首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 697 毫秒
1.
Sequence comparison is a major step in the prediction of protein structure from existing templates in the Protein Data Bank. The identification of potentially remote homologues to be used as templates for modeling target sequences of unknown structure and their accurate alignment remain challenges, despite many years of study. The most recent advances have been in combining as many sources of information as possible--including amino acid variation in the form of profiles or hidden Markov models for both the target and template families, known and predicted secondary structures of the template and target, respectively, the combination of structure alignment for distant homologues and sequence alignment for close homologues to build better profiles, and the anchoring of certain regions of the alignment based on existing biological data. Newer technologies have been applied to the problem, including the use of support vector machines to tackle the fold classification problem for a target sequence and the alignment of hidden Markov models. Finally, using the consensus of many fold recognition methods, whether based on profile-profile alignments, threading or other approaches, continues to be one of the most successful strategies for both recognition and alignment of remote homologues. Although there is still room for improvement in identification and alignment methods, additional progress may come from model building and refinement methods that can compensate for large structural changes between remotely related targets and templates, as well as for regions of misalignment.  相似文献   

2.
The prediction of 1D structural properties of proteins is an important step toward the prediction of protein structure and function, not only in the ab initio case but also when homology information to known structures is available. Despite this the vast majority of 1D predictors do not incorporate homology information into the prediction process. We develop a novel structural alignment method, SAMD, which we use to build alignments of putative remote homologues that we compress into templates of structural frequency profiles. We use these templates as additional input to ensembles of recursive neural networks, which we specialise for the prediction of query sequences that show only remote homology to any Protein Data Bank structure. We predict four 1D structural properties – secondary structure, relative solvent accessibility, backbone structural motifs, and contact density. Secondary structure prediction accuracy, tested by five‐fold cross‐validation on a large set of proteins allowing less than 25% sequence identity between training and test set and query sequences and templates, exceeds 82%, outperforming its ab initio counterpart, other state‐of‐the‐art secondary structure predictors (Jpred 3 and PSIPRED) and two other systems based on PSI‐BLAST and COMPASS templates. We show that structural information from homologues improves prediction accuracy well beyond the Twilight Zone of sequence similarity, even below 5% sequence identity, for all four structural properties. Significant improvement over the extraction of structural information directly from PDB templates suggests that the combination of sequence and template information is more informative than templates alone. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
Protein target structures for the Critical Assessment of Structure Prediction round 13 (CASP13) were split into evaluation units (EUs) based on their structural domains, the domain organization of available templates, and the performance of servers on whole targets compared to split target domains. Eighty targets were split into 112 EUs. The EUs were classified into categories suitable for assessment of high accuracy modeling (or template-based modeling [TBM]) and topology (or free modeling [FM]) based on target difficulty. Assignment into assessment categories considered the following criteria: (a) the evolutionary relationship of target domains to existing fold space as defined by the Evolutionary Classification of Protein Domains (ECOD) database; (b) the clustering of target domains using eight objective sequence, structure, and performance measures; and (c) the placement of target domains in a scatter plot of target difficulty against server performance used in the previous CASP. Generally, target domains with good server predictions had close template homologs and were classified as TBM. Alternately, targets with poor server predictions represent a mixture of fast evolving homologs, structure analogs, and new folds, and were classified as FM or FM/TBM overlap.  相似文献   

4.
A novel approach is proposed for modeling loop regions in proteins. In this approach, a prerequisite sequence-structure alignment is examined for regions where the target sequence is not covered by the structural template. These regions, extended with a number of residues from adjacent stem regions, are submitted to fold recognition. The alignments produced by fold recognition are integrated into the initial alignment to create an alignment between the target sequence and several structures, where gaps in the main structural template are covered by local structural templates. This one-to-many (1:N) alignment is used to create a protein model by existing protein-modeling techniques. Several alternative approaches were evaluated using a set of ten proteins. One approach was selected and evaluated using another set of 31 proteins. The most promising result was for gap regions not located at the C-terminus or N-terminus of a protein, where the method produced an average RMSD 12% lower than the loop modeling provided with the program MODELLER. This improvement is shown to be statistically significant. Figure The method derived from the training set applied to CASP target T0191  相似文献   

5.
6.
MOTIVATION: What constitutes a baseline level of success for protein fold recognition methods? As fold recognition benchmarks are often presented without any thought to the results that might be expected from a purely random set of predictions, an analysis of fold recognition baselines is long overdue. Given varying amounts of basic information about a protein-ranging from the length of the sequence to a knowledge of its secondary structure-to what extent can the fold be determined by intelligent guesswork? Can simple methods that make use of secondary structure information assign folds more accurately than purely random methods and could these methods be used to construct viable hierarchical classifications? EXPERIMENTS PERFORMED: A number of rapid automatic methods which score similarities between protein domains were devised and tested. These methods ranged from those that incorporated no secondary structure information, such as measuring absolute differences in sequence lengths, to more complex alignments of secondary structure elements. Each method was assessed for accuracy by comparison with the Class Architecture Topology Homology (CATH) classification. Methods were rated against both a random baseline fold assignment method as a lower control and FSSP as an upper control. Similarity trees were constructed in order to evaluate the accuracy of optimum methods at producing a classification of structure. RESULTS: Using a rigorous comparison of methods with CATH, the random fold assignment method set a lower baseline of 11% true positives allowing for 3% false positives and FSSP set an upper benchmark of 47% true positives at 3% false positives. The optimum secondary structure alignment method used here achieved 27% true positives at 3% false positives. Using a less rigorous Critical Assessment of Structure Prediction (CASP)-like sensitivity measurement the random assignment achieved 6%, FSSP-59% and the optimum secondary structure alignment method-32%. Similarity trees produced by the optimum method illustrate that these methods cannot be used alone to produce a viable protein structural classification system. CONCLUSIONS: Simple methods that use perfect secondary structure information to assign folds cannot produce an accurate protein taxonomy, however they do provide useful baselines for fold recognition. In terms of a typical CASP assessment our results suggest that approximately 6% of targets with folds in the databases could be assigned correctly by randomly guessing, and as many as 32% could be recognised by trivial secondary structure comparison methods, given knowledge of their correct secondary structures.  相似文献   

