首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Molecular Analysis of Legume Nodule Development and Autoregulation   总被引:1,自引:0,他引:1  
Legumes are highly important food, feed and biofuel crops. With few exceptions, they can enter into an intricate symbiotic relationship with specific soil bacteria called rhizobia. This interaction results in the formation of a new root organ called the nodule in which the rhizobia convert atmospheric nitrogen gas into forms of nitrogen that are useable by the plant. The plant tightly controls the number of nodules it forms, via a complex root-to-shoot-to-root signaling loop called autoregulation of nodulation (AON). This regulatory process involves peptide hormones, receptor kinases and small metabolites. Using modern genetic and genomic techniques, many of the components required for nodule formation and AON have now been isolated. This review addresses these recent findings, presents detailed models of the nodulation and AON processes, and identifies gaps in our understanding of these process that have yet to be fully explained.  相似文献   

2.
豆科植物共生结瘤的分子基础和调控研究进展   总被引:2,自引:0,他引:2       下载免费PDF全文
豆科植物与根瘤菌共生互作的结果导致了一个新的植物器官――根瘤的形成, 根瘤菌生活在根瘤中, 它们具有将氮气转化为能被植物同化的氨的能力。该文阐述了根瘤的形成过程和类型, 并主要以模式豆科植物蒺藜苜蓿(Medicago truncatula)和日本百脉根(Lotus japonicus)为例, 对近年来共生结瘤过程中宿主植物对根瘤菌结瘤因子的识别和信号传递、侵入线形成和固氮的分子基础, 以及宿主植物对根瘤形成的自主调控机制、环境中氮素营养对结瘤的影响研究进行了综述, 指出当前豆科植物与根瘤菌共生互作研究存在的问题, 并对今后的研究方向作了分析与展望。  相似文献   

3.
Nitrogen fixation is an important biological process in terrestrial ecosystems and for global crop production. Legume nodulation and N2 fixation have been improved using nodule-enhancing rhizobacteria (NER) under both regular and stressed conditions. The positive effect of NER on legume–rhizobia symbiosis can be facilitated by plant growth-promoting (PGP) mechanisms, some of which remain to be identified. NER that produce aminocyclopropane-1-carboxylic acid deaminase and indole acetic acid enhance the legume–rhizobia symbiosis through (i) enhancing the nodule induction, (ii) improving the competitiveness of rhizobia for nodulation, (iii) prolonging functional nodules by suppressing nodule senescence and (iv) upregulating genes associated with legume–rhizobia symbiosis. The means by which these processes enhance the legume–rhizobia symbiosis is the focus of this review. A better understanding of the mechanisms by which PGP rhizobacteria operate, and how they can be altered, will provide opportunities to enhance legume–rhizobial interactions, to provide new advances in plant growth promotion and N2 fixation.  相似文献   

4.
Rhizobia display dual lifestyle. These bacteria are soil inhabitants but can also elicit the formation of a special niche on the root of legume plants, the nodules. In such organs, rhizobia can promote the growth of their host by providing them nitrogen they captured from atmosphere. All along the infection process, the plant innate immunity has to be controlled to maintain compatible interaction. However, nodulation does not always result in profit for the plant as compatible interactions include both nitrogen‐fixing and non‐fixing associations. In recent years, our knowledge on the mechanisms involved in the control of plant innate immunity during rhizobia‐legume interactions has greatly improved notably by the identification of bacterial and plant genes activating or suppressing the plant defences. Surprisingly, results also demonstrated that in some cases, plant defence reactions result in abortion of the nodulation process despite that the rhizobial strain has all the genetic potential to establish mutualism. In such situation, experimental evolution approaches highlighted possible rapid switches of incompatible rhizobia either to mutualistic or parasitic behaviour. Here, we review this recent literature.  相似文献   

