首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 441 毫秒
1.
Myoblasts fuse to form myotubes, which mature into skeletal muscle fibres. Recent studies indicate that an endogenous retroviral fusion gene, syncytin-1, is important for myoblast fusions in man. We have now expanded these data by examining the immunolocalization of syncytin in human myoblasts induced to fuse. Additionally, we have compared the localization of syncytin with the localization of caveolin-3 and of myogenin, which are also involved in myoblast fusion and maturation. Syncytin was localized to areas of the cell membrane and to filopodial structures connecting myoblasts to each other and to myotubes. Weaker staining was present over intracellular vesicles and tubules. Caveolin-3 was detected in the sarcolemma and in vesicles and tubules in a subset of myoblasts and myotubes. The strongest staining occurred in multinucleated myotubes. Wide-field fluorescence microscopy indicated a partial colocalization of syncytin and caveolin-3 in a subset of myoblasts. Super-resolution microscopy showed such colocalization to occur in the sarcolemma. Myogenin was restricted to nuclei of myoblasts and myotubes and the strongest staining occurred in multinucleated myotubes. Syncytin staining was observed in both myogenin-positive and myogenin-negative cells. Antisense treatment downmodulated syncytin-1 expression and inhibited myoblast cell fusions. Importantly, syncytin-1 antisense significantly decreased the frequency of multinucleated myotubes demonstrating that the treatment inhibited secondary myoblast fusions. Thus, syncytin is involved in human myoblast fusions and is localized in areas of contact between fusing cells. Moreover, syncytin and caveolin-3 might interact at the level of the sarcolemma.  相似文献   

2.
The pattern of protein phosphorylation was found to change in differentiating chick embryonic myoblasts in culture. The extent of phosphorylation of 42-, 50-, and 100-kDa proteins increased while that of a 63-kDa protein declined in extracts of myoblasts that had been cultured for increasing periods. Of these, the increase in phosphorylation of the 100-kDa protein occurred most dramatically in extracts of myoblasts in an early stage of differentiation and was specifically inhibited by trifluoperazine (TFP) and other calmodulin (CaM) antagonists including chlorpromazine and N-(6-aminohexyl)-5-chloro-1-naphthalene-sulfonamide (W-7). Treatment of increasing concentrations of TFP to culture medium also decreased the phosphorylation state of the 100-kDa protein and the degree of myoblast fusion in parallel. In addition, levels of both the kinase activity and the 100-kDa protein but not of CaM appeared to rise in the cells cultured for longer periods. These results suggest that (1) a Ca2+/CaM-dependent protein kinase is responsible for phosphorylation of the 100-kDa protein, (2) the TFP-mediated myoblast fusion block may be associated with the inhibitory effect of the drug against the kinase activity, and (3) the increase in phosphorylation state of the 100-kDa protein during myogenic differentiation is due to the rise in levels of the kinase and its substrate.  相似文献   

3.
Multinucleated myotubes develop by the sequential fusion of individual myoblasts. Using a convergence of genomic and classical genetic approaches, we have discovered a novel gene, singles bar (sing), that is essential for myoblast fusion. sing encodes a small multipass transmembrane protein containing a MARVEL domain, which is found in vertebrate proteins involved in processes such as tight junction formation and vesicle trafficking where--as in myoblast fusion--membrane apposition occurs. sing is expressed in both founder cells and fusion competent myoblasts preceding and during myoblast fusion. Examination of embryos injected with double-stranded sing RNA or embryos homozygous for ethane methyl sulfonate-induced sing alleles revealed an identical phenotype: replacement of multinucleated myofibers by groups of single, myosin-expressing myoblasts at a stage when formation of the mature muscle pattern is complete in wild-type embryos. Unfused sing mutant myoblasts form clusters, suggesting that early recognition and adhesion of these cells are unimpaired. To further investigate this phenotype, we undertook electron microscopic ultrastructural studies of fusing myoblasts in both sing and wild-type embryos. These experiments revealed that more sing mutant myoblasts than wild-type contain pre-fusion complexes, which are characterized by electron-dense vesicles paired on either side of the fusing plasma membranes. In contrast, embryos mutant for another muscle fusion gene, blown fuse (blow), have a normal number of such complexes. Together, these results lead to the hypothesis that sing acts at a step distinct from that of blow, and that sing is required on both founder cell and fusion-competent myoblast membranes to allow progression past the pre-fusion complex stage of myoblast fusion, possibly by mediating fusion of the electron-dense vesicles to the plasma membrane.  相似文献   

