首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The differential allocation hypothesis predicts that reproductive investment will be influenced by mate attractiveness, given a cost to reproduction and a tradeoff between current and future reproduction. We tested the differential allocation hypothesis in the swordtail fish Xiphophorus multilineatus, where males have genetically influenced (patroclinous inheritance) alternative mating tactics (ARTs) maintained by a tradeoff between being more attractive to females (mature later as larger courting males) and a higher probability of reaching sexual maturity (mature earlier as smaller sneaker males). Males in X. multilineatus do not provide parental care or other resources to the offspring. Allelic variation and copy number of the Mc4R gene on the Y-chromosome influences the size differences between males, however there is no variation in this gene on the X-chromosome. Therefore, to determine if mothers invested more in offspring of the larger courter males, we examined age to sexual maturity for daughters. We confirmed a tradeoff between number of offspring and female offspring’s age to sexual maturity, corroborating that there is a cost to reproduction. In addition, the ART of their fathers significantly influenced the age at which daughters reached sexual maturity, suggesting increased maternal investment to daughters of courter males. The differential allocation we detected was influenced by how long the wild-caught mother had been in the laboratory, as there was a brood order by father genotype (ART) interaction. These results suggest that females can adjust their reproductive investment strategy, and that differential allocation is context specific. We hypothesize that one of two aspects of laboratory conditions produced this shift: increased female condition due to higher quality diet, and/or assessment of future mating opportunities due to isolation from males.  相似文献   

2.
Alternative reproductive tactics (ARTs) have provided valuable insights into how sexual selection and life history trade‐offs can lead to variation within a sex. However, the possibility that tactics may constrain evolution through intralocus tactical conflict (IATC) is rarely considered. In addition, when IATC has been considered, the focus has often been on the genetic correlations between the ARTs, while evidence that the ARTs have different optima for associated traits and that at least one of the tactics is not at its optimum is often missing. Here, we investigate selection on three traits associated with the ARTs in the swordtail fish Xiphophorus multilineatus; body size, body shape, and the sexually selected trait for which these fishes were named, sword length (elongation of the caudal fin). All three traits are tactically dimorphic, with courter males being larger, deeper bodied and having longer swords, and the sneaker males being smaller, more fusiform and having shorter swords. Using measures of reproductive success in a wild population we calculated selection differentials, as well as linear and quadratic gradients. We demonstrated that the tactics have different optima and at least one of the tactics is not at its optimum for body size and sword length. Our results provide the first evidence of selection in the wild on the sword, an iconic trait for sexual selection. In addition, given the high probability that these traits are genetically correlated to some extent between the two tactics, our study suggests that IATC is constraining both body size and the sword from reaching their phenotypic optima. We discuss the importance of considering the role of IATC in the evolution of tactical dimorphism, how this conflict can be present despite tactical dimorphism, and how it is important to consider this conflict when explaining not only variation within a species but differences across species as well.  相似文献   

3.
In order to examine potential trade-offs in alternative life histories of the high-backed pygmy swordtail Xiphophorus multilineatus, otoliths were used from wild-caught males to determine if sneaker males had the advantage of maturing earlier in natural environments. The sneakers matured significantly earlier than courters, but there was no difference among the three courter variants. In addition, analyses suggested that the effect of the pituitary locus on size at sexual maturity and growth rates was a consequence of age at sexual maturity. Finally, one of the courter variants had a significantly different relationship between age and size at sexual maturity than the other variants, suggesting that in this variant, age at sexual maturity may be more closely related to size and therefore may be less plastic in its growth responses.  相似文献   

