首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We obtained reproducible cortical evoked potentials (EPs) in response to electrical stimulation of the rectum with 1 Hz frequency. We found 2 distinctly different EPs in response to rectal stimulation. In 5 females, the EP had an early onset latency (mean 26 msec) with multiple positive and negative peaks. In 10 females, the EP had a later onset latency (mean 52 msec) and a trifid configuration, having a very prominent negative peak. The early onset EPs after rectal stimulation appeared very similar to the wave form of the cortical EPs recorded after pudendal nerve stimulation. Finding similar interpeak latencies in the early onset EP after rectal stimulation and the EP after pudendal nerve stimulation suggests that either the same pathway was used or that rectal stimulation also stimulated the pudendal nerve. It appears that we stimulated visceral afferents when we recorded late onset EPs, because the large EP amplitude declined rapidly with faster stimulation rates and also with greater number of averaging, and the sensation threshold was very unstable, all different to somatosensory EPs.  相似文献   

2.
In this study, we analyze the important relation between the spontaneous and evoked activities of the substructures of the cat brain, such as the reticular formation, hippocampus, inferior colliculus, medial geniculate nucleus and acoustical cortex, with an ensemble of systems theory methods consisting of the following steps: (1) single auditory and/or visual evoked potentials (EPs) and the spontaneous activities (EEG) just preceding the stimuli are recorded from the brain center under study; (2) selectively averaged evoked potentials (SAEPs) are obtained from the recorded EPs; (3) amplitude frequency characteristics are computed from the AAEPs by means of Fourier transform; (4) the single EEG-EP sweeps are theoretically pass-band filtered with adequate band limits determined according to the selectivities revealed by the amplitude characteristics; (5) the EEG and EP components obtained in this way are compared with regard to the amplification in the population response upon the application of the stimulus. The results of this analysis support quantitatively our prediction of various types of resonance phenomena in a number of nuclei in the cat brain and in a large scale of frequencies from 1 Hz to 1000 Hz and show that the amplification factor related to resonance phenomena has probabilistic nature. Therefore, the analogy which we have recently drawn between the behaviors of a neural population and a random-phase probabilistic harmonic oscillator is extended by assigning also the amplitude and the frequency of the oscillations as random variables. A working hypothesis for the dynamics of neuronal populations is elaborated accordingly.Presented in Part at the Third European Meeting on Cybernetics and Systems Research 1976 in Vienna, April 20–23, 1976Supported by Grant No. TAG-345 of the Scientific and Technical Research Council of Turkey  相似文献   

3.
This study is carried out on single (not averaged) recordings combining the spontaneous activity preceding the stimulus onset and the EP recorded upon acoustical stimulation. These recordings, which we call EEG-EPograms, are measured simultaneously from different subdural structures, such as the auditory cortex, medial geniculate nucleus, inferior colliculus, reticular formation and the hippocampus of the cat brain during the slow wave sleep stage. Using a combined analysis procedure (C.A.P.), the relevant frequency components of spontaneous EEG and EPs, recorded simultaneously from these brain nuclei, are analyzed according to the consistent selectivity bands depicted by the determined amplitude-frequency characteristics for the SWS-stage. In parallel with the results which we obtained for the waking stage, these analyses provide also the following information: (1) there is an important congruency in the time courses of simultaneous response components in common frequency bands, especially in the alpha and beta frequency ranges; (2) there exist significant coupling and synchrony between the evoked amplitude enhancements in the simultaneously recorded single response components; (3) the inter-nuclei coherency in the brain's electrical activity is enormously increased upon stimulation; (4) the evoked response magnitude can be predicted, with reasonable accuracy, from the spontaneous activity preceding the stimulus. All these findings are discussed with reference to those obtained for the waking stage.This study is supported by the Grant TAG-364 of the Scientific and Technical Research Council of Turkey  相似文献   

4.
Brain bioelectrical activity was studied in 38 and 34 subjects with high and low levels of anxiety, respectively, by means of toposelective mapping of EEG spectral power and recording of P300 endogenous event-related auditory evoked potentials (EPs). Analysis of EEG spectra demonstrated, in the subjects with a high level of trait anxiety, a higher power of β1 oscillations in the central-parietal areas of both hemispheres and the occipital area of the right hemisphere, as well as a higher power of θ and α oscillations in the frontal areas of both hemispheres and the central-parietal area of the left hemisphere. The occipital-frontal gradient of the spectral power of these rhythmic EEG components was altered in subjects with a high level of trait anxiety. Comparison of P300 cognitive auditory EPs in the subjects with high anxiety and in the control group showed that, in the former, the P300 EP amplitude and the habituation distortion (dishabituation) of the P300 EP amplitude were significantly higher in both hemispheres. This indicates that, at a high level of anxiety, the active directed attention was disturbed, which is confirmed by the results of neuropsychological examination, demonstrating reduced selectivity, concentration, and stability of attention in the Münsterberg test and Schulte’s test. The results of electrophysiological examination suggest that the malfunction of regulatory brain modulating systems is an important neurophysiological mechanism of attention pathology and disturbed adaptation in subjects with a high level of trait anxiety.  相似文献   

