首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 56 毫秒
1.
5-epi-Aristolochene dihydroxylase (EAH) catalyzes unique stereo- and regiospecific hydroxylations of a bicyclic sesquiterpene hydrocarbon to generate capsidiol. To define functional and mechanistic features of the EAH enzyme, the utility of a coupled assay using readily available sesquiterpene synthases and microsomes from yeast overexpressing the EAH enzyme was determined. Capsidiol and deoxycapsidiol biosyntheses were readily measured in coupled assays consisting of 5-epi-aristolochene synthase and EAH as determined by the incorporation of radiolabeled farnesyl diphosphate into thin-layer chromatography-isolated products and verified by gas chromatography-mass spectrometry analysis. The assays were dependent on the amounts of synthase and hydroxylase protein added, the incubation times, and the presence of nicotinamide adenine dinucleotide phosphate. The utility of this coupled assay was extended by examining the relative efficiency of the EAH enzyme to catalyze hydroxylations of different sesquiterpene skeletons generated by other terpene synthases.  相似文献   

2.
Pogostemon cablin (patchouli), like many plants within the Lamiaceae, accumulates large amounts of essential oil. Patchouli oil is unique because it consists of over 24 different sesquiterpenes, rather than a blend of different mono-, sesqui- and di-terpene compounds. To determine if this complex mixture of sesquiterpenes arises from an equal number of unique sesquiterpene synthases, we developed a RT-PCR strategy to isolate and functionally characterize the respective patchouli oil synthase genes. Unexpectedly, only five terpene synthase cDNA genes were isolated. Four of the cDNAs encode for synthases catalyzing the biosynthesis of one major sesquiterpene, including a gamma-curcumene synthase, two germacrene D synthases, and a germacrene A synthase. The fifth cDNA encodes for a patchoulol synthase, which catalyzes the conversion of FPP to patchoulol plus at least 13 additional sesquiterpene products. Equally intriguing, the yield of the different in vitro reaction products resembles quantitatively and qualitatively the profile of sesquiterpenes found in patchouli oil extracted from plants, suggesting that a single terpene synthase is responsible for the bulk and diversity of terpene products produced in planta.  相似文献   

3.
Terpene synthases are the key enzymes in terpene biosynthesis that provide a structurally complex and highly diverse product spectrum. A suitable and reliable analytical assay is indispensable to measure terpene synthase activity accurately and precisely. In this study, a malachite green assay (MG) was adapted to rapidly assay terpene synthase activity and was validated in comparison to an already established gas chromatography assay. A linear correlation between both assays was observed. Kinetic properties for the previously described sesquiterpene synthase α‐humulene synthase (HUM) from Zingiber zerumbet Smith were investigated for the bioconversion of the monoterpene precursors geranyl pyrophosphate (2E‐GPP) and neryl pyrophosphate (2Z‐NPP) as well as for the sesquiterpene precursor farnesyl pyrophosphate (2E,6E‐FPP). Also, gas chromatography mass spectrometry (GS‐MS) was carried out to identify the products of the bioconversion of (2E)‐GPP and (2Z)‐NPP.  相似文献   

4.
The multitude of terpene carbon skeletons in plants is formed by enzymes known as terpene synthases. This review covers the monoterpene and sesquiterpene synthases presenting an up-to-date list of enzymes reported and evidence for their ability to form multiple products. The reaction mechanisms of these enzyme classes are described, and information on how terpene synthase proteins mediate catalysis is summarized. Correlations between specific amino acid motifs and terpene synthase function are described, including an analysis of the relationships between active site sequence and cyclization type and a discussion of whether specific protein features might facilitate multiple product formation.  相似文献   

