首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The maintenance of plant diversity is often explained by the ecological and evolutionary consequences of resource competition. Recently, the importance of allelopathy for competitive interactions has been recognized. In spite of such interest in allelopathy, we have few theories for understanding how the allelopathy influences the ecological and evolutionary dynamics of competing species. Here, I study the coevolutionary dynamics of two competing species with allelopathy in an interspecific competition system, and show that adaptive trait dynamics can cause cyclic coexistence. In addition, very fast adaptation such as phenotypic plasticity is likely to stabilize the population cycles. The results suggest that adaptive changes in allelopathy can lead to cyclic coexistence of plant species even when their ecological characters are very similar and interspecific competition is stronger than intraspecific competition, which should destroy competitive coexistence in the absence of adaptation.  相似文献   

2.
Mutualisms in a changing world: an evolutionary perspective   总被引:1,自引:0,他引:1  
Ecology Letters (2010) 13: 1459-1474 ABSTRACT: There is growing concern that rapid environmental degradation threatens mutualistic interactions. Because mutualisms can bind species to a common fate, mutualism breakdown has the potential to expand and accelerate effects of global change on biodiversity loss and ecosystem disruption. The current focus on the ecological dynamics of mutualism under global change has skirted fundamental evolutionary issues. Here, we develop an evolutionary perspective on mutualism breakdown to complement the ecological perspective, by focusing on three processes: (1) shifts from mutualism to antagonism, (2) switches to novel partners and (3) mutualism abandonment. We then identify the evolutionary factors that may make particular classes of mutualisms especially susceptible or resistant to breakdown and discuss how communities harbouring mutualisms may be affected by these evolutionary responses. We propose a template for evolutionary research on mutualism resilience and identify conservation approaches that may help conserve targeted mutualisms in the face of environmental change.  相似文献   

3.
The paradox of mutualism is typically framed as the persistence of interspecific cooperation, despite the potential advantages of cheating. Thus, mutualism research has tended to focus on stabilizing mechanisms that prevent the invasion of low‐quality partners. These mechanisms alone cannot explain the persistence of variation for partner quality observed in nature, leaving a large gap in our understanding of how mutualisms evolve. Studying partner quality variation is necessary for applying genetically explicit models to predict evolution in natural populations, a necessary step for understanding the origins of mutualisms as well as their ongoing dynamics. An evolutionary genetic approach, which is focused on naturally occurring mutualist variation, can potentially synthesize the currently disconnected fields of mutualism evolution and coevolutionary genetics. We outline explanations for the maintenance of genetic variation for mutualism and suggest approaches necessary to address them.  相似文献   

4.
Understanding the relative effect of top predators and primary producers on intermediate trophic levels is a key question in ecology. Most previous work, however, has not considered either realistic nonlinearities in feedback between trophic levels or the effect of mutualists on trophic cascades. Here, we develop a realistic model for a protection mutualism that explicitly includes interactions between a protected herbivore and both its food plant and generalist predators. In the absence of protection, herbivores and plant resources approach a stable equilibrium, provided that predation is not so high as to cause herbivore extinction. In contrast, adding protection by mutualists increases the range of dynamical outcomes to include unstable equilibria, stable and unstable limit cycles, and heteroclinic orbits. By reducing the impact of predators, protection by mutualists can allow herbivores to exert strong negative effects on their host plants, which in turn can lead to repeated cycles of overexploitation and recovery. Our results indicate that it may be essential to consider protection mutualisms to understand the dynamics of trophic cascades. Conversely, it may be essential to explicitly include dynamical feedback between plants and herbivores to fully understand the population and community dynamical consequences of protection mutualism.  相似文献   