4.
The adaptive benefits of maternal investment into individual offspring (inherited environmental effects) will be shaped by selection on mothers as well as their offspring, often across variable environments. We examined how a mother's nutritional environment interacted with her offspring's nutritional and social environment in Xiphophorus multilineatus, a live‐bearing fish. Fry from mothers reared on two different nutritional diets (HQ = high quality and LQ = low quality) were all reared on a LQ diet in addition to being split between two social treatments: exposed to a large adult male during development and not exposed. Mothers raised on a HQ diet produce offspring that were not only initially larger (at 14 days of age), but grew faster, and were larger at sexual maturity. Male offspring from mothers raised on both diets responded to the exposure to courter males by growing faster; however, the response of their sisters varied with mother's diet; females from HQ diet mothers reduced growth if exposed to a courter male, whereas females from LQ diet mothers increased growth. Therefore, we detected variation in maternal investment depending on female size and diet, and the effects of this variation on offspring were long‐lasting and sex specific. Our results support the maternal stress hypothesis, with selection on mothers to reduce investment in low‐quality environments. In addition, the interaction we detected between the mother's nutritional environment and the female offspring's social environment suggests that female offspring adopted different reproductive strategies depending on maternal investment.  相似文献   

5.
The expected strong directional selection for traits that increase a male's mating ability conflicts with the frequent observation that within species, males may show extreme variation in sexual traits. These male reproductive polymorphisms are usually attributed to direct male–male competition. It is currently unclear, however, how directional selection for sexually selected traits may convert into disruptive selection, and if female preference for elaborate traits may be an alternative mechanism driving the evolution of male polymorphism. Here, we explore this mechanism using the polyandric dwarf spider Oedothorax gibbosus as a model. We first show that males characterized by conspicuous cephalic structures serving as a nuptial feeding device (“gibbosus males”) significantly outperform other males in siring offspring of previously fertilized females. However, significant costs in terms of development time of gibbosus males open a mating niche for an alternative male type lacking expensive secondary sexual traits. These “tuberosus males” obtain virtually all fertilizations early in the breeding season. Individual‐based simulations demonstrate a hitherto unknown general principle, by which males selected for high investment to attract females suffer constrained mating opportunities. This creates a vacant mating niche of unmated females for noninvesting males and, consequently, disruptive selection on male secondary sexual traits.  相似文献   

6.
Explanations for the evolution of delayed maturity usually invoke trade‐offs mediated by growth, but processes of reproductive maturation continue long after growth has ceased. Here, we tested whether sexual selection shapes the rate of posteclosion maturation in the fruit fly Drosophila melanogaster. We found that populations maintained for more than 100 generations under a short generation time and polygamous mating system evolved faster posteclosion maturation and faster egg‐to‐adult development of males, when compared to populations kept under short generations and randomized monogamy that eliminated sexual selection. An independent assay demonstrated that more mature males have higher fitness under polygamy, but this advantage disappears under monogamy. In contrast, for females greater maturity was equally advantageous under polygamy and monogamy. Furthermore, monogamous populations evolved faster development and maturation of females relative to polygamous populations, with no detectable trade‐offs with adult size or egg‐to‐adult survival. These results suggest that a major aspect of male maturation involves developing traits that increase success in sexual competition, whereas female maturation is not limited by investment in traits involved in mate choice or defense against male antagonism. Moreover, rates of juvenile development and adult maturation can readily evolve in opposite directions in the two sexes, possibly implicating polymorphisms with sexually antagonistic pleiotropy.  相似文献   

7.
Secondary sexual traits increase male fitness, but may be maladaptive in females, generating intralocus sexual conflict that is ameliorated through sexual dimorphism. Sexual selection on males may also lead some males to avoid expenditure on secondary sexual traits and achieve copulations using alternative reproductive tactics (ARTs). Secondary sexual traits can increase or decrease fitness in males, depending on which ART they employ, generating intralocus tactical conflict that can be ameliorated through male dimorphism. Due to the evolutionary forces acting against intralocus sexual and tactical conflicts, male dimorphism could coevolve with sexual dimorphism, a hypothesis that we tested by investigating these dimorphisms across 48 harvestman species. Using three independently derived phylogenies, we consistently found that the evolution of sexual dimorphism was correlated with that of male dimorphism, and suggest that the major force behind this relationship is the similarity between selection against intralocus sexual conflict and selection against intralocus tactical conflict. We also found that transitions in male dimorphism were more likely in the presence of sexual dimorphism, indicating that if a sexually selected trait arises on an autosome and is expressed in both sexes, its suppression in females probably evolves earlier than its suppression in small males that adopt ARTs.  相似文献   

