首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The goal of fluorometric analysis is to serve as an efficient, cost effective, high throughput method of analyzing phagocytosis and other cellular processes. This technique can be used on a variety of cell types, both adherent and non-adherent, to examine a variety of cellular properties. When studying phagocytosis, fluorometric technique utilizes phagocytic cell types such as macrophages, and fluorescently labeled opsonized particles whose fluorescence can be extinguished in the presence of trypan blue. Following plating of adherent macrophages in 96-well plates, fluorescent particles (green or red) are administered and cells are allowed to phagocytose for varied amounts of time. Following internalization of fluorescent particles, cells are washed with trypan blue, which facilitates extinction of fluorescent signal from bacteria which are not internalized, or are merely adhering to the cell surface. Following the trypan wash, cells are washed with PBS, fixed, and stained with DAPI (nuclear blue fluorescent label), which serves to label nuclei of cells. By a simple fluorometric quantification through plate reading of nuclear (blue) or particle (red/green) fluorescence we can examine the ratio of relative fluorescence units of green:blue and determine a phagocytic index indicative of amount of fluorescent bacteria internalized per cell. The duration of assay using a 96-well method and multichannel pipettes for washing, from end of phagocytosis to end of data acquisition, is less than 45 min. Flow cytometry could be used in a similar manner but the advantage of fluorometry is its high throughput, rapid method of assessment with minimal manipulation of samples and quick quantification of fluorescent intensity per cell. Similar strategies can be applied to non adherent cells, live labeled bacteria, actin polymerization, and essentially any process utilizing fluorescence. Therefore, fluorometry is a promising method for its low cost, high throughput capabilities in the study of cellular processes.  相似文献   

2.
Fluorescence is a mainstay of bioanalytical methods, offering sensitive and quantitative reporting, often in multiplexed or multiparameter assays. Perhaps the best example of the latter is flow cytometry, where instruments equipped with multiple lasers and detectors allow measurement of 15 or more different fluorophores simultaneously, but increases beyond this number are limited by the relatively broad emission spectra. Surface enhanced Raman scattering (SERS) from metal nanoparticles can produce signal intensities that rival fluorescence, but with narrower spectral features that allow a greater degree of multiplexing. We are developing nanoparticle SERS tags as well as Raman flow cytometers for multiparameter single cell analysis of suspension or adherent cells. SERS tags are based on plasmonically active nanoparticles (gold nanorods) whose plasmon resonance can be tuned to give optimal SERS signals at a desired excitation wavelength. Raman resonant compounds are adsorbed on the nanoparticles to confer a unique spectral fingerprint on each SERS tag, which are then encapsulated in a polymer coating for conjugation to antibodies or other targeting molecules. Raman flow cytometry employs a high resolution spectral flow cytometer capable of measuring the complete SERS spectra, as well as conventional flow cytometry measurements, from thousands of individual cells per minute. Automated spectral unmixing algorithms extract the contributions of each SERS tag from each cell to generate high content, multiparameter single cell population data. SERS-based cytometry is a powerful complement to conventional fluorescence-based cytometry. The narrow spectral features of the SERS signal enables more distinct probes to be measured in a smaller region of the optical spectrum with a single laser and detector, allowing for higher levels of multiplexing and multiparameter analysis.  相似文献   

3.
Image‐based cellular assay advances approaches to dissect complex cellular characteristics through direct visualization of cellular functional structures. However, available technologies face a common challenge, especially when it comes to the unmet need for unraveling population heterogeneity at single‐cell precision: higher imaging resolution (and thus content) comes at the expense of lower throughput, or vice versa. To overcome this challenge, a new type of imaging flow cytometer based upon an all‐optical ultrafast laser‐scanning imaging technique, called free‐space angular‐chirp‐enhanced delay (FACED) is reported. It enables an imaging throughput (>20 000 cells s?1) 1 to 2 orders of magnitude higher than the camera‐based imaging flow cytometers. It also has 2 critical advantages over optical time‐stretch imaging flow cytometry, which achieves a similar throughput: (1) it is widely compatible to the repertoire of biochemical contrast agents, favoring biomolecular‐specific cellular assay and (2) it enables high‐throughput visualization of functional morphology of individual cells with subcellular resolution. These capabilities enable multiparametric single‐cell image analysis which reveals cellular heterogeneity, for example, in the cell‐death processes demonstrated in this work—the information generally masked in non‐imaging flow cytometry. Therefore, this platform empowers not only efficient large‐scale single‐cell measurements, but also detailed mechanistic analysis of complex cellular processes.   相似文献   