4.
The pattern of protein phosphorylation was found to change in differentiating chick embryonic myoblasts in culture. The extent of phosphorylation of 42-, 50-, and 100-kDa proteins increased while that of a 63-kDa protein declined in extracts of myoblasts that had been cultured for increasing periods. Of these, the increase in phosphorylation of the 100-kDa protein occurred most dramatically in extracts of myoblasts in an early stage of differentiation and was specifically inhibited by trifluoperazine (TFP) and other calmodulin (CaM) antagonists including chlorpromazine and N-(6-aminohexyl)-5-chloro-1-naphthalene-sulfonamide (W-7). Treatment of increasing concentrations of TFP to culture medium also decreased the phosphorylation state of the 100-kDa protein and the degree of myoblast fusion in parallel. In addition, levels of both the kinase activity and the 100-kDa protein but not of CaM appeared to rise in the cells cultured for longer periods. These results suggest that (1) a Ca2+/CaM-dependent protein kinase is responsible for phosphorylation of the 100-kDa protein, (2) the TFP-mediated myoblast fusion block may be associated with the inhibitory effect of the drug against the kinase activity, and (3) the increase in phosphorylation state of the 100-kDa protein during myogenic differentiation is due to the rise in levels of the kinase and its substrate.  相似文献   

5.
We recently reported that when myoblasts fuse, m-calpain could be exteriorized. Indeed, at present a number of works support this hypothesis because this enzyme was localized intercellularly and more particularly associated to extracellular matrix components. Knowing that the cell surface of the fusing myoblast is supposed to undergo many changes, we addressed the question whether m-calpain could be involved in the phenomenon of fusion via fibronectin cleavage or degradation. Using different digestion experiments, we demonstrated that soluble purified fibronectin and highly insoluble fibronectin fibrils represent very good substrates for this proteinase; moreover, at the burst of fusion, fibronectin proteolytic fragments could be identified. On the other hand, we have conducted biological assays on cultured myoblasts using a defined medium supplemented by exogenous factors capable of stimulating or inhibiting m-calpain activity. The effects of such factors on rat myoblast fusion and concomitantly on the targeted glycoprotein were analyzed and quantified. When m-calpain activity and the phenomenon of fusion were reduced (defined medium without insulin), the amount of the 220-kDa fibronectin band was increased by 43%. When m-calpain activity and myoblast fusion were prevented by addition of antibodies to m-calpain or calpain inhibitor II, the fibronectin concentration was higher since it was increased by 67 and 71%, respectively. In addition, when observed at the ultrastructural level, m-calpain seems to be localized at the potential fusion site of myoblasts and more particularly associated to the extracellular matrix when muscle cells were initially treated by anti-m-calpain IgG. Taken together, these results support the hypothesis that exteriorized m-calpain could be, in part, involved in myoblast fusion via fibronectin alteration or degradation.  相似文献   

