electron microscopy of transiently expressed antigens verified the efficient assembly of VLPs. Furthermore, a single replicon vector containing a built‐in Rep/RepA cassette without P19 drove protein expression at similar levels as the three‐component system. These results demonstrate the advantages of fast and high‐level production of VLP‐based vaccines using the BeYDV‐derived DNA replicon system for transient expression in plants. Biotechnol. Bioeng. 2009;103: 706–714. © 2009 Wiley Periodicals, Inc.  相似文献   

2.
Influenza virus‐like particles (VLPs) have been shown to induce a safe and potent immune response through both humoral and cellular responses. They represent promising novel influenza vaccines. Plant‐based biotechnology allows for the large‐scale production of VLPs of biopharmaceutical interest using different model organisms, including Nicotiana benthamiana plants. Through this platform, influenza VLPs bud from the plasma membrane and accumulate between the membrane and the plant cell wall. To design and optimize efficient production processes, a better understanding of the plant cell wall composition of infiltrated tobacco leaves is a major interest for the plant biotechnology industry. In this study, we have investigated the alteration of the biochemical composition of the cell walls of N. benthamiana leaves subjected to abiotic and biotic stresses induced by the Agrobacterium‐mediated transient transformation and the resulting high expression levels of influenza VLPs. Results show that abiotic stress due to vacuum infiltration without Agrobacterium did not induce any detectable modification of the leaf cell wall when compared to non infiltrated leaves. In contrast, various chemical changes of the leaf cell wall were observed post‐Agrobacterium infiltration. Indeed, Agrobacterium infection induced deposition of callose and lignin, modified the pectin methylesterification and increased both arabinosylation of RG‐I side chains and the expression of arabinogalactan proteins. Moreover, these modifications were slightly greater in plants expressing haemagglutinin‐based VLP than in plants infiltrated with the Agrobacterium strain containing only the p19 suppressor of silencing.  相似文献   

3.
Plant expression systems based on nonreplicating virus‐based vectors can be used for the simultaneous expression of multiple genes within the same cell. They therefore have great potential for the production of heteromultimeric protein complexes. This work describes the efficient plant‐based production and assembly of Bluetongue virus‐like particles (VLPs), requiring the simultaneous expression of four distinct proteins in varying amounts. Such particles have the potential to serve as a safe and effective vaccine against Bluetongue virus (BTV), which causes high mortality rates in ruminants and thus has a severe effect on the livestock trade. Here, VLPs produced and assembled in Nicotiana benthamiana using the cowpea mosaic virus–based HyperTrans (CPMV‐HT) and associated pEAQ plant transient expression vector system were shown to elicit a strong antibody response in sheep. Furthermore, they provided protective immunity against a challenge with a South African BTV‐8 field isolate. The results show that transient expression can be used to produce immunologically relevant complex heteromultimeric structures in plants in a matter of days. The results have implications beyond the realm of veterinary vaccines and could be applied to the production of VLPs for human use or the coexpression of multiple enzymes for the manipulation of metabolic pathways.  相似文献   

4.
A strain‐specific vaccine represents the best possible response to the threat of an influenza pandemic. Rapid delivery of such a vaccine to the world's population before the peak of the first infection wave seems to be an unattainable goal with the current influenza vaccine manufacturing capacity. Plant‐based transient expression is one of the few production systems that can meet the anticipated surge requirement. To assess the capability of plant agroinfiltration to produce an influenza vaccine, we expressed haemagglutinin (HA) from strains A/Indonesia/5/05 (H5N1) and A/New Caledonia/20/99 (H1N1) by agroinfiltration of Nicotiana benthamiana plants. Size distribution analysis of protein content in infiltrated leaves revealed that HA was predominantly assembled into high‐molecular‐weight structures. H5‐containing structures were purified and examination by transmission electron microscopy confirmed virus‐like particle (VLP) assembly. High‐performance thin layer chromatography analysis of VLP lipid composition highlighted polar and neutral lipid contents comparable with those of purified plasma membranes from tobacco plants. Electron microscopy of VLP‐producing cells in N. benthamiana leaves confirmed that VLPs accumulated in apoplastic indentations of the plasma membrane. Finally, immunization of mice with two doses of as little as 0.1 µg of purified influenza H5‐VLPs triggered a strong immune response against the homologous virus, whereas two doses of 0.5 µg of H5‐VLPs conferred complete protection against a lethal challenge with the heterologous A/Vietnam/1194/04 (H5N1) strain. These results show, for the first time, that plants are capable of producing enveloped influenza VLPs budding from the plasma membrane; such VLPs represent very promising candidates for vaccination against influenza pandemic strains.  相似文献   