5.
6.
Brain resonance phenomena and induced rhythms in the brain recently gained importance in electroencephalographic, magnetoencephalographic and cellular studies (Ba\c sar and Bullock 1992). It was hypothesized that evoked potentials are superpositions of induced rhythms caused by resonance phenomena in neural populations (Ba\c sar et al. 1992). According to Ba\c sar (1972), such resonance phenomena are reflected in the main peaks of the amplitude frequency characteristics computed from EEG responses. The present study is based on a frequency domain approach for the evaluation of topography- and modality-dependent properties of oscillatory brain responses. EEG and evoked potentials were recorded from vertex, parietal and occipital scalp locations in 24 volunteers. Two combined methods were applied: (1) amplitude frequency characteristics were computed from the transient evoked responses, and (2) frequency components of the transient responses were obtained by adaptive digital filtering. Our main goal was to investigate theta (4--7 Hz) and alpha (8--15 Hz) response components. (1) Amplitude frequency characteristics. Auditory stimuli elicited theta-alpha compound responses in the 4--11 Hz frequency band (e.g. typical peaking frequency around 7 Hz for vertex recordings). Visual stimuli elicited alpha responses (e.g. typical peaking frequency for vertex recordings around 9--12 Hz). Frequency maxima for visual stimuli thus had main peaks at higher frequency values than frequency maxima for auditory stimuli. (2) Digital filtering confirmed these results: for vertex recordings, theta vs. alpha response amplitudes were 9 vs 6 for auditory stimuli and 5 vs 5 for visual stimuli, thus confirming a shift towards higher frequencies, i.e. a more prominent contribution of the alpha range, in the case of visual stimulation. We hypothesize that these properties might reflect site- and modality-specific features of stimulus encoding in the brain in which resonance properties of neuron populations are involved. Furthermore we emphasize the utility of the systems theory approach for a better understanding of brain function by means of EPs. Received: 25 February 1994 / Accepted in revised form: 5 August 1994  相似文献   

7.
The relationship between the latencies and amplitudes of the N1 and P2 components of the visual evoked potential (VEP) and the psychophysiological state of the brain immediately preceding the time of the stimulus has been investigated in 7 male subjects. Power spectral measures in the delta, theta, alpha and beta bands of the 1 sec pre-stimulus EEG were used to assess the brain state, and low intensity flashes, delivered randomly between 2 and 6 whole seconds, were used as the stimuli. Trials were ranked separately according to the relative amounts of pre-stimulus power in each EEG band and were partitioned into groups by an equal pre-stimulus spectral power criterion. Averaged EPs were computed from these groups and multiple regression analysis was used to relate pre-stimulus spectral power values to EP features. Five of the 7 subjects displayed consistent increases in N1-P2 amplitude as a function of increasing pre-stimulus relative alpha power. The between-subjects effect of pre-stimulus EEG on N1 latency was small, but was moderate for P2 latency (both significant). Both N1 and P2 latency were found to decrease with increasing amounts of pre-stimulus relative delta and theta power.  相似文献   

8.
In acute experiments in rabbits immobilized by d-tubocurarine, stimulation of the entorhinal area with rectangular electric impulses led to the appearance of evoked potentials (EP) with a latent period of 6–12 msec in the occipital, temporal, parietal, and cingular areas of the neocortex. The amplitude of the positive response component was 500 µV, and its duration 25–50 msec. The negative component was not always discernible. When rhythmic stimulation was used, these EPs followed stimulation frequencies not exceeding 20 per sec. Stimulation of the medial parts of the entorhinal area with a frequency of one to three per sec was accompanied by recruitment of the EP in the occipital and temporal neocortex areas. Nembutal depressed the amplitude of the neocortex EP appearing in response to stimulation of the entorhinal cortex. With the aid of double stimulation it could be established that, after conditioning stimulation of the entorhinal area, the positive component of the primary response (PR) evoked by stimulation of the contralateral sciatic nerve in the projection zone of the somatosensory cortex is strengthened during the first 50 msec, and subsequently after 80–120 msec. In these cases, the negative component was depressed. These findings are discussed with a view to the influence of limbic structures on the neocortex.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 2, No. 1, pp. 73–78, January–February, 1970.  相似文献   