4.
Silver nanoparticles have been modified with self-assembled monolayers of hydroxyl-terminated long chain thiols and encapsulated with a silica shell. The resulting core–shell nanoparticles were used as optical labels for cell analysis using flow cytometry and microscopy. The excitation of plasmon resonances in nanoparticles results in strong depolarized scattering of visible light, permitting detection at the single nanoparticle level. The nanoparticles were modified with neutravidin via epoxide–azide coupling chemistry, to which biotinylated antibodies targeting cell surface receptors were bound. The nanoparticle labels exhibited long-term stability in solutions with high salt concentrations without aggregation or silver etching. Labeled cells exhibited two orders of magnitude enhancement of the scattering intensity compared with unlabeled cells.  相似文献   

5.
The physical and chemical parameters involved in the design and synthesis of biospecifically targeted nanoparticulate contrast media for magnetic resonance molecular imaging (MRMI) were explored in this pilot investigation. Latex nanoparticles 100, 400 and 900 nm in diameter were doubly derivatised, first with tomato lectin and then with gadoliniumIII-diethylenetriamine pentaacetic acid (Gd-chelates) to target them to epithelial and endothelial glycocalyceal N-glycans and to generate contrast enhancement in magnetic resonance imaging (MRI). After intravenous injection into mice, human placental cotyledons or human Vena saphena magna, contrasty images of the vascular structures were obtained in 1.5 T MRI with spatial resolution 0.1 mm in the imaging plane and 0.6 mm in the z axis, persisting >60 min and resistant to washing out by buffer rinses. Ultrastructural analysis of the nanoparticles revealed the targeting groups at the nanoparticle surfaces and the distribution of the Gd-chelates within the nanoparticles and enabled counts for use in determining relaxivity. The relaxivity values revealed were extremely high, accounting for the strong MR signals observed. Occasionally, nanoparticles larger than 100 nm were seen in close spatial association with disrupted regions of cell membrane or of collagen fibrils in the extracellular matrix. The data suggest that 100-nm nanoparticles generate adequate contrast for MRMI and cause least disruption to endothelial cell surfaces.  相似文献   

6.
Traditional vaccine adjuvants, such as alum, elicit suboptimal CD8+ T cell responses. To address this major challenge in vaccine development, various nanoparticle systems have been engineered to mimic features of pathogens to improve antigen delivery to draining lymph nodes and increase antigen uptake by antigen-presenting cells, leading to new vaccine formulations optimized for induction of antigen-specific CD8+ T cell responses. In this article, we describe the synthesis of a “pathogen-mimicking” nanoparticle system, termed interbilayer-crosslinked multilamellar vesicles (ICMVs) that can serve as an effective vaccine carrier for co-delivery of subunit antigens and immunostimulatory agents and elicitation of potent cytotoxic CD8+ T lymphocyte (CTL) responses. We describe methods for characterizing hydrodynamic size and surface charge of vaccine nanoparticles with dynamic light scattering and zeta potential analyzer and present a confocal microscopy-based procedure to analyze nanoparticle-mediated antigen delivery to draining lymph nodes. Furthermore, we show a new bioluminescence whole-animal imaging technique utilizing adoptive transfer of luciferase-expressing, antigen-specific CD8+ T cells into recipient mice, followed by nanoparticle vaccination, which permits non-invasive interrogation of expansion and trafficking patterns of CTLs in real time. We also describe tetramer staining and flow cytometric analysis of peripheral blood mononuclear cells for longitudinal quantification of endogenous T cell responses in mice vaccinated with nanoparticles.  相似文献   