5.
Nicotiana tabacum (tobacco) 5-epi-aristolochene synthase (TEAS) serves as an useful model for understanding the enzyme mechanisms of sesquiterpene biosynthesis. Despite extensive bio-chemical and structural characterization of TEAS, a more detailed analysis of the reaction product spectrum is lacking. This study reports the discovery and quantification of several alternative sesquiterpene products generated by recombinant TEAS in the single-vial GC-MS assay. The combined use of chiral and non-polar stationary phases for gas chromatography separations proved critical for resolving the numerous sesquiterpene products of TEAS for mass spectral analysis and identification. Co-injection studies with available authentic standards from both synthetic and natural sources further corroborated the assignment of several compounds, resulting in an annotated reaction mechanism accounting for their biosynthesis. Moreover, a previously undocumented farnesyl trans-cis isomerization pathway was observed.  相似文献   

6.
The naturally occurring, volatile sesquiterpene hydrocarbon germacrene D has strong effects on insect behaviour and genes encoding enzymes that produce this compound are of interest in the study of plant-insect interactions and in a number of biotechnological approaches to pest control. Goldenrod, Solidago canadensis, is unusual in that it produces both enantiomers of germacrene D. Two new sesquiterpene synthase cDNAs, designated Sc11 and Sc19, have been isolated from goldenrod and functional expression in Escherichia coli identified Sc11 as (+)-germacrene D synthase and Sc19 as (-)-germacrene D synthase. Thus, the enantiomers of germacrene D are the products of separate, but closely related (85% amino-acid identity), enzymes. Unlike other sesquiterpene synthases and the related monoterpene synthases and prenyl transferases, which contain the characteristic amino-acid motif DDXX(D,E), Sc11 is unusual in that this motif occurs as (303)NDTYD. Mutagenesis of this motif to (303)DDTYD gave rise to an enzyme that fully retained (+)-germacrene D synthase activity. The converse mutation in Sc19 (D303N) resulted in a less efficient but functional enzyme. Mutagenesis of position 303 to glutamate in both enzymes resulted in loss of activity. These results indicate that the magnesium ion-binding role of the first aspartate in the DDXXD motif may not be as critical as previously thought. Further amino-acid sequence comparisons and molecular modelling of the enzyme structures revealed that very subtle changes to the active site of this family of enzymes are required to alter the reaction pathway to form, in this case, different enantiomers from the same enzyme-bound carbocationic intermediate.  相似文献   

7.
Grand fir (Abies grandis) is a useful model system for studying the biochemistry, molecular genetics, and regulation of defensive oleoresin formation in conifers, a process involving both the constitutive accumulation of resin (pitch) in specialized secretory structures and the induced biosynthesis of monoterpenes and sesquiterpenes (turpentine) and diterpene resin acids (rosin) by nonspecialized cells at the site of injury. A similarity-based cloning strategy, employing primers designed to conserved regions of existing monoterpene synthases and anticipated to amplify a 1000-bp fragment, unexpectedly yielded a 300-bp fragment with sequence reminiscent of a terpenoid synthase. Utilization of this amplicon as a hybridization probe afforded four new, full-length cDNA species from a wounded fir stem cDNA library that appeared to encode four distinct monoterpene synthases. Expression in Escherichia coli, followed by enzyme assay with geranyl diphosphate (C(10)), farnesyl diphosphate (C(15)) and geranylgeranyl diphosphate (C(20)), and analysis of the terpene products by chiral phase gas chromatography and mass spectrometry confirmed that these sequences encoded four new monoterpene synthases, including (-)-camphene synthase, (-)-beta-phellandrene synthase, terpinolene synthase, and an enzyme that produces both (-)-limonene and (-)-alpha-pinene. The deduced amino acid sequences indicated these enzymes to be 618 to 637 residues in length (71 to 73 kDa) and to be translated as preproteins bearing an amino-terminal plastid targeting sequence of 50-60 residues. cDNA truncation to delete the transit peptide allowed functional expression of the "pseudomature" forms of these enzymes, which exhibited no change in product outcome as a result of truncation. Sequence comparison revealed that these new monoterpene synthases from grand fir are members of the Tpsd gene subfamily and resemble sesquiterpene (C(15)) synthases and diterpene (C(20)) synthases from conifers more closely than mechanistically related monoterpene synthases from angiosperm species. The availability of a nearly complete set of constitutive and inducible monoterpene synthases from grand fir (now numbering seven) will allow molecular dissection of the resin-based defense response in this conifer species, and detailed study of structure-function relationships among this large and diverse family of catalysts, all of which exploit the same stereochemistry in the coupled isomerization-cyclization reaction.  相似文献   