5.
Influenza virus‐like particles (VLPs) are noninfectious particles resembling the influenza virus representing a promising vaccine alternative to inactivated influenza virions as antigens. Medicago inc. has developed a plant‐based VLP manufacturing platform allowing the large‐scale production of GMP‐grade influenza VLPs. In this article, we report on the biochemical compositions of these plant‐based influenza candidate vaccines, more particularly the characterization of the N‐glycan profiles of the viral haemagglutinins H1 and H5 proteins as well as the tobacco‐derived lipid content and residual impurities. Mass spectrometry analyses showed that all N‐glycosylation sites of the extracellular domain of the recombinant haemagglutinins carry plant‐specific complex‐type N‐glycans having core α(1,3)‐fucose, core β(1,2)‐xylose epitopes and Lewisa extensions. Previous phases I and II clinical studies have demonstrated that no hypersensibility nor induction of IgG or IgE directed against these glycans was observed. In addition, this article showed that the plant‐made influenza vaccines are highly pure VLPs preparations while detecting no protein contaminants coming either from Agrobacterium or from the enzymes used for the enzyme‐assisted extraction process. In contrast, VLPs contain few host cell proteins and glucosylceramides associated with plant lipid rafts. Identification of such raft markers, together with the type of host cell impurity identified, confirmed that the mechanism of VLP formation in planta is similar to the natural process of influenza virus assembly in mammals.  相似文献   

6.
We describe a novel strategy to produce vaccine antigens using a plant cell‐suspension culture system in lieu of the conventional bacterial or animal cell‐culture systems. We generated transgenic cell‐suspension cultures from Nicotiana benthamiana leaves carrying wild‐type or chimeric Bamboo mosaic virus (BaMV) expression constructs encoding the viral protein 1 (VP1) epitope of foot‐and‐mouth disease virus (FMDV). Antigens accumulated to high levels in BdT38 and BdT19 transgenic cell lines co‐expressing silencing suppressor protein P38 or P19. BaMV chimeric virus particles (CVPs) were subsequently purified from the respective cell lines (1.5 and 2.1 mg CVPs/20 g fresh weight of suspended biomass, respectively), and the resulting CVPs displayed VP1 epitope on the surfaces. Guinea pigs vaccinated with purified CVPs produced humoral antibodies. This study represents an important advance in the large‐scale production of immunopeptide vaccines in a cost‐effective manner using a plant cell‐suspension culture system.  相似文献   

7.
Virus‐like particles (VLPs) mimic the whole construct of virus particles devoid of viral genome as used in subunit vaccine design. VLPs can elicit efficient protective immunity as direct immunogens compared to soluble antigens co‐administered with adjuvants in several booster injections. Up to now, several prokaryotic and eukaryotic systems such as insect, yeast, plant, and E. coli were used to express recombinant proteins, especially for VLP production. Recent studies are also generating VLPs in plants using different transient expression vectors for edible vaccines. VLPs and viral particles have been applied for different functions such as gene therapy, vaccination, nanotechnology, and diagnostics. Herein, we describe VLP production in different systems as well as its applications in biology and medicine. © 2015 Wiley Periodicals, Inc. Biopolymers 105: 113–132, 2016.  相似文献   