7.
Engineered nanoparticles are endowed with very promising properties for therapeutic and diagnostic purposes. This work describes a fast and reliable method of analysis by flow cytometry to study nanoparticle interaction with immune cells. Primary immune cells can be easily purified from human or mouse tissues by antibody-mediated magnetic isolation. In the first instance, the different cell populations running in a flow cytometer can be distinguished by the forward-scattered light (FSC), which is proportional to cell size, and the side-scattered light (SSC), related to cell internal complexity. Furthermore, fluorescently labeled antibodies against specific cell surface receptors permit the identification of several subpopulations within the same sample. Often, all these features vary when cells are boosted by external stimuli that change their physiological and morphological state. Here, 50 nm FITC-SiO2 nanoparticles are used as a model to identify the internalization of nanostructured materials in human blood immune cells. The cell fluorescence and side-scattered light increase after incubation with nanoparticles allowed us to define time and concentration dependence of nanoparticle-cell interaction. Moreover, such protocol can be extended to investigate Rhodamine-SiO2 nanoparticle interaction with primary microglia, the central nervous system resident immune cells, isolated from mutant mice that specifically express the Green Fluorescent Protein (GFP) in the monocyte/macrophage lineage. Finally, flow cytometry data related to nanoparticle internalization into the cells have been confirmed by confocal microscopy.  相似文献   

8.
We have established a new type of homogeneous immunoassay based on nanoparticles (nanoparticle immunoassay, or NPIA) being analyzed using fluorescence intensity distribution analysis (FIDA). This method allows the characterization of single fluorescently labeled molecules or particles with respect to their molecular brightness and concentration. Upon binding of conjugates to molecules coupled to the nanoparticle surface, the brightness of the complex scales with the number of bound conjugates. The complexes can then be distinguished accurately from free conjugate and concentrations of free and bound molecules can be determined reliably. In this study we present various examples of NPIAs where capture antibodies were linked to the nanoparticles, which were either artificial beads or bacteria. Two assay formats have been developed; first, direct labeling of the conjugate was used to quantitate free antigen through competition experiments, and second, an antigen-directed antibody was labeled to establish an assay similar to a sandwich ELISA setup. The major advantages of a NPIA are the robustness and high signal-to-noise ratio at short measurement times, as demonstrated with a miniaturized experiment in a Nanocarriertrade mark holding a volume of 1 microl/well. In addition to the good data quality, NPIAs are straightforward to perform because they require no washing steps. NPIAs open new dimensions for high throughput pharmaceutical screening and diagnostics. Assay development times can be reduced significantly because of a simple toolbox principle that is applicable to most types of assays.  相似文献   

9.
Mycobacterium ulcerans (Mu), the aetiological agent of Buruli ulcer, is an extracellular pathogen producing the macrolide toxin mycolactone. Using a mouse model of intradermal infection, we found that Mu was initially captured by phagocytes and transported to draining lymph nodes (DLN) within host cells. Similar to Buruli ulcers in humans, the infection site eventually became ulcerated with tissue necrosis and extracellular bacteria, at later stages. In contrast to Mycobacterium bovis BCG (BCG), Mu did not disseminate to the spleen. However, mice infected with Mu or BCG developed comparable primary cellular responses to mycobacterial antigens in DLN and spleen. The role of mycolactone in this sequence of events was examined with a mycolactone-deficient (mup045) mutant of Mu. Mup045 bacilli were better internalized than wild-type (wt) bacteria by mouse phagocytes in vitro. Moreover, infection with wt but not mup045 Mu led to inhibition of TNF-alpha expression, upregulation of MIP-2 chemokine, and host cell death within 1 day. Our results suggest that mycolactone expression during the intracellular life of Mu may contribute to immune evasion by inhibiting phagocytosis, provoking apoptosis of antigen presenting cells and altering the establishment of an appropriate inflammatory reaction.  相似文献   