5.
The specific interaction between rhizobia and legume roots leads to the development of a highly regulated process called nodulation, by which the atmospheric nitrogen is converted into an assimilable plant nutrient. This capacity is the basis for the use of bacterial inoculants for field crop cultivation. Legume plants have acquired tools that allow the entry of compatible bacteria. Likewise, plants can impose sanctions against the maintenance of nodules occupied by rhizobia with low nitrogen-fixing capacity. At the same time, bacteria must overcome different obstacles posed first by the environment and then by the legume. The present review describes the mechanisms involved in the regulation of the entire legume–rhizobium symbiotic process and the strategies and tools of bacteria for reaching the nitrogen-fixing state inside the nodule. Also, we revised different approaches to improve the nodulation process for a better crop yield.  相似文献   

6.
Agriculture depends heavily on biologically fixed nitrogen from the symbiotic association between rhizobia and plants. Molecular nitrogen is fixed by differentiated forms of rhizobia in nodules located on plant roots. The phytohormone, ethylene, acts as a negative factor in the nodulation process. Recent discoveries suggest several strategies used by rhizobia to reduce the amount of ethylene synthesized by their legume symbionts, decreasing the negative effect of ethylene on nodulation. At least one strain of rhizobia produces rhizobitoxine, an inhibitor of ethylene synthesis. Active 1-aminocyclopropane-1-carboxylate (ACC) deaminase has been detected in a number of other rhizobial strains. This enzyme catalyzes the cleavage of ACC to alpha-ketobutyrate and ammonia. It has been shown that the inhibitory effect of ethylene on plant root elongation can be reduced by the activity of ACC deaminase.  相似文献   

7.
Legume plants develop specialized root organs, the nodules, through a symbiotic interaction with rhizobia. The developmental process of nodulation is triggered by the bacterial microsymbiont but regulated systemically by the host legume plants. Using ethylmethane sulfonate mutagenesis as a tool to identify plant genes involved in symbiotic nodule development, we have isolated and analyzed five nodulation mutants, Ljsym74-3, Ljsym79-2, Ljsym79-3, Ljsym80, and Ljsym82, from the model legume Lotus japonicus. These mutants are defective in developing functional nodules and exhibit nitrogen starvation symptoms after inoculation with Mesorhizobium loti. Detailed observation revealed that infection thread development was aborted in these mutants and the nodules formed were devoid of infected cells. Mapping and complementation tests showed that Ljsym74-3, and Ljsym79-2 and Ljsym79-3, were allelic with reported mutants of L. japonicus, alb1 and crinkle, respectively. The Ljsym82 mutant is unique among the mutants because the infection thread was aborted early in its development. Ljsym74-3 and Ljsym80 were characterized as mutants with thick infection threads in short root hairs. Map-based cloning and molecular characterization of these genes will help us understand the genetic mechanism of infection thread development in L. japonicus.  相似文献   

8.
Biological nitrogen fixation in rhizobia occurs primarily in root or stem nodules and is induced by the bacteria present in legume plants. This symbiotic process has fascinated researchers for over a century, and the positive effects of legumes on soils and their food and feed value have been recognized for thousands of years. Symbiotic nitrogen fixation uses solar energy to reduce the inert N2 gas to ammonia at normal temperature and pressure, and is thus today, especially, important for sustainable food production. Increased productivity through improved effectiveness of the process is seen as a major research and development goal. The interaction between rhizobia and their legume hosts has thus been dissected at agronomic, plant physiological, microbiological and molecular levels to produce ample information about processes involved, but identification of major bottlenecks regarding efficiency of nitrogen fixation has proven to be complex. We review processes and results that contributed to the current understanding of this fascinating system, with focus on effectiveness of nitrogen fixation in rhizobia.  相似文献   

9.
The symbiotic relationships between legumes and their nitrogen (N(2))-fixing bacterial partners (rhizobia) vary in effectiveness to promote plant growth according to both bacterial and legume genotype. To assess the selective effect of host plant on its microsymbionts, the influence of the pea (Pisum sativum) genotype on the relative nodulation success of Rhizobium leguminosarum biovar viciae (Rlv) genotypes from the soil populations during plant development has been investigated. Five pea lines were chosen for their genetic variability in root and nodule development. Genetic structure and diversity of Rlv populations sampled from nodules were estimated by molecular typing with a marker of the genomic background (rDNA intergenic spacer) and a nodulation gene marker (nodD region). Differences were found among Rlv populations related to pea genetic background but also to modification of plant development caused by single gene mutation. The growth stage of the host plant also influenced structuring of populations. A particular nodulation genotype formed the majority of nodules during the reproductive stage. Overall, modification in root and nodule development appears to strongly influence the capacity of particular rhizobial genotypes to form nodules.  相似文献   