8.
9.
Unusual features of a recombinant apple alpha-farnesene synthase   总被引:3,自引:0,他引:3  
A recombinant alpha-farnesene synthase from apple (Malus x domestica), expressed in Escherichia coli, showed features not previously reported. Activity was enhanced 5-fold by K(+) and all four isomers of alpha-farnesene, as well as beta-farnesene, were produced from an isomeric mixture of farnesyl diphosphate (FDP). Monoterpenes, linalool, (Z)- and (E)-beta-ocimene and beta-myrcene, were synthesised from geranyl diphosphate (GDP), but at 18% of the optimised rate for alpha-farnesene synthesis from FDP. Addition of K(+) reduced monoterpene synthase activity. The enzyme also produced alpha-farnesene by a reaction involving coupling of GDP and isoprenyl diphosphate but at <1% of the rate with FDP. Mutagenesis of active site aspartate residues removed sesquiterpene, monoterpene and prenyltransferase activities suggesting catalysis through the same active site. Phylogenetic analysis clusters this enzyme with isoprene synthases rather than with other sesquiterpene synthases, suggesting that it has evolved differently from other plant sesquiterpene synthases. This is the first demonstration of a sesquiterpene synthase possessing prenyltransferase activity.  相似文献   

10.
Terpenes are structurally diverse compounds that are of interest because of their biological activities and industrial value. These compounds consist of chirally rich hydrocarbon backbones derived from terpene synthases, which are subsequently decorated with hydroxyl substituents catalyzed by terpene hydroxylases. Availability of these compounds is, however, limited by intractable synthetic means and because they are produced in low amounts and as complex mixtures by natural sources. We engineered yeast for sesquiterpene accumulation by introducing genetic modifications that enable the yeast to accumulate high levels of the key intermediate farnesyl diphosphate (FPP). Co-expression of terpene synthase genes diverted the enlarged FPP pool to greater than 80 mg/L of sesquiterpene. Efficient coupling of terpene production with hydroxylation was also demonstrated by coordinate expression of terpene hydroxylase activity, yielding 50 mg/L each of hydrocarbon and hydroxylated products. These yeast now provide a convenient format for investigating catalytic coupling between terpene synthases and hydroxylases, as well as a platform for the industrial production of high value, single-entity and stereochemically unique terpenes.  相似文献   

11.
Profiling of sesquiterpene hydrocarbons in extracts of goldenrod, Solidago canadensis, by GC-MS revealed the presence of both enantiomers of germacrene D and lesser amounts of germacrene A, alpha-humulene, and beta-caryophyllene. A similarity-based cloning strategy using degenerate oligonucleotide primers, based on conserved amino acid sequences in known plant sesquiterpene synthases and RT-PCR, resulted in the isolation of a full length sesquiterpene synthase cDNA. Functional expression of the cDNA in E. coli, as an N-terminal thioredoxin fusion protein using the pET32b vector yielded an enzyme that was readily purified by nickel-chelate affinity chromatography. Chiral GC-MS analysis of products from of (3)H- and (2)H-labelled farnesyl diphosphate identified the enzyme as (+)-(10R)-germacrene A synthase. Sequence analysis and molecular modelling was used to compare this enzyme with the mechanistically related epi-aristolochene synthase from tobacco.  相似文献   