10.
Conventional flow cytometry (FC) methods report optical signals integrated from individual cells at throughput rates as high as thousands of cells per second. This is further combined with the powerful utility to subsequently sort and/or recover the cells of interest. However, these methods cannot extract spatial information. This limitation has prompted efforts by some commercial manufacturers to produce state-of-the-art commercial flow cytometry systems allowing fluorescence images to be recorded by an imaging detector. Nonetheless, there remains an immediate and growing need for technologies facilitating spatial analysis of fluorescent signals from cells maintained in flow suspension. Here, we report a novel methodological approach to this problem that combines micro-fluidic flow, and microelectrode dielectric-field control to manipulate, immobilize and image individual cells in suspension. The method also offers unique possibilities for imaging studies on cells in suspension. In particular, we report the system's immediate utility for confocal "axial tomography" using micro-rotation imaging and show that it greatly enhances 3-D optical resolution compared with conventional light reconstruction (deconvolution) image data treatment. That the method we present here is relatively rapid and lends itself to full automation suggests its eventual utility for 3-D imaging cytometry.  相似文献   

11.
A library-orientated approach is used to gain understanding of the interactions of well-defined nanoparticles with primary human endothelial cells, which are a key component of the vasculature. Fifteen sequentially modified gold nanoparticles (AuNPs) based on three different core sizes (18, 35, 65 nm) and five polymeric coatings were prepared. The synthetic methodology ensured homogeneity across each series of particles to allow sequential investigation of the chemical features on cellular interactions. The toxicity of these nanoparticles, their uptake behavior in primary human dermal microvascular endothelial cells (HDMECs), and quantification of uptake were all investigated. The results of our studies indicated that high concentrations of gold nanoparticles (250 μg/mL) were nontoxic and that the number of internalized nanoparticles was related to nanoparticle size and surface chemistry. In summary, the positive-charged ethanediamine-coated AuNPs were internalized to a greater extent than the negative- or neutral-charged AuNPs. Moreover, differences in the amounts of internalized AuNPs could be shown for the three neutral-charged AuNPs, whereas the uptake of hydroxypropylamine-coated particles was preferred compared with glucosamine-coated or PEGylated AuNPs. Hydroxypropylamine-coated AuNPs were found to be the most efficient neutral-charged particles in overcoming the endothelial cell barrier and entering the cell.  相似文献   

12.
The development of subunit vaccine platforms has been of considerable interest due to their good safety profile and ability to be adapted to new antigens, compared to other vaccine typess. Nevertheless, subunit vaccines often lack sufficient immunogenicity to fully protect against infectious diseases. A wide variety of subunit vaccines have been developed to enhance antigen immunogenicity by increasing antigen multivalency, as well as stability and delivery properties, via presentation of antigens on protein nanoparticles. Increasing multivalency can be an effective approach to provide a potent humoral immune response by more strongly engaging and clustering B cell receptors (BCRs) to induce activation, as well as increased uptake by antigen presenting cells and their subsequent T cell activation. Proper orientation of antigen on protein nanoparticles is also considered a crucial factor for enhanced BCR engagement and subsequent immune responses. Therefore, various strategies have been reported to decorate highly repetitive surfaces of protein nanoparticle scaffolds with multiple copies of antigens, arrange antigens in proper orientation, or combinations thereof. In this review, we describe different chemical bioconjugation methods, approaches for genetic fusion of recombinant antigens, biological affinity tags, and enzymatic conjugation methods to effectively present antigens on the surface of protein nanoparticle vaccine scaffolds.  相似文献   