9.
In anesthetized, artificially ventilated cats with open chest, bilateral stimulation of all afferent vagal fibres (pulse duration: 800 microseconds, 30 Hz, train duration 30 to 40 s) produced marked changes in the spontaneous EEG activities in the primary somatosensory cortex (Sl area). They were characterized by depressed background rhythms, with a tendency to desynchronization, decreased amplitude and number of spindles, with altered pattern, and/or evoked sustained fast rhythmic activities. These effects occurred within 1 to 5 sec during vagal stimulation. On the contrary, the EEG response was weaker or absent when only myelinated vagal afferents were stimulated (100 microseconds). I.v. injection of phenyldiguanide (PDG), used for stimulation of unmyelinated vagal sensory fibres and mainly of pulmonary afferents, induced EEG changes within the first 30 s, similar to those observed during electrical vagal stimulation. These EEG responses were unrelated to the induced hypotension. Cervical bivagotomy produced persistent changes in EEG activity, with enhancement of the magnitude, duration and number of spindles, which resembled the delayed effects induced by PDG. The present results obtained with three test agents (electrical or chemical vagal stimulation and bivagotomy) demonstrated that, in cats, vagal afferent information interacted with the spontaneous EEG rhythms in the Sl area.  相似文献   

10.
Visual evoked potentials (EPs) of the left and right hemispheres in response to relevant and irrelevant stimuli in the structures of the left and right hemispheres have been studied in healthy young schoolchildren, learning-disabled (LD) children, and mentally retarded (MR) children. In healthy children, the largest EP variations depending on the stimulus relevancy have been found in associative structures of the left hemisphere. In LD children of the same age, the amplitude and temporal characteristics of left-hemispheric EPs to target and nontarget stimuli are the same. In MR children, EPs to relevant and irrelevant stimuli do not differ from each other in either the left or the right hemisphere. EP latencies are significantly longer in MR children than in healthy children. The results of simultaneous recording of EPs in the left and right hemispheres during isolated stimulation of the right and left visual half-fields indicate that interhemispheric interaction is impaired in children with deviations in mental development. The results of the study are discussed in terms of the psychological characteristics and learning ability of children.  相似文献   

11.
We would like to propose a method of single evoked potential (EP) extraction free from assumptions and based on a novel approach — the wavelet representation of the signal. Wavelets were introduced by Grossman and Morlet in 1984. The method is based on the multiresolution signal decomposition. Wavelets are already used for speech recognition, geophysics investigations and fractal analysis. This method seems to be a useful improvement upon Fourier Transform analysis, since it provides simultaneous information on frequency and time localization of the signal. We would like to introduce wavelet formalism for the first time to brain signal analysis. One of the most important problems in this field is the analysis of evoked potentials. This signal has an amplitude several times smaller than EEG, therefore stimulus-synchronized averaging is commonly used. This method is based on several assumptions. Namely it is postulated that: 1) EP are characterized by a deterministic repeatable pattern, 2) EEG has purely stochastic character, 3) EEG and EP are independent. These assumptions have been challenged e.g. the variability of the EP pattern was demonstrated by John (1973) by means of factor analysis. In view of the works of Sayers et al. (1974) and Baar (1988) EP reflects the reorganization of the spontaneous activity under the influence of a stimulus and it is connected with the redistribution of EEG phases. Several attempts to overcome the limitation of the averaging method have been made. Heintze and Künkel (1984) used an autoregressive moving average (ARMA) model to extract evoked potentials from 2 segments. This was possible under two condiitons: high signal to noise ratio and clear separation of the EEG and EP spectra. These assumptions are not easy to fulfill, though. Cerutti et al. (1987) modeled background EEG activity by means of an AR process and event related brain activity by ARMA. In this way they were able to find a filter extracting single EP. Nevertheless, their method was not quite free of assumptions, since they since they used averaged EP to define their ARMA filter. In the following we shall briefly describe the method of the multiresolution decomposition and we will apply it to the analysis and reconstruction of single evoked potentials.  相似文献   