5.
Coevolutionary clines across selection mosaics   总被引:6,自引:0,他引:6  
Abstract. Much of the dynamics of coevolution may be driven by the interplay between geographic variation in reciprocal selection (selection mosaics) and the homogenizing action of gene flow. We develop a genetic model of geographically structured coevolution in which gene flow links coevolving communities that may differ in both the direction and magnitude of reciprocal selection. The results show that geographically structured coevolution may lead to allele-frequency clines within both interacting species when fitnesses are spatially uniform or spatially heterogeneous. Furthermore, the results show that the behavior and shape of clines differ dramatically among different types of coevolutionary interaction. Antagonistic interactions produce dynamic clines that change shape rapidly through time, producing shifting patterns of local adaptation and maladaptation. Unlike antagonistic interactions, mutualisms generate stable equilibrium patterns that lead to fixed spatial patterns of adaptation. Interactions that vary between mutualism and antagonism produce both equilibrium and dynamic clines. Furthermore, the results demonstrate that these interactions may allow mutualisms to persist throughout the geographic range of an interaction, despite pockets of locally antagonistic selection. In all cases, the coevolved spatial patterns of allele frequencies are sensitive to the relative contributions of gene flow, selection, and overall habitat size, indicating that the appropriate scale for studies of geographically structured coevolution depends on the relative contributions of each of these factors.  相似文献   

6.
Periodic predator – prey dynamics in constant environments are usually taken as indicative of deterministic limit cycles. It is known, however, that demographic stochasticity in finite populations can also give rise to regular population cycles, even when the corresponding deterministic models predict a stable equilibrium. Specifically, such quasi-cycles are expected in stochastic versions of deterministic models exhibiting equilibrium dynamics with weakly damped oscillations. The existence of quasi-cycles substantially expands the scope for natural patterns of periodic population oscillations caused by ecological interactions, thereby complicating the conclusive interpretation of such patterns. Here we show how to distinguish between quasi-cycles and noisy limit cycles based on observing changing population sizes in predator – prey populations. We start by confirming that both types of cycle can occur in the individual-based version of a widely used class of deterministic predator – prey model. We then show that it is feasible and straightforward to accurately distinguish between the two types of cycle through the combined analysis of autocorrelations and marginal distributions of population sizes. Finally, by confronting these results with real ecological time series, we demonstrate that by using our methods even short and imperfect time series allow quasi-cycles and limit cycles to be distinguished reliably.  相似文献   

7.
Mutualisms (cooperative interactions between species) have had a central role in the generation and maintenance of life on earth. Insects and plants are involved in diverse forms of mutualism. Here we review evolutionary features of three prominent insect-plant mutualisms: pollination, protection and seed dispersal. We focus on addressing five central phenomena: evolutionary origins and maintenance of mutualism; the evolution of mutualistic traits; the evolution of specialization and generalization; coevolutionary processes; and the existence of cheating. Several features uniting very diverse insect-plant mutualisms are identified and their evolutionary implications are discussed: the involvement of one mobile and one sedentary partner; natural selection on plant rewards; the existence of a continuum from specialization to generalization; and the ubiquity of cheating, particularly on the part of insects. Plant-insect mutualisms have apparently both arisen and been lost repeatedly. Many adaptive hypotheses have been proposed to explain these transitions, and it is unlikely that any one of them dominates across interactions differing so widely in natural history. Evolutionary theory has a potentially important, but as yet largely unfilled, role to play in explaining the origins, maintenance, breakdown and evolution of insect-plant mutualisms.  相似文献   

8.
Anthropogenic changes can influence mutualism evolution; however, the genomic regions underpinning mutualism that are most affected by environmental change are generally unknown, even in well-studied model mutualisms like the interaction between legumes and their nitrogen (N)-fixing rhizobia. Such genomic information can shed light on the agents and targets of selection maintaining cooperation in nature. We recently demonstrated that N-fertilization has caused an evolutionary decline in mutualistic partner quality in the rhizobia that form symbiosis with clover. Here, population genomic analyses of N-fertilized versus control rhizobium populations indicate that evolutionary differentiation at a key symbiosis gene region on the symbiotic plasmid (pSym) contributes to partner quality decline. Moreover, patterns of genetic variation at selected loci were consistent with recent positive selection within N-fertilized environments, suggesting that N-rich environments might select for less beneficial rhizobia. By studying the molecular population genomics of a natural bacterial population within a long-term ecological field experiment, we find that: (i) the N environment is indeed a potent selective force mediating mutualism evolution in this symbiosis, (ii) natural variation in rhizobium partner quality is mediated in part by key symbiosis genes on the symbiotic plasmid, and (iii) differentiation at selected genes occurred in the context of otherwise recombining genomes, resembling eukaryotic models of adaptation.  相似文献   