6.
Myogenesis is a complex process in which committed myogenic cells differentiate and fuse into myotubes that mature into the muscle fibres of adult organisms. This process is initiated by a cascade of myogenic regulatory factors expressed upon entry of the cells into the myogenic differentiation programme. However, external signals such as those provided by the extracellular matrix (ECM) are also important in regulating muscle differentiation and morphogenesis. In the present work, we have addressed the role of various ECM substrata on C2C12 myoblast behaviour in vitro. Cells grown on fibronectin align and fuse earlier than cells on laminin or gelatine. Live imaging of C2C12 myoblasts on fibronectin versus gelatine has revealed that fibronectin promotes a directional collective migratory behaviour favouring cell-cell alignment and fusion. We further demonstrate that this effect of fibronectin is mediated by RGD-binding integrins expressed on myoblasts, that N-cadherin contributes to this behaviour, and that it does not involve enhanced myogenic differentiation. Therefore, we suggest that the collective migration and alignment of cells seen on fibronectin leads to a more predictable movement and a positioning that facilitates subsequent fusion of myoblasts. This study highlights the importance of addressing the role of fibronectin, an abundant component of the interstitial ECM during embryogenesis and tissue repair, in the context of myogenesis and muscle regeneration.  相似文献   

7.
Ruiz-Gómez M  Coutts N  Price A  Taylor MV  Bate M 《Cell》2000,102(2):189-198
Aggregation and fusion of myoblasts to form myotubes is essential for myogenesis in many organisms. In Drosophila the formation of syncytial myotubes is seeded by founder myoblasts. Founders fuse with clusters of fusion-competent myoblasts. Here we identify the gene dumbfounded (duf) and show that it is required for myoblast aggregation and fusion. duf encodes a member of the immunoglobulin superfamily of proteins that is an attractant for fusion-competent myoblasts. It is expressed by founder cells and serves to attract clusters of myoblasts from which myotubes form by fusion.  相似文献   

8.
In muscle cells two populations of mRNA are present in the cytoplasm. The majority of mRNA is associated with ribosomes and active in protein synthesis. A small population of cytoplasmic mRNA occur as free mRNA-protein complex and is not associated with ribosomes. This apparently repressed population of mRNA from rat L6 myoblast cells was used to construct a cDNA library. Radioactively labeled cDNA preparations of polysomal and free (or repressed) mRNA populations showed that at least ten recombinant clones preferentially annealed to the cDNA from repressed mRNA. One of these clones was extensively studied. The DNA from a recombinant plasmid D12 hybridized to a 1.3-kb poly(A)-rich mRNA. In proliferating myoblast cells, the 1.3-kb mRNA was more abundant in the polysomal fraction and mostly free in the non-dividing myotubes. In contrast to this mRNA, 90% of alpha and beta actin mRNAs were translated in both myoblasts and myotubes. Further analysis of distribution of the 1.3-kb RNA in the polysomal (active) and free (repressed) fractions in fusion-arrested postmitotic myotubes suggested that fusion of myoblasts was not necessary for the control of translation of this mRNA. Withdrawal of muscle cells from the cell cycle appeared to be involved in regulating translation of this mRNA. The presence of this mRNA was not, however, limited to muscle cells. This mRNA was also present in the repressed state in rat liver and kidney cells. These results, therefore, suggest that the 1.3-kb mRNA is probably translated during a particular phase of the cell cycle and is not translated in terminally differentiated non-dividing cells. Messenger RNA homologous to the 600-base-pair insert of the recombinant plasmid D12 was isolated by hybrid selection procedure from both polysomal mRNA of myoblasts and free mRNA of myotubes. Translation of the hybrid selected mRNAs from both myoblasts and myotubes in rabbit reticulocyte lysate cell-free system synthesized a 40-kDa polypeptide. These results suggest that the repressed population of 1.3-kb mRNA can be translated in vitro. The hybridization pattern of DNA from the recombinant plasmid D12 with rat genomic DNA suggested that the 1.3-kb mRNA is derived from moderately repetitive rat DNA with a repetition frequency of approximately 100 copies per haploid genome.  相似文献   