8.
Emergence of male dimorphism within a species is the evolutionary process of disruptive selection. In squids, two types of male mating behaviour, known as alternative reproductive tactics (ARTs), are causally associated with adult body size. Males inseminate promiscuously with the same females; large “consort” males internally, and small “sneaker” males externally. Previously we found that in Heterololigo bleekeri, sneaker (but not consort) spermatozoa are able to swarm by sensing self-emitted CO2. This suggests that a swarming trait might have arisen in sneakers as a “sperm cooperation” strategy among sibling sperm in order to compete with consort males, or as a consequence of adaptation to external fertilization. To address these possibilities, we examined six species where three patterns of insemination are present, namely, only internal, only external, or both ARTs. In three species that employ both ARTs (H. bleekeri, Loligo reynaudii and Uroteuthis edulis), sneaker spermatozoa always exhibited self-swarming capacity. In Idiosepius paradoxus and Todarodes pacificus, which use only external insemination, spermatozoa formed a swarm. However, in Euprymna morsei, which use only internal insemination, sperm were unable to swarm. These results suggest that the self-swarming trait is likely to be linked to the mode of insemination rather than the alternative strategy used by sneaker males. Thus we propose a new hypothesis in which cooperative sperm behaviour has evolved not only through kin selection against sperm competition risks, but also through adaptation to the insemination/fertilization environment.  相似文献   

9.
Alternative reproductive tactics (ARTs) have improved our understanding of the evolution of adaptive variation; for instance, their study has led us to understand that the best phenotype (e.g. large and flashy) for a tactic that uses one mating behavior (e.g. court females) is often not the best phenotype (e.g. small and inconspicuous) for a tactic that uses a different mating behavior (e.g. chase and force‐copulate females). However, genetic correlations of shared traits across ARTs can constrain ARTs from reaching their optimal states, resulting in intralocus tactical conflict (IATC). While constraints on evolution in general have been well‐established and studied, there are some important implications of constraints due to intralocus tactical conflict on ARTs that have not been incorporated into the field of evolutionary ecology. Here we describe how an appreciation of IATC, including how to detect it and when to expect it, can change our perspectives in three areas: 1) adaptive states for traits associated with ARTs (e.g. growth rates, behavioural plasticity); 2) how selection due to ecological variation across populations can produce patterns of divergence between ARTS; 3) and the evolutionary stability of polymorphisms (e.g. how IATC can explain losses of one ART, and why this can lead to rapid speciation).  相似文献   

10.
在澳大利亚新南威尔士南部沿海,作者搜集了一个池塘繁殖的斑索蟾(Crinia signifera)的种群统计资料。通过捕捉进出池塘的1 612只个体,获得种群大小、结构、生长率、性成熟时的大小和年龄、死亡率及寿命资料。迁移高峰从6月持续到11月,蛙的最高、最低遇见数量分别出现在春季和秋季。但第2年,该池塘蛙的数量明显减少,可能是由于补充到种群中的幼体数量很少的缘故。6个月后个体的重捕率很低;但距第一次捕获18个月以后,仍有个别个体再次被捕获。性成熟时,雌性比雄性的身体大一些。生长曲线显示,雌性比雄性的生长更快,所以更早地达到性成熟。研究种群的数量、结构和死亡率趋势等与已知的其它Crinia signifera种群基本一致。但研究种群迁移活动的高峰出现较晚,并且夏季的活动水平明显很高。这种长的活动时间可能会导致存活率的下降,同时有利于选择迅速性成熟的雌性[动物学报51 (3) : 393 -400 , 2005]。  相似文献   