9.
Eco-coevolutionary theory predicts that predator-prey coevolution occurring on the time scale of ecological dynamics (e.g., changes in population abundances) can drive novel kinds of predator-prey cycles, e.g., cryptic cycles where one species cycles while the other remains effectively constant and clockwise cycles where peaks in predator density precede peaks in prey density. However, because this body of theory has focused on particular models and studied the different cycle types in isolation, it is unclear what biological characteristics (e.g., costs for offense or defense) determine when a particular cycle type will arise. In this study, I explore the kinds of predator-prey cycles that arise in a general eco-coevolutionary model where there is disruptive selection and the coevolutionary dynamics are fast relative to the ecological dynamics of the system. With a graphical tool created using the theory of fast-slow dynamical systems, I predict what kinds of cycles can arise in the model and how cycle type depends on the costs for prey defense and predator offense. Fast-slow dynamical systems theory requires a separation of time scales between the ecological and evolutionary processes; however, numerical simulations show that this tool can help predict how coevolution drives populations cycles in systems where the speeds of ecological and evolutionary dynamics are comparable. Thus, this work is a step forward in building a general eco-coevolutionary theory.  相似文献   

10.
“One-to-many” mutualisms are often observed in nature. In this type of mutualism, each host individual can interact with many symbionts, whereas each individual symbiont can interact with only one host individual. Partner choice by the host is a potentially critical mechanism for maintaining such systems; however, its long-term effects on the coevolution between the hosts and symbionts have not been completely explored. In this study, I developed a simple mathematical model to describe the coevolutionary dynamics between hosts and symbionts in a one-to-many mutualism. I assumed that each host chooses a constant number of symbionts from a potential symbiont population, a fraction of which are chosen through preferential choice on the basis of the cooperativeness of the symbionts and the rest are chosen randomly. Using numerical calculations, I found that mutualism is maintained when the preferential choice is not very costly and the mutation rate of symbionts is large. I also found that symbionts that receive benefits from hosts without a return (cheater symbionts) and hosts that do not engage in preferential partner choice (indiscriminator hosts) can coexist with mutualist symbionts and discriminator hosts, respectively. The parameter domain of pure mutualism, i.e., free from cheater symbionts and indiscriminator hosts, can be narrower than the whole domain where the mutualism persists.  相似文献   

11.
The evolution of mutualisms under novel selective pressures will play a key role in ecosystem responses to environmental change. Because fixed nitrogen is traded in plant–rhizobium mutualisms, increasing N availability in the soil is predicted to alter coevolution of these interactions. Legumes typically decrease the number of associations (nodules) with rhizobia in response to nitrate, but the evolutionary dynamics of this response remain unknown. We grew plant and rhizobium genotype combinations in three N environments to assess the coevolutionary potential of the nodule nitrate response in natural communities of plants and rhizobia. We found evidence for coevolutionary genetic variation for nodulation in response to nitrate (G × G × E interaction), suggesting that the mutualism response to N deposition will depend on the combination of partner genotypes. Thus, the nitrate response is not a fixed mechanism in plant–rhizobium symbioses, but instead is potentially subject to natural selection and dynamic coevolution.  相似文献   

12.
Many of the dynamic properties of coevolution may occur at the level of interacting populations, with local adaptation acting as a force of diversification, as migration between populations homogenizes these isolated interactions. This interplay between local adaptation and migration may be particularly important in structuring interactions that vary from mutualism to antagonism across the range of an interacting set of species, such as those between some plants and their insect herbivores, mammals and trypanosome parasites, and bacteria and plasmids that confer antibiotic resistance. Here we present a simple geographically structured genetic model of a coevolutionary interaction that varies between mutualism and antagonism among communities linked by migration. Inclusion of geographic structure with gene flow alters the outcomes of local interactions and allows the maintenance of allelic polymorphism across all communities under a range of selection intensities and rates of migration. Furthermore, inclusion of geographic structure with gene flow allows fixed mutualisms to be evolutionarily stable within both communities, even when selection on the interaction is antagonistic within one community. Moreover, the model demonstrates that the inclusion of geographic structure with gene flow may lead to considerable local maladaptation and trait mismatching as predicted by the geographic mosaic theory of coevolution.  相似文献   