9.
Mononucleated myoblasts divide in vitro until they attain confluency and fuse, forming multinucleated myotubes. Fusion is an extracellular Ca2+-dependent process. We used for our studies an established line of skeletal myoblasts (L6) as well as a non-fusing Myo- alpha-amanitin-resistant mutant of this line (Ama102). Our results show that extracellular calcium at concentrations which elicit myoblast fusion activates the phosphorylation of a protein species of 48 kD, present at the surface of mononucleated myoblasts of the fusing wild type (L6). At fusion, as the cells become independent of the extracellular calcium concentration for their further differentiation, this activation can no longer be observed. In fusion inhibition experiments, where we used lowered calcium levels, the phosphorylation of the 48 kD protein band is clearly decreased. When the myoblasts are fed with standard medium, they fuse rapidly and the phosphorylation of the 48 kD species is markedly increased. The above-described phenomenon takes place at the cell surface and is completed in a short time. The use of Myo- mutant showed that it is developmentally regulated. In view of our results, it is reasonable to postulate that Ca2+-activated phosphorylation of the cell surface could be on the basis of spontaneous myoblast fusion.  相似文献   

10.
We have described a monoclonal antibody that rounds and detaches chick skeletal myoblasts and myotubes from extracellular substrata. The antibody also inhibits the attachment of myogenic cells to a gelatin- coated substratum but has no detectable effect on myoblast fusion. The cellular response to antibody treatment varies with differentiation and cell type. Young myoblasts and myotubes are rapidly rounded and detached by the antibody. Older myotubes require longer incubation times or higher antibody titers for rounding and detachment. Chick embryo fibroblasts, cardiac cells, and neurons are not similarly rounded and remain attached. Since the antibody also detaches cells from embryonic muscle tissue explants, the cell-substratum interaction perturbed by the antibody appears relevant to the in vivo interaction of myogenic cells with their extracellular matrices. Binding studies using iodinated antibody revealed 2-4 x 10(5) sites per myoblast with an apparent Kd in the range of 2-5 x 10(-9) molar. Embryo fibroblasts bind antibody as well and display approximately twice the number of binding sites per cell. The fluorescence distribution of antigen on myoblasts and myotubes is somewhat punctate and particularly bright along the edge of the myotube. The distribution on fibroblasts was also punctate and was particularly bright along the cell periphery and portions of stress fibers. For both cell types the binding was distinctly different than that reported for collagen, fibronectin, and other extracellular molecules. The antigen, as isolated by antibody affinity chromatography, inhibits antibody-induced rounding. SDS PAGE reveals two unique polypeptides migrating in the region of approximately 120 and 160 kilodaltons (kd). The most straightforward mechanism for the antibody-induced rounding and detachment is the perturbation of a membrane molecule involved in adhesion. The hypothesized transmembrane link between extracellular macromolecules and the cytoskeleton provides an obvious candidate.  相似文献   

11.
Considerable evidence points to an involvement of neural cell adhesion molecule (NCAM) in myoblast fusion. Changes in the level of NCAM expression, isoform specificity, and localization in muscle cells and tissues correspond to key morphogenetic events during muscle differentiation and repair. Furthermore, anti-NCAM antibodies have been shown by others to reduce the rate of myoblast fusion, whereas overexpression of NCAM cDNAs increases the rate of myoblast fusion compared to controls. In this study we have used a novel fusion assay based on intracistronic complementation of lacZ, in combination with fluorescent X-gal histochemistry and immunocytochemistry to assess levels of NCAM expression in individual muscle cells. Our results indicate that a substantial proportion of newly fused myoblasts have NCAM expression levels unchanged from the levels of the surrounding unfused population suggesting that increased expression of NCAM is not required for wild-type myoblasts to fuse. Moreover, pure populations of primary myoblasts isolated from mice homozygous null for NCAM and therefore lacking the molecule, when placed in differentiation medium, consistently fused to form contractile myotubes with kinetics equivalent to wild-type primary myoblasts. We conclude that the increase in expression of NCAM, although typically observed during myogenesis, is not essential to myoblast fusion to form myotubes.  相似文献   