12.
青蒿倍半萜合酶(环化酶)研究进展   总被引:1,自引:0,他引:1  
青蒿素是从中药青蒿中分离得到的抗疟有效单体,是含有过氧基团的新型倍半萜内酯化合物,是目前世界上最有效的疟疾治疗药物。青蒿素的生物合成途径属于类异戊二烯代谢途径中的倍半萜类分支途径,倍半萜合酶是该途径的关键酶之一,目前已从青蒿中克隆了多个倍半萜合酶基因。综述了青蒿中已克隆的几种倍半萜合酶基因的研究进展。  相似文献   

13.
棉花被植食性昆虫取食后大量释放的特异性萜烯挥发物,能够有效吸引天敌昆虫进行寄主搜索和定位。本文从陆地棉(中棉12)Gossypium hirsutum叶片中克隆获得一个倍半萜合成酶基因的全长cDNA,命名为GhTPS1(GenBank登录号:JQ365627)。该基因编码545个氨基酸的蛋白,预测分子量为63.3 ku,等电点为5.92。氨基酸序列比对分析表明该基因与其它被子植物倍半萜合成酶基因一致性为34%~60%,其中与欧洲葡萄(-)-germacrene D synthase一致性最高(60%)。聚类分析表明GhTPS1属于由被子植物倍半萜合成酶基因组成的TPSa亚家族。采用实时荧光定量PCR检测了GhTPS1 mRNA在棉铃虫Helicoverpa armigera(Hübner)幼虫为害棉花不同时间的表达谱,结果表明接虫24 h该基因表达量显著上调。  相似文献   

14.
Melleolides and related fungal sesquiterpenoid aryl esters are antimicrobial and cytotoxic natural products derived from cultures of the Homobasidiomycetes genus Armillaria. The initial step in the biosynthesis of all melleolides involves cyclization of the universal sesquiterpene precursor farnesyl diphosphate to produce protoilludene, a reaction catalyzed by protoilludene synthase. We achieved the partial purification of protoilludene synthase from a mycelial culture of Armillaria gallica and found that 6-protoilludene was its exclusive reaction product. Therefore, a further isomerization reaction is necessary to convert the 6-7 double bond into the 7-8 double bond found in melleolides. We expressed an A. gallica protoilludene synthase cDNA in Escherichia coli, and this also led to the exclusive production of 6-protoilludene. Sequence comparison of the isolated sesquiterpene synthase revealed a distant relationship to other fungal terpene synthases. The isolation of the genomic sequence identified the 6-protoilludene synthase to be present as a single copy gene in the genome of A. gallica, possessing an open reading frame interrupted with eight introns.  相似文献   

15.
Trapp SC  Croteau RB 《Genetics》2001,158(2):811-832
Terpenoids are the largest, most diverse class of plant natural products and they play numerous functional roles in primary metabolism and in ecological interactions. The first committed step in the formation of the various terpenoid classes is the transformation of the prenyl diphosphate precursors, geranyl diphosphate, farnesyl diphosphate, and geranylgeranyl diphosphate, to the parent structures of each type catalyzed by the respective monoterpene (C(10)), sesquiterpene (C(15)), and diterpene synthases (C(20)). Over 30 cDNAs encoding plant terpenoid synthases involved in primary and secondary metabolism have been cloned and characterized. Here we describe the isolation and analysis of six genomic clones encoding terpene synthases of conifers, [(-)-pinene (C(10)), (-)-limonene (C(10)), (E)-alpha-bisabolene (C(15)), delta-selinene (C(15)), and abietadiene synthase (C(20)) from Abies grandis and taxadiene synthase (C(20)) from Taxus brevifolia], all of which are involved in natural products biosynthesis. Genome organization (intron number, size, placement and phase, and exon size) of these gymnosperm terpene synthases was compared to eight previously characterized angiosperm terpene synthase genes and to six putative terpene synthase genomic sequences from Arabidopsis thaliana. Three distinct classes of terpene synthase genes were discerned, from which assumed patterns of sequential intron loss and the loss of an unusual internal sequence element suggest that the ancestral terpenoid synthase gene resembled a contemporary conifer diterpene synthase gene in containing at least 12 introns and 13 exons of conserved size. A model presented for the evolutionary history of plant terpene synthases suggests that this superfamily of genes responsible for natural products biosynthesis derived from terpene synthase genes involved in primary metabolism by duplication and divergence in structural and functional specialization. This novel molecular evolutionary approach focused on genes of secondary metabolism may have broad implications for the origins of natural products and for plant phylogenetics in general.  相似文献   