8.
Plants offer fast, flexible and easily scalable alternative platforms for the production of pharmaceutical proteins, but differences between plant and mammalian N‐linked glycans, including the presence of β‐1,2‐xylose and core α‐1,3‐fucose residues in plants, can affect the activity, potency and immunogenicity of plant‐derived proteins. Nicotiana benthamiana is widely used for the transient expression of recombinant proteins so it is desirable to modify the endogenous N‐glycosylation machinery to allow the synthesis of complex N‐glycans lacking β‐1,2‐xylose and core α‐1,3‐fucose. Here, we used multiplex CRISPR/Cas9 genome editing to generate N. benthamiana production lines deficient in plant‐specific α‐1,3‐fucosyltransferase and β‐1,2‐xylosyltransferase activity, reflecting the mutation of six different genes. We confirmed the functional gene knockouts by Sanger sequencing and mass spectrometry‐based N‐glycan analysis of endogenous proteins and the recombinant monoclonal antibody 2G12. Furthermore, we compared the CD64‐binding affinity of 2G12 glycovariants produced in wild‐type N. benthamiana, the newly generated FX‐KO line, and Chinese hamster ovary (CHO) cells, confirming that the glyco‐engineered antibody performed as well as its CHO‐produced counterpart.  相似文献   

9.
Due to lack of commercial vaccine against the serogroup B (MenB) of Neisseria meningitides, the incidence of meningococcal disease remains high. To solve the issue, transgenic plants are used as bioreactors to produce a plant‐derived fHbp subunit vaccine. In this study, the fHbp gene was optimized according to the codon usage bias of Arabidopsis thaliana, synthesized artificially, cloned into an expression vector, driven by a seed‐specific promoter, and introduced into A. thaliana by Agrobacterium‐mediated floral‐dip transformation. Transgenic plants were identified by glufosinate selection, quickstix strips for PAT/bar tests and PCR analysis. The five plants showing higher expression of recombinant fHbp were screened through indirect ELISA. Southern blot analysis showed that the transgenic line rHF‐22 had a single‐copy integration and the highest expression of fHbp. Recombinant fHbp was purified from seeds of rHF‐22 by nitrilotriacetic acid‐mediated affinity chromatography, and the purity was 82.5%. BALB/c mice were tested for fHbp vaccine protection from lethal MenB infection, and the relative percent survival was found to be 80%. This study indicates that the recombinant fHbp produced from seeds of rHF‐22 is a potential candidate for commercial MenB vaccine. It also provides a reference for safe, cheap and large‐scale production of other plant‐made vaccines.  相似文献   

10.
African horse sickness (AHS) is a debilitating and often fatal viral disease affecting horses in much of Africa, caused by the dsRNA orbivirus African horse sickness virus (AHSV). Vaccination remains the single most effective weapon in combatting AHS, as there is no treatment for the disease apart from good animal husbandry. However, the only commercially available vaccine is a live‐attenuated version of the virus (LAV). The threat of outbreaks of the disease outside its endemic region and the fact that the LAV is not licensed for use elsewhere in the world, have spurred attempts to develop an alternative safer, yet cost‐effective recombinant vaccine. Here, we report the plant‐based production of a virus‐like particle (VLP) AHSV serotype five candidate vaccine by Agrobacterium tumefaciens‐mediated transient expression of all four capsid proteins in Nicotiana benthamiana using the cowpea mosaic virus‐based HyperTrans (CPMV‐HT) and associated pEAQ plant expression vector system. The production process is fast and simple, scalable, economically viable, and most importantly, guinea pig antiserum raised against the vaccine was shown to neutralize live virus in cell‐based assays. To our knowledge, this is the first report of AHSV VLPs produced in plants, which has important implications for the containment of, and fight against the spread of, this deadly disease.  相似文献   