13.
The function of phagocytic and antigen presenting cells is of crucial importance to sustain immune competence against infectious agents as well as malignancies. We here describe a reproducible procedure for the quantification of phagocytosis by leukocytes in whole blood. For this, a pH-sensitive green-fluorescent protein- (GFP) like dye (Eos-FP) is transfected into infectious microroganisms. After UV-irradiation, the transfected bacteria emit green (≈5160 nm) and red (≈581 nm) fluorescent light at 490 nm excitation. Since the red fluorescent light is sensitive to acidic pH, the phagocytosed bacteria stop emitting red fluorescent light as soon as the phagosomes fuse with lysosomes. The green fluorescence is maintained in the phagolysosome until pathogen degradation is completed. Fluorescence emission can be followed by flow cytometry with filter settings documenting fluorescence 1 (FL 1, FITC) and fluorescence 2 (FL 2, phycoerythrin, PE). Eos-FP transfected bacteria can also be traced within phagocytes using microscopical techniques. A standardized assay has been developed which is suitable for clinical studies by providing clinicians with syringes pre-filled with fixed and appropriately UV-irradiated Eos-FP E. coli (TruCulture™). After adding blood or body fluids to these containers and starting the incubation at 37°C, phagocytosis by granulocytes proceeds over time. Cultures can be terminated at a given time by lysing red blood cells followed by flow cytometry. A pilot study demonstrated that Eos-FP E. coli phagocytosis and digestion was up-regulated in the majority of patients with either severe sepsis or septic shock as compared to healthy donors (p < 0.0001 after o/n incubation). Following treatment with recombinant human granulocyte colony-stimulating factor (rhG-CSF) in selected patients with sepsis, phagolysosome fusion appeared to be accelerated.  相似文献   

14.
Platelet-derived microparticles (PMP) bind and modify the phenotype of many cell types including endothelial cells. Recently, we showed that PMP were internalized by human brain endothelial cells (HBEC). Here we intend to better characterize the internalization mechanisms of PMP and their intracellular fate. Confocal microscopy analysis of PKH67-labelled PMP distribution in HBEC showed PMP in early endosome antigen 1 positive endosomes and in LysoTracker-labelled lysosomes, confirming a role for endocytosis in PMP internalization. No fusion of calcein-loaded PMP with HBEC membranes was observed. Quantification of PMP endocytosis using flow cytometry revealed that it was partially inhibited by trypsin digestion of PMP surface proteins and by extracellular Ca(2+) chelation by EDTA, suggesting a partial role for receptor-mediated endocytosis in PMP uptake. This endocytosis was independent of endothelial receptors such as intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 and was not increased by tumour necrosis factor stimulation of HBEC. Platelet-derived microparticle internalization was dramatically increased in the presence of decomplemented serum, suggesting a role for PMP opsonin-dependent phagocytosis. Platelet-derived microparticle uptake was greatly diminished by treatment of HBEC with cytochalasin D, an inhibitor of microfilament formation required for both phagocytosis and macropinocytosis, with methyl-β-cyclodextrin that depletes membrane cholesterol needed for macropinocytosis and with amiloride that inhibits the Na(+)/H(+) exchanger involved in macropinocytosis. In conclusion, PMP are taken up by active endocytosis in HBEC, involving mechanisms consistent with both phagocytosis and macropinocytosis. These findings identify new processes by which PMP could modify endothelial cell phenotype and functions.  相似文献   