12.
The possible mechanisms which determine the temporal dynamics of discrete narrow-band spectral components of human EEG recorded by a single electrode in the state of rest were analyzed. The dynamics of short-segment spectra was observed by application of Fast Fourier Transform (FFT) to 5-s EEG epochs successively shifted by 0.32 s. For each subject the matrices were formed and presented in a graphic mode. Matrix rows represented the number of points in each short-segment spectrum, and the columns represented the number of short-segment spectra. The columns reflect the amplitude dynamics of a given frequency, and power transition between the columns reflects the frequency dynamics. The most common type of the amplitude dynamics consisted in short (2-8 s) periods of stable activity of the discrete spectral components replaced by symmetrical bifurcation or confluence of spectral peaks. The obtained results suggest by the presence of both additive and multiplicative mechanisms of oscillatory interactions in the EEG. More detailed analysis of the amplitude-modulated EEG processes is provided by application of some additive features of the FFT to both EEG and computer-simulated signals.  相似文献   

13.
This paper describes the application of an EKG elimination procedure1, previously reported by the authors, to evoked potentials (EPs) recording using a non-cephalic reference. The method consists of three separate steps: data acquisition, EKG artifact elimination, and EP averaging. EKG artifacts are eliminated from the raw EEG by applying a four step procedure to the simultaneously recorded EEG, EKG and stimulus pulse. The steps are: synchronized partition of the raw EEG, EKG averaging, synchronized repetition, and synchronized subtraction of the EKG estimate from the raw EEG. Average EP values are then obtained by averaging the processed EEG using the stimulus pulse as a trigger. Somatosensory evoked potentials to a hand reference, averaged using the proposed method, were compared with those obtained by two conventional averaging methods, and were shown to be more clearly defined. The advantage of the proposed method for recording short latency EP values with a non-cephalic reference is that it requires fewer sweeps and thus takes less time than other methods. The proposed method may also be applicable to the recording of other EP values.  相似文献   

14.
Sharply different wave forms and parameters of averaged evoked potentials (EP) in response to single visual and somatic stimuli were observed in the same points of the horizontal limb nucleus of the diagonal band (NDB) in cats under nembutal anesthesia. The existence of heterogenic EPs in NDB makes it possible to consider this part of the nucleus as a polysensory structure. Decreased EP latency, as compared to that in the neocortex, indicates that heterogenic impulses reach NDB by higher speed Ways than the cortex. The comparison of NDB EP refractory periods during paired stimulation of one or different sensory systems shows that polyvalent impulses affect independently functioning neuronal populations. It is suggested that a common principle of specific heterogenic signals arrival to distinct neuronal complexes exists for polysensory structures at different levels of the central nervous system.  相似文献   

15.
We studied the peculiarities of the amplitude/time parameters of evoked EEG potentials (EPs) and event-related potentials (ERPs) in 10- to 11-year-old children characterized by low and high anxiety levels. The latter levels were estimated using the scale of the manifest anxiety test of Prikhozhan and projective techniques (“House–Tree–Person,” HTP, and the Lüscher color test). For children with a high anxiety level, the amplitudes of the following EP components and ERPs were lower than those in low-anxiety children of the same age: P1 (predominantly in the occipital region of the left hemisphere), P2 (in the right occipital region), and Р300 wave (in different loci of both hemispheres). In high-anxiety children, we also more frequently observed increased amplitudes of the N2 component in the left parietal and right occipital regions. High-anxiety individuals were characterized by longer latencies of component P1 (mostly in the right frontal and left central regions) and, at the same time, shorter latencies of component N1 (in the parietal and occipital regions of the left hemisphere and also in the right temporal region). Thus, we found that the amplitude/time characteristics of a few EP components and ERPs in children with high anxiety levels differ statistically significantly from the parameters of corresponding EPs/ERPs in individuals of the same age but with low anxiety levels.  相似文献   

16.
Evoked potentials (EPs) to light were studied in groups of patients with tumours of basal-diencephalic localization (24 patients) and at the brain-stem level (24 patients), in comparison with 11 normal subjects. In the first group, a decrease of amplitude and increase of response duration were found in the frontal cortical areas, with simultaneous reduction of intrahemispheric differences due to decrease of low-frequency components in the EP spectra by amplitude in fronto-central parts, and of alpha- and beta-frequencies in the occipital parts of the hemispheres. EP changes resulting from brain-stem tumors were more expressed than in the case of cerebellar tumors. In patients with foci causing a pronounced irritation of the brain-stem, a decrease in responses amplitude was observed accompanied by an amplitude lowering of delta- and theta-frequencies in EPs-spectra in the frontal, central and temporal leads, with no changes in the occipital leads. The obtained data testify to functional inequivalence and independence of different EP frequency components suggesting that the methods of studying the EP frequency structure are informative and efficient.  相似文献   