11.
In order to cope with pathogens, plants have evolved sophisticated mechanisms to sense pathogenic attacks and to induce defence responses. The N‐acyl‐homoserine lactone (AHL)‐mediated quorum sensing in bacteria regulates diverse physiological processes, including those involved in pathogenicity. In this work, we study the interactions between AHL‐producing transgenic tobacco plants and Pseudomonas syringae pv. tabaci 11528 (P. syringae 11528). Both a reduced incidence of disease and decrease in the growth of P. syringae 11528 were observed in AHL‐producing plants compared with wild‐type plants. The present data indicate that plant‐produced AHLs enhance disease resistance against this pathogen. Subsequent RNA‐sequencing analysis showed that the exogenous addition of AHLs up‐regulated the expression of P. syringae 11528 genes for flagella production. Expression levels of plant defence genes in AHL‐producing and wild‐type plants were determined by quantitative real‐time polymerase chain reaction. These data showed that plant‐produced AHLs activated a wide spectrum of defence responses in plants following inoculation, including the oxidative burst, hypersensitive response, cell wall strengthening, and the production of certain metabolites. These results demonstrate that exogenous AHLs alter the gene expression patterns of pathogens, and plant‐produced AHLs either directly or indirectly enhance plant local immunity during the early stage of plant infection.  相似文献   

12.
Vaccines based on virus-like particles (VLPs) have proven effective in humans and animals. In this regard, the baculovirus expression vector system (BEVS) is one of the technologies of choice to generate such highly immunogenic vaccines. The extended use of these vaccines for human and animal populations is constrained because of high production costs, therefore a significant improvement in productivity is crucial to ensure their commercial viability. Here we describe the use of the previously described baculovirus expression cassette, called TB, to model the production of two VLP-forming vaccine antigens in insect cells. Capsid proteins from porcine circovirus type 2 (PCV2 Cap) and from the calicivirus that causes rabbit hemorrhagic disease (RHDV VP60) were expressed in insect cells using baculoviruses genetically engineered with the TB expression cassette. Productivity was compared to that obtained using standard counterpart vectors expressing the same proteins under the control of the polyhedrin promoter. Our results demonstrate that the use of the TB expression cassette increased the production yields of these vaccine antigens by around 300% with respect to the standard vectors. The recombinant proteins produced by TB-modified vectors were fully functional, forming VLPs identical in size and shape to those generated by the standard baculoviruses, as determined by electron microscopy analysis. The use of the TB expression cassette implies a simple modification of the baculovirus vectors that significantly improves the cost efficiency of VLP-based vaccine production, thereby facilitating the commercial viability and broad application of these vaccines for human and animal health.  相似文献   

13.
The transmembrane HIV‐1 envelope protein gp41 has been shown to play critical roles in the viral mucosal transmission and infection of CD4+ cells. Gag is a structural protein configuring the enveloped viral particles and has been suggested to constitute a target of the cellular immunity that may control viral load. We hypothesized that HIV enveloped virus‐like particles (VLPs) consisting of Gag and a deconstructed form of gp41 comprising the membrane proximal external, transmembrane and cytoplasmic domains (dgp41) could be expressed in plants. To this end, plant‐optimized HIV‐1 genes were constructed and expressed in Nicotiana benthamiana by stable transformation, or transiently using a Tobamovirus‐based expression system or a combination of both. Our results of biophysical, biochemical and electron microscopy characterization demonstrates that plant cells could support not only the formation of enveloped HIV‐1 Gag VLPs, but also the accumulation of VLPs that incorporated dgp41. These findings provide further impetus for the journey towards a broadly efficacious and inexpensive subunit vaccine against HIV‐1.  相似文献   

14.
Cervical cancer is caused by infection with human papillomaviruses (HPV) and is a global concern, particularly in developing countries, which have ~80% of the burden. HPV L1 virus‐like particle (VLP) type–restricted vaccines prevent new infections and associated disease. However, their high cost has limited their application, and cytological screening programmes are still required to detect malignant lesions associated with the nonvaccine types. Thus, there is an urgent need for cheap second‐generation HPV vaccines that protect against multiple types. The objective of this study was to express novel HPV‐16 L1‐based chimaeras, containing cross‐protective epitopes from the L2 minor capsid protein, in tobacco plants. These L1/L2 chimaeras contained epitope sequences derived from HPV‐16 L2 amino acid 108–120, 56–81 or 17–36 substituted into the C‐terminal helix 4 (h4) region of L1 from amino acid 414. All chimaeras were expressed in Nicotiana benthamiana via an Agrobacterium‐mediated transient system and targeted to chloroplasts. The chimaeras were highly expressed with yields of ~1.2 g/kg plant tissue; however, they assembled differently, indicating that the length and nature of the L2 epitope affect VLP assembly. The chimaera containing L2 amino acids 108–120 was the most successful candidate vaccine. It assembled into small VLPs and elicited anti‐L1 and anti‐L2 responses in mice, and antisera neutralized homologous HPV‐16 and heterologous HPV‐52 pseudovirions. The other chimaeras predominantly assembled into capsomeres and other aggregates and elicited weaker humoral immune responses, demonstrating the importance of VLP assembly for the immunogenicity of candidate vaccines.  相似文献   