15.
Nanoparticle surface chemistry is known to play a crucial role in interactions with cells and their related cytotoxic effects. As inhalation is a major route of exposure to nanoparticles, we studied specific uptake and damages of well-characterized fluorescent 50 nm polystyrene (PS) nanobeads harboring different functionalized surfaces (non-functionalized, carboxylated and aminated) on pulmonary epithelial cells and macrophages (Calu-3 and THP-1 cell lines respectively). Cytotoxicity of in mass dye-labeled functionalized PS nanobeads was assessed by xCELLigence system and alamarBlue viability assay. Nanobeads-cells interactions were studied by video-microscopy, flow cytometry and also confocal microscopy. Finally ROS generation was assessed by glutathione depletion dosages and genotoxicity was assessed by γ-H2Ax foci detection, which is considered as the most sensitive technique for studying DNA double strand breaks. The uptake kinetic was different for each cell line. All nanobeads were partly adsorbed and internalized, then released by Calu-3 cells, while THP-1 macrophages quickly incorporated all nanobeads which were located in the cytoplasm rather than in the nuclei. In parallel, the genotoxicity study reported that only aminated nanobeads significantly increased DNA damages in association with a strong depletion of reduced glutathione in both cell lines. We showed that for similar nanoparticle concentrations and sizes, aminated polystyrene nanobeads were more cytotoxic and genotoxic than unmodified and carboxylated ones on both cell lines. Interestingly, aminated polystyrene nanobeads induced similar cytotoxic and genotoxic effects on Calu-3 epithelial cells and THP-1 macrophages, for all levels of intracellular nanoparticles tested. Our results strongly support the primordial role of nanoparticles surface chemistry on cellular uptake and related biological effects. Moreover our data clearly show that nanoparticle internalization and observed adverse effects are not necessarily associated.  相似文献   

16.
Phagocytosis represents a central element of the host response to microbial invasion. We describe a flow cytometric method for measuring the kinetics of phagocytosis of two bacteria by human polymorphonuclear leukocytes (PMNs). Over a 60-min period, isolated human PMNs were exposed to Staphylococcus aureus (rapidly phagocytosed) and Klebsiella pneumoniae (slowly phagocytosed). This method distinguished adherent from ingested bacteria by quenching fluorescein isothiocyanate-labeled extracellular bacteria with ethidium bromide. This further allowed the exclusion of dead, highly permeable, and subsequently bright-red fluorescent PMNs. Our experiments with two different bacteria, various PMN-to-bacteria ratios (1:1, 1:10, 1:100), and different individuals proved that 1) flow cytometric analysis is accurate and useful for characterizing phagocytosis, 2) adherent bacteria can be distinguished from ingested bacteria after quenching with ethidium bromide, and that 3) phagocytosis kinetics of two bacteria with different onsets of phagocytosis can be determined by flow cytometry and the assessment of a score that quantifies phagocytosis.  相似文献   

17.
Cytoskeletal proteins are essential in maintaining cell morphology, proliferation, and viability as well as internalizing molecules in phagocytic and non-phagocytic cells. Orderly aligned cytoskeletons are disturbed by a range of biological processes, such as the epithelial–mesenchymal transition, which is observed in cancer metastasis. Although many biological methods have been developed to detect cytoskeletal rearrangement, simple and quantitative in vitro approaches are still in great demand. Herein, we applied a flow cytometry-based nanoparticle uptake assay to measure the degree of cytoskeletal rearrangement induced by transforming growth factor β1 (TGF-β1). For the assay, silica nanoparticles, selected for their high biocompatibility, were fluorescent-labeled to facilitate quantification with flow cytometry. Human keratinocyte HaCaT cells were treated with different concentrations of TGF-β1 and then exposed to FITC-labeled silica nanoparticles. Increasing concentrations of TGF-β1 induced gradual changes in cytoskeletal rearrangement, as confirmed by conventional assays. The level of nanoparticle uptake increased by TGF-β1 treatment in a dose-dependent manner, indicating that our nanoparticle uptake assay can be used as a quick and non-destructive approach to measure cytoskeletal rearrangement.  相似文献   