17.
Intracellular records were made from neurones of the somatosensory cortex of cats, during stimulation of the ventrobasal complex of the thalamus. The aim of the experiments was to detect correlations between frequency dependence of surface evoked potentials and that of unit discharges. The amplitude of the surface evoked potential showed a strong diminution when the frequency of the thalamic stimulation was raised from 1 cps to 15 cps. In spite of this, frequency dependence in amplitude of unit discharges was never seen. As regards their frequency of occurrence the unit responses (full spikes, dendritic, postsynaptic potentials) behaved differently: a part of them showed increasing, another part gave decreasing occurrence, and the remaining portion did not change it. The authors conclude that temporal dispersion fails to give account for the frequency dependence, therefore further possibilities have to be examined.  相似文献   

18.
The characteristics of the averaged evoked potentials (AEP) (experiments with awake non-paralysed animals), of the evoked potentials (EP) and of the responses of single sensorimotor cortical neurons (acute experiments) of cats to tone-bursts with frequencies within 0.1-6.0 kHz were studied. Response selectivity to the tone-burst frequencies which are energetically pronounced in some biologically significant sounds for the cat was observed. The averaged curve of the dependence of the amplitude of AEP in the somatosensory cortical region (S1) on the tone-burst frequency has reliable maximum values at the frequencies of 0.8, 1.6 and 2.0-3.0 kHz. Most pronounced changes in the heart rhythm were observed within the tone-burst frequency ranges in which the AEP of the highest amplitudes were recorded. The amplitude of the AEP was found to increase during the conditioned reflex elaboration. The curve of the dependence of the probability of the EP occurrence on the frequency at equal sound pressure levels had maximum values at the frequencies of 1.6 and 3.2 kHz. The highest amplitude values of EP were found at frequencies of 0.8, 1.6 and 3.2 kHz. More than half of the recorded neurons revealed the lowest values of the response thresholds and the maximum values of the occurrence probability under suprathreshold stimulation at frequencies close to 0.8, 1.6, and 3.2 kHz. It is supposed that the above mentioned feature of the input frequency organization in sensorimotor cortex is connected with the selectivity as to the biological significance of acoustic stimuli.  相似文献   

19.
Multicellular activity and the EEG were recorded from the somatosensory cortex by means of metal microelectrodes 30 µ in diameter in chronic experiments on waking unrestrained cats. Unit activity was separated into three different amplitudes by means of a discriminator. Three types of spontaneous activity were distinguished: with continuous, burst, and grouped discharges. Despite the outwardly identical picture of the spontaneous EEG activation reaction, parallel processes, differing in sign and distribution of unit activity were discovered in the neuron population. Their combinations were very varied. This activity could increase in frequency at all amplitude levels or at only one or two levels, accompanied by inhibition of discharges (or by no change) at other levels. The character of reorganization was shown to depend largely on the degree of the spontaneous EEG activation reaction and on the type of spontaneous unit activity. Computer analysis of the changes in the mean discharge frequency showed that during EEG activation stimulation of unit activity (55%) predominated over depression (21%). In some cell populations the sequence of discharges was altered without any change in mean frequency. The experimental results are discussed from the standpoint of the role of unit activity in spontaneous EEG activation.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 12, No. 4, pp. 339–348, July–August, 1980.  相似文献   

20.
A systems theoretical approach was used to compare possible functional roles of theta (4--7 Hz) and alpha (8--15 Hz) response components of brain evoked potentials. These response components were described earlier by Ba\c sar (1980). We recorded EEG and evoked potentials (EPs) from occipital scalp locations in 11 subjects. We used auditory and visual stimuli as inadequate and adequate stimuli, respectively (``cross-modality' measurements). The combined EEG-EP epochs were analysed in frequency domain with fast Fourier transform and adaptive digital filters. Alpha (8--15 Hz) response components turned out to be dependent on whether the stimulus was adequate or not (median amplitude with inadequate vs. adequate stimulation: vs. ). Theta (4--7 Hz) response components were less dependent on stimulus modality (inadequate vs. adequate stimulation: vs. ). In EP recordings the occipital alpha response almost disappeared in the first 250 ms following auditory stimulation. Comparable behaviour was observed in similar experiments with recordings from the cat visual cortex (area 17) and with occipital magnetoencephalographic recordings. Taking into account the above-mentioned previous reports on intracranial recordings in primary sensory areas of the cat brain and preliminary results of magnetoencephalographic measurements, we propose the following hypothesis: alpha responses in a time window of about 250 ms after stimulation might predominantly reflect primary sensory processing whereas the theta responses in the first 250 ms after stimulation might be more involved in supra-modality -- or cross-modality -- associative-cognitive processing. Received: 25 February 1994 / Accepted in revised form: 5 August 1994  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号