10.
Mutualistic symbiosis and nitrogen fixation of legume rhizobia play a key role in ecological environments. Although many different rhizobial species can form nodules with a specific legume, there is often a dominant microsymbiont, which has the highest nodule occupancy rates, and they are often known as the “most favorable rhizobia”. Shifts in the most favorable rhizobia for a legume in different geographical regions or soil types are not well understood. Therefore, in order to explore the shift model, an experiment was designed using successive inoculations of rhizobia on one legume. The plants were grown in either sterile vermiculite or a sandy soil. Results showed that, depending on the environment, a legume could select its preferential rhizobial partner in order to establish symbiosis. For perennial legumes, nodulation is a continuous and sequential process. In this study, when the most favorable rhizobial strain was available to infect the plant first, it was dominant in the nodules, regardless of the existence of other rhizobial strains in the rhizosphere. Other rhizobial strains had an opportunity to establish symbiosis with the plant when the most favorable rhizobial strain was not present in the rhizosphere. Nodule occupancy rates of the most favorable rhizobial strain depended on the competitiveness of other rhizobial strains in the rhizosphere and the environmental adaptability of the favorable rhizobial strain (in this case, to mild vermiculite or hostile sandy soil). To produce high nodulation and efficient nitrogen fixation, the most favorable rhizobial strain should be selected and inoculated into the rhizosphere of legume plants under optimum environmental conditions.  相似文献   

11.
Currently, symbiotic rhizobia (sl., rhizobium) refer to the soil bacteria in α- and β-Proteobacteria that can induce root and/or stem nodules on some legumes and a few of nonlegumes. In the nodules, rhizobia convert the inert dinitrogen gas (N2) into ammonia (NH3) and supply them as nitrogen nutrient to the host plant. In general, this symbiotic association presents specificity between rhizobial and leguminous species, and most of the rhizobia use lipochitooligosaccharides, so called Nod factor (NF), for cooperating with their host plant to initiate the formation of nodule primordium and to inhibit the plant immunity. Besides NF, effectors secreted by type III secretion system (T3SS), exopolysaccharides and many microbe-associated molecular patterns in the rhizobia also play important roles in nodulation and immunity response between rhizobia and legumes. However, the promiscuous hosts like Glycine max and Sophora flavescens can nodulate with various rhizobial species harbouring diverse symbiosis genes in different soils, meaning that the nodulation specificity/efficiency might be mainly determined by the host plants and regulated by the soil conditions in a certain cases. Based on previous studies on rhizobial application, we propose a ‘1+n−N’ model to promote the function of symbiotic nitrogen fixation (SNF) in agricultural practice, where ‘1’ refers to appreciate rhizobium; ‘+n’ means the addition of multiple trace elements and PGPR bacteria; and ‘−N’ implies the reduction of chemical nitrogen fertilizer. Finally, open questions in the SNF field are raised to future think deeply and researches.  相似文献   

12.
Symbiotic association between rhizobia and legumes results in the development of unique structures on roots, called nodules. Nodulation is a very complex process involving a variety of genes that control NOD factors (bacterial signaling molecules), which are essential for the establishment, maintenance and regulation of this process and development of root nodules. Ethylene is an established potent plant hormone that is also known for its negative role in nodulation. Ethylene is produced endogenously in all plant tissues, particularly in response to both biotic and abiotic stresses. Exogenous application of ethylene and ethylene-releasing compounds are known to inhibit the formation and functioning of nodules. While inhibitors of ethylene synthesis or its physiological action enhance nodulation in legumes, some rhizobial strains also nodulate the host plant intensively, most likely by lowering endogenous ethylene levels in roots through their 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. Co-inoculation with ACC deaminase containing plant growth promoting rhizobacteria plus rhizobia has been shown to further promote nodulation compared to rhizobia alone. Transgenic rhizobia or legume plants with expression of bacterial ACC deaminase could be another viable option to alleviate the negative effects of ethylene on nodulation. Several studies have well documented the role of ethylene and bacterial ACC deaminase in development of nodules on legume roots and will be the primary focus of this critical review.  相似文献   