13.
Organisms are surrounded by their predators, parasites, hosts, and mutualists, being involved in reciprocal adaptation processes with such “biotic environment”. The concept of “coevolution”, therefore, provides a basis for the comprehensive understanding of evolutionary and ecological dynamics in biological communities and ecosystems. Recent studies have shown that coevolutionary processes are spatially heterogeneous and that traits mediating interspecific interactions can evolve rapidly in natural communities. Here, I discuss factors promoting the geographic differentiation of coevolutionary interactions, the spatial scales of the geographic structuring, and the pace of coevolutionary changes, reviewing findings in the arms race coevolution involving a long-mouthed weevil and its host camellia plant. Evolutionary, ecological, and population genetic studies on the system illuminated that viewpoints from the aspect of “coevolving biosphere” were important for predicting how ongoing anthropogenic change in global environment alter the spatiotemporal dynamics of biological communities.  相似文献   

14.
The role and importance of ecological interactions for evolutionary responses to environmental changes is to large extent unknown. Here it is shown that interspecific competition may slow down rates of adaptation substantially and fundamentally change patterns of adaptation to long-term environmental changes. In the model investigated here, species compete for resources distributed along an ecological niche space. Environmental change is represented by a slowly moving resource maximum and evolutionary responses of single species are compared with responses of coalitions of two and three competing species. In scenarios with two and three species, species that are favored by increasing resource availability increase in equilibrium population size whereas disfavored species decline in size. Increased competition makes it less favorable for individuals of a disfavored species to occupy a niche close to the maximum and reduces the selection pressure for tracking the moving resource distribution. Individual-based simulations and an analysis using adaptive dynamics show that the combination of weaker selection pressure and reduced population size reduces the evolutionary rate of the disfavored species considerably. If the resource landscape moves stochastically, weak evolutionary responses cause large fluctuations in population size and thereby large extinction risk for competing species, whereas a single species subject to the same environmental variability may track the resource maximum closely and maintain a much more stable population size. Other studies have shown that competitive interactions may amplify changes in mean population sizes due to environmental changes and thereby increase extinction risks. This study accentuates the harmful role of competitive interactions by illustrating that they may also decrease rates of adaptation. The slowdown in evolutionary rates caused by competition may also contribute to explain low rates of morphological change in spite of large environmental fluctuations found in fossil records.  相似文献   

15.
The exploitation of mutualisms   总被引:8,自引:0,他引:8  
Mutualisms (interspecific cooperative interactions) are ubiquitously exploited by organisms that obtain the benefits mutualists offer, while delivering no benefits in return. The natural history of these exploiters is well-described, but relatively little effort has yet been devoted to analysing their ecological or evolutionary significance for mutualism. Exploitation is not a unitary phenomenon, but a set of loosely related phenomena: exploiters may follow mixed strategies or pure strategies at either the species or individual level, may or may not be derived from mutualists, and may or may not inflict significant costs on mutualisms. The evolutionary implications of these different forms of exploitation, especially the threats they pose to the stability of mutualism, have as yet been minimally explored. Studies of this issue are usually framed in terms of a "temptation to defect" that generates a destabilizing conflict of interest between partners. I argue that this idea is in fact rather inappropriate for interpreting most observed forms of exploitation in mutualisms. I suggest several alternative and testable ideas for how mutualism can persist in the face of exploitation.  相似文献   

16.
This paper considers the coevolution of phenotypic traits in a community comprising two competitive species subject to strong Allee effects. Firstly, we investigate the ecological and evolutionary conditions that allow for continuously stable strategy under symmetric competition. Secondly, we find that evolutionary suicide is impossible when the two species undergo symmetric competition, however, evolutionary suicide can occur in an asymmetric competition model with strong Allee effects. Thirdly, it is found that evolutionary bistability is a likely outcome of the process under both symmetric and asymmetric competitions, which depends on the properties of symmetric and asymmetric competitions. Fourthly, under asymmetric competition, we find that evolutionary cycle is a likely outcome of the process, which depends on the properties of both intraspecific and interspecific competition. When interspecific and intraspecific asymmetries vary continuously, we also find that the evolutionary dynamics may admit a stable equilibrium and two limit cycles or two stable equilibria separated by an unstable limit cycle or a stable equilibrium and a stable limit cycle.  相似文献   