12.
The tumor suppressor Rb is thought to control cell proliferation, survival and differentiation. We recently showed that differentiating Rb-deficient mouse myoblasts can fuse to form short myotubes that quickly collapse through a mechanism involving autophagy, and that autophagy inhibitors or hypoxia could rescue the defect leading to long, twitching myotubes. Here we determined the contribution of pRb relatives, p107 and p130, to this process. We show that chronic or acute inactivation of Rb plus p107 or p130 increased myoblast cell death and reduced myotube formation relative to Rb loss alone. Treatment with autophagy antagonists or hypoxia extended survival of double-knockout myotubes, which appeared indistinguishable from control fibers. In contrast, triple mutations in Rb, p107 and p130, led to substantial increase in myoblast death and to elongated bi-nuclear myocytes, which seem to derive from nuclear duplication, as opposed to cell fusion. Under hypoxia, some rare, abnormally thin triple knockout myotubes survived and twitched. Thus, mutation of p107 or p130 reduces survival of Rb-deficient myoblasts during differentiation but does not preclude myoblast fusion or necessitate myotube degeneration, whereas combined inactivation of the entire Rb family produces a distinct phenotype, with drastically impaired myoblast fusion and survival.  相似文献   

13.
The embryonic development of skeletal muscle proceeds by the adherence and fusion of myoblast cells to form multinucleated myotubes. In the present study, enzymes in the dolichol pathway for asparagine-linked glycoprotein synthesis and oligosaccharide chain composition were characterized in myoblasts and myotubes derived from the C2 (mouse) muscle cell line. The N-acetylglucosaminyltransferase responsible for chain initiation and the mannosyl- and glucosyltransferases for Dol-P-Man and Dol-P-Glc synthesis were characterized with respect to substrate, cation, and detergent dependence. Time course studies in the absence and presence of exogenous Dol-P revealed that myoblasts had a two- to threefold higher capacity than myotubes for Dol-sugar synthesis. Pulse-chase experiments following the elongation of the Dol-oligosaccharide by intact cells showed myoblasts to label oligosaccharide intermediates approximately fourfold greater than myotubes; myotubes, however, were more efficient than myoblasts for converting the intermediates to the glucosylated Dol-tetradecasaccharide. Oligosaccharide chains isolated from sarcolemma glycopeptides were analyzed by Con A, WGA, and QAE chromatography. There were no differences between myoblast and myotube oligosaccharides with respect to the proportion of tri-tetraantennary complex, biantennary complex, and high mannose chains. Hybrid chains were not detected. The major high mannose chain contained nine mannose residues. Sialyltransferase activity was identical. The results suggest that higher levels of Dol-P and protein acceptor contribute to the greater degree of protein glycosylation in myoblast vs myotube muscle cells.  相似文献   

14.
Sphingosine, a potent inhibitor of protein kinase C, was found to block membrane fusion of chick embryonic myoblasts in culture. This effect was dose-dependent and could be reversed upon removal of the drug. Treatment with 12-O-tetradecanoylphorbol 13-acetate, which is a powerful activator of protein kinase C and capable of preventing myoblast fusion, further potentiated the inhibitory effect of sphingosine. Thus, the sphingosine-mediated inhibition of myoblast fusion appears to be independent of protein kinase C. Sphingosine also decreased the phosphorylation state of the 100-kDa protein when given to the cell extracts, and this inhibition was competitive with calmodulin. Thus, sphingosine seems to act as a calmodulin antagonist. These results suggest that the sphingosine-mediated inhibition of myoblast fusion may be associated with the inhibitory effect of the drug against the calmodulin-dependent phosphorylation of the 100-kDa protein.  相似文献   