11.
The estimation of the relationship between phenotype and fitness in natural populations is constrained by the distribution of phenotypes available for selection to act on. Because selection is blind to the underlying genotype, a more variable phenotypic distribution created by using environmental effects can be used to enhance the power of a selection study. I measured selection on a population of adult damselflies (Enallagma boreale) whose phenotype had been modified by raising the larvae under various levels of food availability and density. Selection on body size (combination of skeletal and mass at emergence) and date of emergence was estimated in two consecutive episodes. The first episode was survival from emergence to sexual maturity and the second was reproductive success after attaining sexual maturity. Female survival to sexual maturity was lower, and therefore opportunity for selection greater, than males in both years. Opportunity for selection due to reproductive success was greater for males. The total opportunity for selection was greater for males one year and for females the other. Survival to sexual maturity was related to mass gain between emergence and sexual maturity. Females gained more mass and survived less well than males in both years but there was no linear relationship between size at emergence and survival for females in either year. However, females in the tails of the phenotype distribution were less likely to survive than those near the mean. In contrast, small males consistently gained more mass than large males and survived less well in one year. There was significant selection on timing of emergence in both years, but the direction of selection changed due to differences in weather; early emerging females were more successful one year and late emerging males and females the other. The number of clutches laid by females was independent of body size. Because the resources used to produce eggs are acquired after emergence and this was independent of size at emergence, female fitness did not increase with size. Small males may have had lower survival to sexual maturity but they had higher mating success than large males. Resources acquired prior to sexual maturity are essential for reproductive success and may in some species alter their success in inter- and intrasexual competition. Therefore, ignoring the mortality associated with resource acquisition will give an incomplete and potentially misleading picture of selection on the phenotype.  相似文献   

12.
We measured in the field the intensity and mode (i.e., directional, stabilizing) of sexual selection acting jointly on body size and time of sexual maturity in the univoltine, polygamous grasshopper Sphenarium purpurascens. Statistical analyses indicated that selection favored large and protandrous males in terms of a higher mating success. At the same time, evidence of correlational selection acting simultaneously on body size and time to sexual maturity was found. Thus, selection should strengthen the relationship between body size and the time of sexual maturity. Theoretical work suggests the existence of a trade-off between reaching a large size and early sexual maturation in insects. The present study does not support the existence of this kind of trade-off. Recent theoretical and empirical work like the one reported here suggests that such a trade-off may not be necessarily expected if growth rates (which are often assumed to be invariable) are affected by environmental and genetic factors.  相似文献   

13.
Female‐biased sexual dimorphism in size at maturity is a common pattern observed in freshwater fishes with indeterminate growth, yet can vary in magnitude among populations for reasons that are not well understood. According to sex‐specific optimization models, female‐biased sexual size dimorphism can evolve due to sexual selection favouring earlier maturation by males, even when sexes are otherwise similar in their growth and mortality regimes. The magnitude of sexual size dimorphism is expected to depend on mortality rate. When mortality rates are low, both males and females are expected to mature at older ages and larger sizes, with size determined by the von Bertalanffy growth equation. The difference between size at maturity in males and females becomes reduced when maturing at older ages, closer to asymptotic size. This phenomenon is called von Bertalanffy buffering. The predicted relationship between the magnitude of female‐biased sexual dimorphism in age and size at maturity and mortality rate was tested in a comparative analysis of lake whitefish Coregonus clupeaformis from 26 populations across a broad latitudinal range in North America. Most C. clupeaformis populations displayed female‐biased sexual dimorphism in size and age at 50% maturity. As predicted, female‐biased sexual size dimorphism was less extreme among lower mortality, high‐latitude populations.  相似文献   

14.
Although there is continuing debate about whether sexual selection promotes or impedes adaptation to novel environments, the role of mating behavior in such adaptation remains largely unexplored. We investigated the evolution of mating behavior (latency to mating, mating probability and duration) in replicate populations of seed beetles Callosobruchus maculatus subjected to selection on life‐history (“Young” vs. “Old” reproduction) under contrasting regimes of sexual selection (“Monogamy” vs. “Polygamy”). Life‐history selection is predicted to favor delayed mating in “Old” females, but sexual conflict under polygamy can potentially retard adaptive life‐history evolution. We found that life‐history selection yielded the predicted changes in mating behavior, but sexual selection regime had no net effect. In within‐line crosses, populations selected for late reproduction showed equally reduced early‐life mating probability regardless of mating system. In between‐line crosses, however, the effect of life‐history selection on early‐life mating probability was stronger in polygamous lines than in monogamous ones. Thus, although mating system influenced male–female coevolution, removal of sexual selection did not affect the adaptive evolution of mating behavior. Importantly, our study shows that the interaction between sexual selection and life‐history selection can result in either increased or decreased reproductive divergence depending on the ecological context.  相似文献   