16.
The tightly coupled nature of the reaction sequence catalyzed by monoterpene synthases has prevented direct observation of the topologically required isomerization step leading from geranyl diphosphate to the presumptive, enzyme-bound, tertiary allylic intermediate linalyl diphosphate, which ultimately cyclizes to the various monoterpene skeletons. Previous experimental approaches using the noncyclizable substrate analogs 6,7-dihydrogeranyl diphosphate and racemic methanogeranyl diphosphate, in attempts to dissect the cryptic isomerization step from the normally coupled reaction sequence, were thwarted by the limited product available from native monoterpene synthases and by the inability to resolve chiral monoterpene products at the microscale. These approaches were revisited using three recombinant monoterpene synthases and chiral phase capillary gas chromatographic methods to separate antipodal products of the substrate analogs. The recombinant monoterpene olefin synthases, (-)-limonene synthase from spearmint and (-)-pinene synthase from grand fir, yielded essentially only achiral, olefin products (corresponding to the respective analogs and homologs of myrcene, trans-ocimene and cis-ocimene) from 6,7-dihydrogeranyl diphosphate and (2S,3R)-methanogeranyl diphosphate; no significant amounts of terpenols or homoterpenols were formed, nor was direct evidence obtained for the formation of the anticipated analog and homolog of the tertiary intermediate linalyl diphosphate (i.e., 6,7-dihydrolinalyl diphosphate and homolinalyl diphosphate, respectively). In the case of recombinant (+)-bornyl diphosphate synthase from common sage, the achiral olefins were generated, as before, from 6,7-dihydrogeranyl diphosphate and (2R,3S)-methanogeranyl diphosphate, but 6,7-dihydrolinalool and homolinalool also comprised significant components of the respective product mixtures, indicating greater access of water to the active site of this enzyme compared to the olefin synthases; again, no direct evidence for the production of 6,7-dihydrolinalyl diphosphate or homolinalyl diphosphate was obtained. Resolution of the terpenol products of (+)-bornyl diphosphate synthase, by chiral phase separation, revealed the predominant formation of (3R)-dihydrolinalool from dihydrogeranyl diphosphate and of (4S)-homolinalool from (2R,3S)-methanogeranyl diphosphate. The opposite stereochemistries of these products indicates water trapping from opposite faces of the corresponding tertiary carbocationic intermediates of the respective reactions, a phenomenon that appears to result from the binding conformations of these substrate analogs. Although these experiments failed to provide direct evidence for the tertiary intermediate of the tightly coupled isomerization-cyclization sequence, they did reveal a mechanistic difference between the olefin synthases and bornyl diphosphate synthase involving access of water as a participant in the reaction.  相似文献   