15.
Cell-cell fusion is a fundamental cellular process that is essential for development as well as fertilization. Myoblast fusion to form multinucleated skeletal muscle myotubes is a well studied, yet incompletely understood example of cell-cell fusion that is essential for formation of contractile skeletal muscle tissue. Studies in this report identify several novel cytoskeletal events essential to an early phase of myoblast fusion among cultured murine myoblasts. During myoblast pairing and alignment, cortical actin filaments organize into a dense actin wall structure that parallels and extends the length of the plasma membrane of the bipolar, aligned cells. As fusion progresses, gaps appear within the actin wall at sites of vesicle accumulation, the vesicles pair across the aligned myoblasts, cell-cell contacts and fusion pores form. Inhibition of nonmuscle myosin IIA (NM-MHC-IIA) motor activity prevents formation of this cortical actin wall, as well as the appearance of vesicles at a membrane proximal location, and myoblast fusion. These results suggest that early formation of a subplasmalemmal actin wall during myoblast alignment is a critical event for myoblast fusion that supports bipolar membrane alignment and temporally regulates trafficking of vesicles to the nascent fusion sites during skeletal muscle myoblast differentiation.  相似文献   

16.
Fibronectin expression during myogenesis   总被引:8,自引:5,他引:3       下载免费PDF全文
The biosynthesis and localization of fibronectin during chick muscle differentiation are described. This study employed two monoclonal antibodies, one that selectively killed mononucleated cells and one specific for avian fibronectin. These antibodies allowed precise analyses of fibronectin expression in well-defined cultures of myoblasts or myotubes and avoided the complications of exogenous fibronectin and contamination by fibroblasts or unfused myoblasts. Fibronectin synthesis, as a fraction of total protein synthesis, remains constant at 0.3-0.4% before and after myoblast fusion, suggesting that the absolute rate of fibronectin synthesis may increase somewhat when myotubes synthesize and accumulate myofibrillar proteins. The pattern of fibronectin arrangement does change during myogenesis. In myotube cultures, the appearance of pulse-labeled fibronectin at the cell surface and its secretion into the medium begin after a 2-3-h lag period, in contrast to the 30-min lag period observed in fibroblast cultures. This lag between polypeptide biosynthesis and the exteriorization of the new protein is thus a characteristic of each cell type rather than the protein. All of the major secretory proteins of myogenic cells, including fibronectin and collagenous components, share this 2-3-h intracellular transit time.  相似文献   

17.
Summary A tissue culture system has been developed which can mechanically stimulate cells growing on a highly elastic plastic substratum in a 24-well cell growth chamber. The collagen-coated substratum to which the cells attach and grow in the Mechanical Cell Stimulator (Model I) can be repetitively stretched and relaxed by stepper motor with linear accuracy of 30 μm. The activity controlling unit is an Apple IIe computer interfaced with the cell growth chamber via optical data links and is capable of simulating many of the mechanical activity patterns that cells are subjected to in vivo. Primary avian skeletal myoblasts proliferate and fuse into multinucleated myotubes in this set-up in a manner similar to normal tissue culture dishes. Under static culture conditions, the muscle cells differentiate into networks of myotubes which show little orientation. Growing the proliferating muscle cells on a unidirectional stretching substratum causes the developing myotubes to orient parallel to the direction of movement. In contrast, growing the cells on a substratum undergoing continuous stretch-relaxation cycling orients the developing myotubes perpendicular to the direction of movement. Neither type of mechanical activity significantly affects the rate of cell proliferation of the rate of myoblast fusion into myotubes. These results indicate that during in vivo skeletal muscle organogenesis, when substantial mechanical stresses are placed on skeletal muscle cells by both continuous bone elongation and by spontaneous contractions, only bone elongation plays a significant role in proper fiber orientation for subsequent functional work. Supported by grants NS16753, AR36266, and RR05818 from the National Institutes of Health, Bethesda, MD.  相似文献   