15.
Chikungunya virus (CHIKV) is a mosquito‐transmitted alphavirus, and its infection can cause long‐term debilitating arthritis in humans. Currently, there are no licensed vaccines or therapeutics for human use to combat CHIKV infections. In this study, we explored the feasibility of using an anti‐CHIKV monoclonal antibody (mAb) produced in wild‐type (WT) and glycoengineered (?XFT) Nicotiana benthamiana plants in treating CHIKV infection in a mouse model. CHIKV mAb was efficiently expressed and assembled in plant leaves and enriched to homogeneity by a simple purification scheme. While mAb produced in ?XFT carried a single N‐glycan species at the Fc domain, namely GnGn structures, WT produced mAb exhibited a mixture of N‐glycans including the typical plant GnGnXF3 glycans, accompanied by incompletely processed and oligomannosidic structures. Both WT and ?XFT plant‐produced mAbs demonstrated potent in vitro neutralization activity against CHIKV. Notably, both mAb glycoforms showed in vivo efficacy in a mouse model, with a slight increased efficacy by the ?XFT‐produced mAbs. This is the first report of the efficacy of plant‐produced mAbs against CHIKV, which demonstrates the ability of using plants as an effective platform for production of functionally active CHIKV mAbs and implies optimization of in vivo activity by controlling Fc glycosylation.  相似文献   

16.
Betalains are plant pigments primarily produced by plants of the order Caryophyllales. Because betalain possesses anti‐inflammatory and anticancer activities, it may be useful as a pharmaceutical agent and dietary supplement. Recent studies have identified the genes involved in the betalain biosynthesis of betanin. Amaranthin and celosianin II are abundant in the quinoa (Chenopodium quinoa Willd.) hypocotyl, and amaranthin comprises glucuronic acid bound to betanin; therefore, this suggests the existence of a glucuronyltransferase involved in the synthesis of amaranthin in the quinoa hypocotyl. To identify the gene involved in amaranthin biosynthesis, we performed a BLAST analysis and phylogenetic tree analysis based on sequences homologous to flavonoid glycosyltransferase, followed by expression analysis on the quinoa hypocotyl to obtain three candidate proteins. Production of amaranthin in a transient Nicotiana benthamiana expression system was evaluated for these candidates and one was identified as having the ability to produce amaranthin. The gene encoding this protein was quinoa amaranthin synthetase 1 (CqAmaSy1). We also created a transgenic tobacco bright yellow‐2 (BY‐2) cell line wherein four betalain biosynthesis genes were introduced to facilitate amaranthin production. This transgenic cell line produced 13.67 ± 4.13 μm (mean ± SEM) amaranthin and 26.60 ± 1.53 μm betanin, whereas the production of isoamaranthin and isobetanin could not be detected. Tests confirmed the ability of amaranthin and betanin to slightly suppress cancer cell viability. Furthermore, amaranthin was shown to significantly inhibit HIV‐1 protease activity, whereas betanin did not.  相似文献   