18.
Invasiveness of Salmonella typhi strains in HeLa S3 monolayer cells   总被引:2,自引:0,他引:2  
The internalization and intracellular multiplication, i.e., the invasiveness, of Salmonella typhi strains recently isolated from typhoid fever patients were confirmed in HeLa cell monolayers. When stained with Giemsa solution, intracellular bacteria were 0.6 X 1.2 micron in size and stained purple, whereas extracellular bacteria associated or not with the HeLa cell surface were 1.0 X 3.0 micron and stained deep blue. Strain GIFU 10007 was internalized into 23% of the HeLa cells within 10 min after inoculation. About 90% of the HeLa cells were infected after 24 hr incubation in kanamycin (KM)-containing medium. Intracellular multiplication of the challenge organism was verified by a large number of intracellular bacteria after 24 hr incubation in KM-containing medium by both light-microscopy of the Giemsa stained preparation and viable counts of intracellular bacteria. The viable counts of strain 10007 showed an increase of more than 40-fold within 24 hr after inoculation, whereas in the four other less or non-infective strains, recovery of viable bacteria was poor or nil. Strains which were highly invasive usually failed to show strong adhesion. The contribution of Vi antigen to the internalization of challenge organisms was not proved. Infective strains, when killed by formalin were still adhesive, but were not internalized. The same strains, when killed by boiling, were neither adhesive nor internalized. From these findings it was concluded that the internalization and multiplication of infective S. typhi strains in cultured HeLa cells should be regarded as an invasion rather than phagocytosis by host cells, and such invasiveness could be an indicator to estimate the virulence of S. typhi strains.  相似文献   

19.
Degradation of collagen by fibroblast phagocytosis is an important pathway for physiological remodelling of soft connective tissues. Perturbations of this pathway may provide a mechanism for the development of fibrotic lesions. As collagen phagocytosis may be regulated by either a change of the proportions or the activity of phagocytic cells, we quantified phagocytosis with an in vitro model system. Collagen-coated fluorescent latex beads were incubated with human gingival fibroblasts and the fluorescence associated with internalized beads was measured by flow cytometry. Cells from normal tissues that had been incubated with beads for 3 hours contained a mean of 64% phagocytic cells; however, a small subpopulation (10% of phagocytic cells) contained more than threefold higher numbers of beads per cell than the mean. In contrast, cells from fibrotic lesions exhibited a large reduction of the proportions of phagocytic cells (mean = 13.8%) and there were no cells with high numbers of beads. On the basis of 3H-Tdr labeling, cells from fibrotic lesions that had internalized beads failed to proliferate, in contrast to phagocytic cells from normal tissues, which underwent repeated cell divisions. This result was not due to variations of cell cycle phase as there was no preferential internalization of beads during different phases of the cell cycle. The low phagocytic rate of cells from fibrotic lesions was also not due to asymmetric partitioning of phagosomes at mitosis as videocinemicrography of bead-labeled phagosomes in single, pre-mitotic cells demonstrated that > 90% of phagocytic cells equally partitioned beads to daughter cells. To investigate if inhibition of phagocytosis could be replicated in vitro, cells were incubated with the fibrosis-inducing drugs nifedipine or dilantin. These cultures exhibited marked (15–75%), dose-dependent reductions in the proportions of phagocytic cells, but there was no reduction in bead number per cell. Fibrotic lesions appear to contain fibroblasts with marked deficiencies in phagocytosis and the reduced phagocytic activity of these cells may contribute to unbalanced degradation and fibrosis. © 1993 Wiley-Liss, Inc.  相似文献   

20.
BACKGROUND: Proteases regulate many biological pathways in humans and are components of several bacterial toxins. Protease studies and development of protease inhibitors do not follow a single established methodology and are mostly protease specific. METHODS: We have created recombinant fusion proteins consisting of a biotinylated attachment sequence linked to a GFP via a protease cleavage site to develop a multiplexable microsphere-based protease assay system. Using the proteases lethal factor and factor Xa, we performed kinetic experiments to determine optimal conditions for inhibitor screens and detect known inhibitors using the HyperCyt flow cytometry system. RESULTS: We have demonstrated specific cleavage of lethal factor and factor Xa substrates, optimized screening conditions for these substrates, shown specific inhibition of the proteases, and demonstrated high throughput detection of these inhibitors. CONCLUSIONS: The assay developed here is adaptable to any site-specific protease, compatible with high throughput flow cytometry systems, and multiplexable. Coupled with flow cytometry, which provides continuous time resolution and intrinsic resolution of free vs. bound fluorophores, this assay will be useful for high throughput screening of protease inhibitors in general and could simplify assays designed to determine protease mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号