18.
Intact monolayers of L6 myoblasts were treated with neuraminidase, with the aim of selectively removing sialic acid residues of cell-surface glycoproteins. Neuraminidase treatment unmasked binding sites for Ricinus communis agglutinin I and peanut agglutinin, thus allowing the identification of the major binding proteins for these lectins. For Ricinus communis agglutinin I these neuraminidase-sensitive glycoproteins had apparent Mr values of 136000, 115000, 87000, 83000 and 49000. For peanut agglutinin the major neuraminidase-sensitive glycoproteins had apparent Mr values of 200000, 136000, 87000 and 83000. We found highly reproducible, developmentally regulated, changes in the lectin-binding capacity of certain of these glycoproteins as L6 myoblasts differentiated into myotubes. Coincident with myoblast fusion there was a co-ordinate decrease in Ricinus communis agglutinin I binding by glycoproteins of apparent Mr of 136000 and 49000. There was also a co-ordinate shift in mobility of the broad band of glycoprotein, centred at an apparent Mr of 115000 in myoblasts, to a new average apparent Mr of 107000 in mid-fusion cultures and myotube cultures. Peanut agglutinin binding by the major protein of apparent Mr 136000 also decreased at the mid-fusion stage of myogenesis, and was barely detectable in 7-day-old fused cultures. These developmentally regulated changes in neuraminidase-sensitive glycoproteins were all inhibited by growth of myoblasts in 6.4 microM-5-bromo-2'-deoxyuridine, indicating that they are associated with myoblast differentiation. In contrast, an increase in fibronectin was seen in mid-fusion cultures, which was not inhibited by growth of myoblasts in 5-bromo-2'-deoxyuridine. This initial increase in fibronectin is, therefore, unlikely to be directly related to myoblast fusion or differentiation.  相似文献   

19.
A role for acetylcholine receptors in the fusion of chick myoblasts   总被引:5,自引:3,他引:2       下载免费PDF全文
The role of acetylcholine receptors in the control of chick myoblast fusion in culture has been explored. Spontaneous fusion of myoblasts was inhibited by the nicotinic acetylcholine receptor antagonists alpha-bungarotoxin, Naja naja toxin and monoclonal antibody mcAb 5.5. The muscarinic antagonists QNB and n-methyl scopolamine were without effect. Atropine had no effect below 1 microM, where it blocks muscarinic receptors; at higher concentrations, when it blocks nicotinic receptors also, atropine inhibited myoblast fusion. The inhibitions imposed by acetylcholine receptor antagonists lasted for approximately 12 h; fusion stimulated by other endogenous substances then took over. The inhibition was limited to myoblast fusion. The increases in cell number, DNA content, the level of creatine phosphokinase activity (both total and muscle-specific isozyme) and the appearance of heavy chain myosin, which accompany muscle differentiation, followed a normal time course. Pre-fusion myoblasts, fusing myoblasts, and young myotubes specifically bound labeled alpha-bungarotoxin, indicating the presence of acetylcholine receptors. The nicotinic acetylcholine receptor agonist, carbachol, induced uptake of [14C]Guanidinium through the acetylcholine receptor. Myoblasts, aligned myoblasts and young myotubes expressed the synthetic enzyme Choline acetyltransferase and stained positively with antibodies against acetylcholine. The appearance of ChAT activity in myogenic cultures was prevented by treatment with BUDR; nonmyogenic cells in the cultures expressed ChAT at a level which was too low to account for the activity in myogenic cultures. We conclude that activation of the nicotinic acetylcholine receptor is part of the mechanism controlling spontaneous myoblast fusion and that myoblasts synthesize an endogenous, fusion-inducing agent that activates the nicotinic ACh receptor.  相似文献   

20.
Alteration in cell surface LETS protein during myogenesis.   总被引:23,自引:0,他引:23  
L B Chen 《Cell》1977,10(3):393-400
Cell surface alterations during myogenesis have been investigated in Yaffe's myogenic cell line L8, using indirect immunofluorescence with an antibody against the large external transformation-sensitive (LETS) protein. The immunofluorescent technique reveals a susbstantial alteration in the distribution of this surface antigen. With the prefused myoblasts, LETS protein is dispersed all over the cell surface; following myoblast fusion, this pattern is markedly changed. All of the fibril-like surface LETS protein disappears, and in some myotubes, discrete clusters of LETS protein become conspicuous. By use of radioimmunological assay, the total LETS protein is quantitatively reduced upon myoblast fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号