13.
Many legumes form tripartite symbiotic associations with rhizobia and arbuscular mycorrhizal fungi (AMF). Rhizobia are located in root nodules and provide the plant with fixed atmospheric nitrogen, while AMF colonize plant roots and deliver several essential nutrients to the plant. Recent studies showed that AMF are also associated with root nodules. This might point to interactions between AMF and rhizobia inside root nodules. Here, we test whether AMF colonize root nodules in various plant-AMF combinations. We also test whether nodules that are colonized by AMF fix nitrogen. Using microscopy, we observed that AMF colonized the root nodules of three different legume species. The AMF colonization of the nodules ranged from 5% to 74% and depended on plant species, AMF identity and nutrient availability. However, AMF-colonized nodules were not active, that is, they did not fix nitrogen. The results suggest that AMF colonize old senescent nodules after nitrogen fixation has stopped, although it is also possible that AMF colonization of nodules inhibits nitrogen fixation.  相似文献   

14.
The rhizobium-legume symbiosis is the best-understood plant–microbe association. The high degree of specificity observed in this relationship is supported by a complex exchange of signals between the two components of the symbiosis. Findings reported in last years indicate that multiple molecular mechanisms, such as the production of a particular set of nodulation factors at a very specific concentration or a suitable arsenal of effectors secreted through the type III secretion system, have been adjusted during evolution to ensure and optimize the recognition of specific rhizobial strains by its legume host. Qualitative or quantitative changes in the production of these symbiotic molecular determinants are detrimental for nodulation with its natural host but, in some cases, can also result beneficial for the rhizobium since it extends the nodulation host-range to other legumes. Potential repercussion of the extension in the nodulation host-range of rhizobia is discussed.  相似文献   

15.
Root-nodule development in legumes is an inducible developmental process initially triggered by perception of lipochitin-oligosaccharide signals secreted by the bacterial microsymbiont. In nature, rhizobial colonization and invasion of the legume root is therefore a prerequisite for formation of nitrogen-fixing root nodules. Here, we report isolation and characterization of chemically induced spontaneously nodulating mutants in a model legume amenable to molecular genetics. Six mutant lines of Lotus japonicus were identified in a screen for spontaneous nodule development under axenic conditions, i.e., in the absence of rhizobia. Spontaneous nodules do not contain rhizobia, bacteroids, or infection threads. Phenotypically, they resemble ineffective white nodules formed by some bacterial mutants on wild-type plants or certain plant mutants inoculated with wild-type Mesorhizobium loti. Spontaneous nodules formed on mutant lines show the ontogeny and characteristic histological features described for rhizobia-induced nodules on wild-type plants. Physiological responses to nitrate and ethylene are also maintained, as elevated levels inhibit spontaneous nodulation. Activation of the nodule developmental program in spontaneous nodules was shown for the early nodulin genes Enod2 and Nin, which are both upregulated in spontaneous nodules as well as in rhizobial nodules. Both monogenic recessive and dominant spontaneous nodule formation (snf) mutations were isolated in this mutant screen, and map positions were determined for three loci. We suggest that future molecular characterization of these mutants will identify key plant determinants involved in regulating nodulation and provide new insight into plant organ development.  相似文献   