15.
Observations and several types of field experiments on the mating behavior of wood frogs have revealed the proximate mechanisms for a size-related reproductive advantage in both males and females. For females, larger individuals produce larger clutches; for males, larger individuals can better remain clasped to females when contested by rival males and can better depose males clasped to other females. No results obtained support of the existence of mate choice in either males or females. Males were estimated to be 4.74 times as variable as females in the number of zygotes produced per individual per season; however, much of the variation in male RS resulted from a male-biased sex ratio at the breeding site rather than from sexual selection. After taking sex ratio effects into consideration, males were estimated to be only 1.63 times as variable as females. Patterns of variation in RS in males and females are associated with numerous sex-specific differences in life history and morphology. Life history differences include differential growth rates, ages at sexual maturity, and rates of mortality. Interpretation of how the body size dimorphism (females larger than males) in this species relates to sexual selection is consistent with information on how similar variations in body size influence RS for each sex, and how males and females differ in the functional relationship between body size and RS. Average RS increases more with body size in females than in males. Although body size directly influences RS for females, the possibility exists that, for males, other anatomical features correlated with body size more directly affect RS. Preliminary evidence suggests that sexual selection influences male arm length and that the male body size : RS relationship results as an incidental correlation.  相似文献   

16.
Growth, maturation and reproductive investment in Arctic charr   总被引:2,自引:0,他引:2  
Size and rates of growth in a cohort of 1 + Arctic charr housed in standard conditions were tracked over 12 months (December to December) and mature and immature males and females compared retrospectively. In both sexes, maturing fish were larger than non-maturing ones. In males, this size differential was the result of differences in growth in winter and early spring, but not in the remainder of the study period. In females, size differentials resulted mainly from growth rate differences immediately prior to breeding. In females but not in males, gonadosomatic index was predicted by growth rates in the months leading up to maturation, and among the females that matured, faster growing fish produced more eggs. Lipid reserves in July were correlated negatively with growth during the previous 7 months and, in females only, lipid reserves were significantly lower in maturing fish than in non-maturing fish, indicating that mobilization of lipid energy reserves in maturing fish had commenced by this time. Variation in investment in gonadal tissue, measured as gonadosomatic index, was not explained by variation in July lipid reserves for either males or females. However, July lipid reserves were negatively correlated with egg number, so females investing more in ova exhibited greater depletion of lipid reserves. These results are discussed in the context of the relationship between body condition and the onset of maturation in salmonids, relative investment in reproduction and sexual differences in the cost of reproduction.  相似文献   

17.
Models of adaptive speciation are typically concerned with demonstrating that it is possible for ecologically driven disruptive selection to lead to the evolution of assortative mating and hence speciation. However, disruptive selection could also lead to other forms of evolutionary diversification, including ecological sexual dimorphisms. Using a model of frequency-dependent intraspecific competition, we show analytically that adaptive speciation and dimorphism require identical ecological conditions. Numerical simulations of individual-based models show that a single ecological model can produce either evolutionary outcome, depending on the genetic independence of male and female traits and the potential strength of assortative mating. Speciation is inhibited when the genetic basis of male and female ecological traits allows the sexes to diverge substantially. This is because sexual dimorphism, which can evolve quickly, can eliminate the frequency-dependent disruptive selection that would have provided the impetus for speciation. Conversely, populations with strong assortative mating based on ecological traits are less likely to evolve a sexual dimorphism because females cannot simultaneously prefer males more similar to themselves while still allowing the males to diverge. This conflict between speciation and dimorphism can be circumvented in two ways. First, we find a novel form of speciation via negative assortative mating, leading to two dimorphic daughter species. Second, if assortative mating is based on a neutral marker trait, trophic dimorphism and speciation by positive assortative mating can occur simultaneously. We conclude that while adaptive speciation and ecological sexual dimorphism may occur simultaneously, allowing for sexual dimorphism restricts the likelihood of adaptive speciation. Thus, it is important to recognize that disruptive selection due to frequency-dependent interactions can lead to more than one form of adaptive splitting.  相似文献   