17.
Most terpenoids have been isolated from plants and fungi and only a few from bacteria. However, an increasing number of genome sequences indicate that bacteria possess a variety of terpenoid cyclase genes. We characterized a sesquiterpene cyclase gene (SGR2079, named gcoA) found in Streptomyces griseus. When expressed in Streptomyces lividans, gcoA directed production of a sesquiterpene, isolated and determined to be (+)-caryolan-1-ol using spectroscopic analyses. (+)-Caryolan-1-ol was also detected in the crude cell lysate of wild-type S. griseus but not in a gcoA knockout mutant, indicating that GcoA is a genuine (+)-caryolan-1-ol synthase. Enzymatic properties were characterized using N-terminally histidine-tagged GcoA, produced in Escherichia coli. As expected, incubation of the recombinant GcoA protein with farnesyl diphosphate yielded (+)-caryolan-1-ol. However, a small amount of another sesquiterpene was also detected. This was identified as the bicyclic sesquiterpene hydrocarbon (+)-β-caryophyllene by comparison with an authentic sample using GC-MS. Incorporation of a deuterium atom into the C-9 methylene of (+)-caryolan-1-ol in an in vitro GcoA reaction in deuterium oxide indicated that (+)-caryolan-1-ol was synthesized by a proton attack on the C-8/C-9 double bond of (+)-β-caryophyllene. Several β-caryophyllene synthases have been identified from plants, but these cannot synthesize caryolan-1-ol. Although caryolan-1-ol has been isolated previously from several plants, the enzyme responsible for its biosynthesis has not been identified previously. GcoA is thus the first known caryolan-1-ol synthase. Isolation of caryolan-1-ol from microorganisms is unprecedented.  相似文献   

18.
Sorghum (Sorghum bicolor) plants damaged by insects emit a blend of volatiles, predominantly sesquiterpenes, that are implicated in attracting natural enemies of the attacking insects. To characterize sesquiterpene biosynthesis in sorghum, seven terpene synthase (TPS) genes, SbTPS1 through SbTPS7, were identified based on their evolutionary relatedness to known sesquiterpene synthase genes from maize and rice. While SbTPS6 and SbTPS7 encode truncated proteins, all other TPS genes were determined to encode functional sesquiterpene synthases. Both SbTPS1 and SbTPS2 produced the major products zingiberene, β-bisabolene and β-sesquiphellandrene, but with opposite ratios of zingiberene to β-sesquiphellandrene. SbTPS3 produced (E)-α-bergamotene and (E)-β-farnesene. SbTPS4 formed (E)-β-caryophyllene as the major product. SbTPS5 produced mostly (E)-α-bergamotene and (Z)-γ-bisabolene. Based on the genome sequences of sorghum, maize and rice and the sesquiterpene synthase genes they contain, collinearity analysis identified the orthologs of sorghum sesquiterpene synthase genes, except for SbTPS4, in maize and rice. Phylogenetic analysis implied that SbTPS1, SbTPS2 and SbTPS3, which exist as tandem repeats, evolved as a consequence of local gene duplication in a lineage-specific manner. Structural modeling and site-directed mutagenesis experiments revealed that three amino acids in the active site play critical roles in defining product specificity of SbTPS1, SbTPS2, SbTPS3 and their orthologs in maize and rice. The naturally occurring functional variations of sesquiterpene synthases within and between species suggest that multiple mechanisms, including lineage-specific gene duplication, subfunctionalization, neofunctionalization and pseudogenization of duplicated genes, have all played a role in the dynamic evolution of insect-induced sesquiterpene biosynthesis in grasses.  相似文献   

19.
20.
Green S  Baker EN  Laing W 《FEBS letters》2011,585(12):1841-1846
Plant sesquiterpene and hemiterpene synthases in the monoterpene synthase dominated TPS-b subgroup are thought to have evolved independently from a monoterpene synthase ancestor. A TPS-b sesquiterpene synthase from apple (MdAFS1), which predominantly produces α-farnesene, can also synthesize the monoterpene (E)-β-ocimene. The dual activity offered a functional link to an ancestral MdAFS1 enzyme and a rational basis for investigation of the evolution of TPS-b sesquiterpene enzymes. Protein modelling and mutagenesis analysis of the MdAFS1 active site identified a non-synonymous nucleotide substitution that could account for the requisite shift in substrate specificity necessary for the emergence of its sesquiterpene activity during the evolution of the TPS-b enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号