16.
While genetic screens have identified mutants of the model legume Lotus japonicus that can nodulate in the absence of rhizobia, the lack of a proteome map is a major hindrance to understanding the functional protein networks associated with this nodulation process. In this issue of Proteomics, Dam et al. (Proteomics 2014, 14, 230–240) developed 2D gel‐based reference maps of nodules and roots of Lotus and a spontaneous nodule formation mutant (snf1). Comparative proteomic analysis of roots and two developmental stages of nodules provide useful insights into tissue‐specific mechanisms underlying nodule organogenesis. Additionally, a comparison of interspecies nodule proteomes displays that overlapping and individual mechanisms are associated with legume nodulation.  相似文献   

17.
Strains of rhizobia within a single species can have three different genetically determined strategies. Mutualistic rhizobia provide their legume hosts with nitrogen. Parasitic rhizobia infect legumes, but fix little or no nitrogen. Nonsymbiotic strains are unable to infect legumes at all. Why have rhizobium strains with one of these three strategies not displaced the others? A symbiotic (mutualistic or parasitic) rhizobium that succeeds in founding a nodule may produce many millions of descendants. The chances of success can be so low, however, that nonsymbiotic rhizobia can have greater reproductive success. Legume sanctions against nodules that fix little or no nitrogen favor more mutualistic strains, but parasitic strains that use plant resources only for their own reproduction may do well when they share nodules with mutualistic strains.  相似文献   

18.
Restricted availability of nitrogen compounds in soils is often a major limiting factor for plant growth and productivity. Legumes circumvent this problem by establishing a symbiosis with soil-borne bacteria, called rhizobia that fix nitrogen for the plant. Nitrogen fixation and nutrient exchange take place in specialized root organs, the nodules, which are formed by a coordinated and controlled process that combines bacterial infection and organ formation. Because nodule formation and nitrogen fixation are energy-consuming processes, legumes develop the minimal number of nodules required to ensure optimal growth. To this end, several mechanisms have evolved that adapt nodule formation and nitrogen fixation to the plant's needs and environmental conditions, such as nitrate availability in the soil. In this review, we give an updated view on the mechanisms that control nodulation.  相似文献   

19.
Long-distance control of nodulation: Molecules and models   总被引:1,自引:0,他引:1  
Legume plants develop root nodules to recruit nitrogen-fixing bacteria called rhizobia. This symbiotic relationship allows the host plants to grow even under nitrogen limiting environment. Since nodule development is an energetically expensive process, the number of nodules should be tightly controlled by the host plants. For this purpose, legume plants utilize a long-distance signaling known as autoregulation of nodulation (AON). AON signaling in legumes has been extensively studied over decades but the underlying molecular mechanism had been largely unclear until recently. With the advent of the model legumes, L. japonicus and M. truncatula, we have been seeing a great progress including isolation of the AON-associated receptor kinase. Here, we summarize recent studies on AON and discuss an updated view of the long-distance control of nodulation.  相似文献   

20.
Root hairs and phosphorus acquisition of wheat and barley cultivars   总被引:2,自引:0,他引:2  
Several genes that restrict nodulation with specific Bradyrhizobiumstrains are known in Glycine max (soybean), and a similar system of nodulation restriction has recently been discovered in the related North American legume Amphicarpaea bracteata. We analyzed how nodulation-restrictive genotypes of each plant interacted with Bradyrhizobium strains sampled from the other host species. Ten bacterial isolates from A. bracteata that nodulated differentially with genotypes of their homologous host legume showed uniform responses to two soybean isogenic lines that differed at the Rj4 locus controlling nodulation restriction: all isolates formed nodules of normal size and morphology on both isolines. However, little or no nitrogen fixation occurred in any of these symbioses. A. bracteata genotypes that displayed broad vs. restricted symbiotic phenotypes toward naturally-associated bradyrhizobia were also tested with two bacterial isolates from soybean (USDA 76 and USDA 123). Both isolates formed nodules and fixed nitrogen in association with both A. bracteata genotypes. However, symbiotic effectiveness (as measured by acetylene reduction assays) was normal only for the combination of USDA 76 with the restrictive A. bracteata genotype. Overall, these results indicate that plant genes that restrict nodulation by certain naturally-associated bradyrhizobia do not confer comparable specificity when plants interact with bacteria from another related legume species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号