18.
Intralocus sexual conflict occurs when males and females experience sex-specific selection on a shared genome. With several notable exceptions, intralocus sexual conflict has been investigated in constant environments to which the study organisms have had an opportunity to adapt. However, a change in the environment can result in differential or even opposing selection pressures on males and females, creating sexual conflict. We used experimental evolution to explore the interaction between intralocus sexual conflict, sexual dimorphism and environmental variation in Drosophila melanogaster. Six populations were selected for adult desiccation resistance (D), with six matched control populations maintained in parallel (C). After 46 generations, the D populations had increased in survival time under arid conditions by 68% and in body weight by 20% compared to the C populations. The increase in size was the result of both extended development and faster growth rate of D juveniles. Adaptation to the stress came at a cost in terms of preadult viability and female fecundity. Because males are innately less tolerant of desiccation stress, very few D males survived desiccation-selection; while potentially a windfall for survivors, these conditions mean that most males’ fitness was determined posthumously. We conjectured that selection for early maturation and mating in males was in conflict with selection for survival and later reproduction in females. Consistent with this prediction, the sexes showed different patterns of age-specific desiccation resistance and resource acquisition, and there was a trend towards increasingly female-biased sexual size dimorphism. However, levels of desiccation resistance were unaffected, with D males and females increasing in parallel. Either there is a strong positive genetic correlation between the sexes that limits independent evolution of desiccation resistance, or fitness pay-offs from the strategy of riding out the stress bout are great enough to sustain concordant selection on the two sexes. We discuss the forces that mould fitness in males under a regimen where trade-offs between survival and reproduction may be considerable.  相似文献   

19.
While a number of studies have measured multivariate sexual selection acting on sexual signals in wild populations, few have confirmed these findings with experimental manipulation. Sagebrush crickets are ideally suited to such investigations because mating imposes an unambiguous phenotypic marker on males arising from nuptial feeding by females. We quantified sexual selection operating on male song by recording songs of virgin and mated males captured from three wild populations. To determine the extent to which selection on male song is influenced by female preference, we conducted a companion study in which we synthesized male songs and broadcast them to females in choice trials. Multivariate selection analysis revealed a saddle‐shaped fitness surface, the highest peak of which corresponded to longer train and pulse durations, and longer intertrain intervals. Longer trains and pulses likely promote greater mate attraction, but selection for longer intertrain durations suggests that energetic constraints may necessitate “time outs”. Playback trials confirmed the selection for longer train and pulse durations, and revealed significant stabilizing selection on dominant frequency, suggesting that the female auditory system is tightly tuned to the species‐specific call frequency. Collectively, our results revealed a complex pattern of multivariate nonlinear selection characterized primarily by strong stabilizing and disruptive selection on male song traits.  相似文献   

20.
Biologists are still discovering diverse and powerful ways sexual conflicts shape biodiversity. The present study examines how the proportion of females in a population that exhibit male mimicry, a mating resistance trait, influences conspecific males’ behavior, condition, and survival. Like most female‐polymorphic damselflies, Ischnura ramburii harbors both “andromorph” females, which closely resemble males, and sexually dimorphic “gynomorph” counterparts. There is evidence that male mimicry helps andromorphs evade detection and harassment, but males can also learn to target locally prevalent morph(s) via prior mate encounters. I hypothesized that the presence of male mimics could therefore predispose males to mate recognition errors, and thereby increase rates of costly male‐male interactions. Consistent with this hypothesis, male‐male interaction rates were highest in mesocosms containing more andromorph (vs. gynomorph) females. Males in andromorph‐biased mesocosms also had lower final body mass and higher mortality than males assigned to gynomorph‐majority treatments. Male survival and body mass were each negatively affected by mesocosm density, and mortality data revealed a marginally significant interaction between andromorph frequency and population density. These findings suggest that, under sufficiently crowded conditions, female mating resistance traits such as male mimicry could have pronounced indirect effects on male behavior, condition, and survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号