17.
The peptide ω‐Hexatoxin‐Hv1a (Hvt) is one of the most studied spider toxins. Its insecticidal potential has been reported against species belonging to the arthropod orders Lepidoptera, Diptera and Orthoptera. The gene encoding Hvt has been transformed into cotton and tobacco to protect the plants from damage by lepidopteran pests. This study evaluated the expression of the ω‐HXTX‐Hv1a gene in transgenic plants, and the toxicity of plant‐expressed and purified Hvt on target lepidopteran insects and on several non‐target species. Transgenic Bollgard II cotton plants, which produce Cry1Ac and Cry2Ab2 and purified Cry2Ab2 protein were included in the study as comparators. LC95 values of purified Hvt against Spodoptera littoralis and Heliothis virescens were 28.31 and 27.57 μg/ml of artificial diet, respectively. Larval mortality was 100% on Hvt‐transgenic tobacco plants but not on Hvt‐transgenic cotton, probably because of the significantly lower toxin expression level in the transgenic cotton line. Non‐target studies were conducted with larvae of the predators Chrysoperla carnea and Coccinella septempunctata, adults of the aphid parasitoid Aphidius colemani, and adult workers of the honey bee, Apis mellifera. Even at 40 μg/ml, Hvt did not adversely affect the four non‐target species. Purified Cry2Ab2 at 10 μg/ml also did not adversely affect any of the non‐target species. Our results show that Hvt might be useful for developing insecticidal plant varieties to control pest Lepidoptera.  相似文献   

18.
19.
The global Zika virus (ZIKV) outbreak and its link to foetal and newborn microcephaly and severe neurological complications in adults call for the urgent development of ZIKV vaccines. In response, we developed a subunit vaccine based on the ZIKV envelope (E) protein and investigated its immunogenicity in mice. Transient expression of ZIKV E (zE) resulted in its rapid accumulation in leaves of Nicotiana benthamiana plants. Biochemical analysis revealed that plant‐produced ZIKV E (PzE) exhibited specific binding to a panel of monoclonal antibodies that recognize various zE conformational epitopes. Furthermore, PzE can be purified to >90% homogeneity with a one‐step Ni2+ affinity chromatography process. PzE are found to be highly immunogenic, as two doses of PzE elicited both potent zE‐specific antibody and cellular immune responses in mice. The delivery of PzE with alum induced a mixed Th1/Th2 immune response, as the antigen‐specific IgG isotypes were a mixture of high levels of IgG1/IgG2c and splenocyte cultures from immunized mice secreted significant levels of IFN‐gamma, IL‐4 and IL‐6. Most importantly, the titres of zE‐specific and neutralizing antibodies exceeded the threshold that correlates with protective immunity against multiple strains of ZIKV. Thus, our results demonstrated the feasibility of plant‐produced ZIKV protein antigen as effective, safe and affordable vaccines against ZIKV.  相似文献   

20.
The development of effective vaccines against porcine circovirus type 2 (PCV2) has been accepted as an important strategy in the prophylaxis of post‐weaning multisystemic wasting syndrome; a DNA vaccine expressing the major immunogenic capsid (Cap) protein of PCV2 is considered to be a promising candidate. However, DNA vaccines usually induce weak immune responses. In this study, it was found that the efficacy of a DNA vaccine expressing Cap protein was improved by simultaneous expression of porcine IL‐6. A plasmid (pIRES‐ORF2/IL6) separately expressing both Cap protein and porcine IL‐6 was constructed and compared with another plasmid (pIRES‐ORF2) expressing Cap protein for its potential to induce PCV2‐specific immune responses. Mice were vaccinated i.m. twice at 3 week intervals and the induced humoral and cellular responses evaluated. All animals vaccinated with pIRES‐ORF2/IL6 and pIRES‐ORF2 developed specific anti‐PCV2 antibodies (according to enzyme‐linked immunosorbent assay) and a T lymphocyte proliferation response. The percentages of CD3+, CD3+CD8+, and CD3+CD4+ subgroups of peripheral blood T‐lymphocytes were significantly higher in mice immunized with pIRES‐ORF2/IL6 than in those that had received pIRES‐ORF2. After challenge with the virulent PCV2 Wuzhi isolate, mice vaccinated with pIRES‐ORF2/IL6 had significantly less viral replication than those vaccinated with pIRES‐ORF2, suggesting that the protective immunity induced by pIRES‐ORF2/IL6 is superior to that induced by pIRES‐ORF2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号