17.
Mutualisms are ubiquitous in nature, provide important ecosystem services, and involve many species of interest for conservation. Theoretical progress on the population dynamics of mutualistic interactions, however, comparatively lagged behind that of trophic and competitive interactions, leading to the impression that ecologists still lack a generalized framework to investigate the population dynamics of mutualisms. Yet, over the last 90 years, abundant theoretical work has accumulated, ranging from abstract to detailed. Here, we review and synthesize historical models of two‐species mutualisms. We find that population dynamics of mutualisms are qualitatively robust across derivations, including levels of detail, types of benefit, and inspiring systems. Specifically, mutualisms tend to exhibit stable coexistence at high density and destabilizing thresholds at low density. These dynamics emerge when benefits of mutualism saturate, whether due to intrinsic or extrinsic density dependence in intraspecific processes, interspecific processes, or both. We distinguish between thresholds resulting from Allee effects, low partner density, and high partner density, and their mathematical and conceptual causes. Our synthesis suggests that there exists a robust population dynamic theory of mutualism that can make general predictions.  相似文献   

18.
The interplay between coevolutionary and population or community dynamics is currently the focus of much empirical and theoretical consideration. Here, we develop a simulation model to study the coevolutionary and population dynamics of a hypothetical host–parasitoid interaction. In the model, host resistance and parasitoid virulence are allowed to coevolve. We investigate how trade-offs associated with these traits modify the system's coevolutionary and population dynamics. The most important influence on these dynamics comes from the incorporation of density-dependent costs of resistance ability. We find three main outcomes. First, if the costs of resistance are high, then one or both of the players go extinct. Second, when the costs of resistance are intermediate to low, cycling population and coevolutionary dynamics are found, with slower evolutionary changes observed when the costs of virulence are also low. Third, when the costs associated with resistance and virulence are both high, the hosts trade-off resistance against fecundity and invest little in resistance. However, the parasitoids continue to invest in virulence, leading to stable host and parasitoid population sizes. These results support the hypothesis that costs associated with resistance and virulence will maintain the heritable variation in these traits found in natural populations and that the nature of these trade-offs will greatly influence the population dynamics of the interacting species. Received: December 20, 1999 / Accepted: July 17, 2000  相似文献   

19.
We develop an approach for studying population dynamics resulting from mutualism by employing functional responses based on density-dependent benefits and costs. These functional responses express how the population growth rate of a mutualist is modified by the density of its partner. We present several possible dependencies of gross benefits and costs, and hence net effects, to a mutualist as functions of the density of its partner. Net effects to mutualists are likely a monotonically saturating or unimodal function of the density of their partner. We show that fundamental differences in the growth, limitation, and dynamics of a population can occur when net effects to that population change linearly, unimodally, or in a saturating fashion. We use the mutualism between senita cactus and its pollinating seed-eating moth as an example to show the influence of different benefit and cost functional responses on population dynamics and stability of mutualisms. We investigated two mechanisms that may alter this mutualism's functional responses: distribution of eggs among flowers and fruit abortion. Differences in how benefits and costs vary with density can alter the stability of this mutualism. In particular, fruit abortion may allow for a stable equilibrium where none could otherwise exist.  相似文献   

20.
In this paper we argue that two-species models of mutualism may be oversimplifications of the real world that lead to erroneous predictions. We present a four-species model of a pollination mutualism embedded in other types of community interactions. Conclusions derived from two-species models about the destabilizing effect of mutualisms are misleading when applied to the present scenario; although the mutualisms are locally destabilizing, the effect is more than canceled by an increased chance of feasibility. The crucial difference is the interaction of the mutualists with other species in a larger web. Furthermore, community persistence (without unrealistic population explosion), arguably a superior ecological criterion, is greatly enhanced by the presence of mutualisms. Therefore, we predict that mutualisms should be common in the real world, a prediction matching empirial findings and in contrast to the predictions from local stability analysis of basic two-species models. This method of stabilizing a mutualism appears superior in some ways to the often-used method of introducing density dependence in the strength of the mutualism, because it permits obligate mutualisms to exist even at low densities, again matching empirical findings. Lastly, this study is an example of how complex model assemblages can behave qualitatively differently from analogous simpler ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号