7.
MOTIVATION: Recognizing proteins that have similar tertiary structure is the key step of template-based protein structure prediction methods. Traditionally, a variety of alignment methods are used to identify similar folds, based on sequence similarity and sequence-structure compatibility. Although these methods are complementary, their integration has not been thoroughly exploited. Statistical machine learning methods provide tools for integrating multiple features, but so far these methods have been used primarily for protein and fold classification, rather than addressing the retrieval problem of fold recognition-finding a proper template for a given query protein. RESULTS: Here we present a two-stage machine learning, information retrieval, approach to fold recognition. First, we use alignment methods to derive pairwise similarity features for query-template protein pairs. We also use global profile-profile alignments in combination with predicted secondary structure, relative solvent accessibility, contact map and beta-strand pairing to extract pairwise structural compatibility features. Second, we apply support vector machines to these features to predict the structural relevance (i.e. in the same fold or not) of the query-template pairs. For each query, the continuous relevance scores are used to rank the templates. The FOLDpro approach is modular, scalable and effective. Compared with 11 other fold recognition methods, FOLDpro yields the best results in almost all standard categories on a comprehensive benchmark dataset. Using predictions of the top-ranked template, the sensitivity is approximately 85, 56, and 27% at the family, superfamily and fold levels respectively. Using the 5 top-ranked templates, the sensitivity increases to 90, 70, and 48%.  相似文献   

8.
Qiu J  Elber R 《Proteins》2006,62(4):881-891
In template-based modeling of protein structures, the generation of the alignment between the target and the template is a critical step that significantly affects the accuracy of the final model. This paper proposes an alignment algorithm SSALN that learns substitution matrices and position-specific gap penalties from a database of structurally aligned protein pairs. In addition to the amino acid sequence information, secondary structure and solvent accessibility information of a position are used to derive substitution scores and position-specific gap penalties. In a test set of CASP5 targets, SSALN outperforms sequence alignment methods such as a Smith-Waterman algorithm with BLOSUM50 and PSI_BLAST. SSALN also generates better alignments than PSI_BLAST in the CASP6 test set. LOOPP server prediction based on an SSALN alignment is ranked the best for target T0280_1 in CASP6. SSALN is also compared with several threading methods and sequence alignment methods on the ProSup benchmark. SSALN has the highest alignment accuracy among the methods compared. On the Fischer's benchmark, SSALN performs better than CLUSTALW and GenTHREADER, and generates more alignments with accuracy >50%, >60% or >70% than FUGUE, but fewer alignments with accuracy >80% than FUGUE. All the supplemental materials can be found at http://www.cs.cornell.edu/ approximately jianq/research.htm.  相似文献   

9.
Russell AJ  Torda AE 《Proteins》2002,47(4):496-505
Multiple sequence alignments are a routine tool in protein fold recognition, but multiple structure alignments are computationally less cooperative. This work describes a method for protein sequence threading and sequence-to-structure alignments that uses multiple aligned structures, the aim being to improve models from protein threading calculations. Sequences are aligned into a field due to corresponding sites in homologous proteins. On the basis of a test set of more than 570 protein pairs, the procedure does improve alignment quality, although no more than averaging over sequences. For the force field tested, the benefit of structure averaging is smaller than that of adding sequence similarity terms or a contribution from secondary structure predictions. Although there is a significant improvement in the quality of sequence-to-structure alignments, this does not directly translate to an immediate improvement in fold recognition capability.  相似文献   

10.
Comparative docking is based on experimentally determined structures of protein-protein complexes (templates), following the paradigm that proteins with similar sequences and/or structures form similar complexes. Modeling utilizing structure similarity of target monomers to template complexes significantly expands structural coverage of the interactome. Template-based docking by structure alignment can be performed for the entire structures or by aligning targets to the bound interfaces of the experimentally determined complexes. Systematic benchmarking of docking protocols based on full and interface structure alignment showed that both protocols perform similarly, with top 1 docking success rate 26%. However, in terms of the models' quality, the interface-based docking performed marginally better. The interface-based docking is preferable when one would suspect a significant conformational change in the full protein structure upon binding, for example, a rearrangement of the domains in multidomain proteins. Importantly, if the same structure is selected as the top template by both full and interface alignment, the docking success rate increases 2-fold for both top 1 and top 10 predictions. Matching structural annotations of the target and template proteins for template detection, as a computationally less expensive alternative to structural alignment, did not improve the docking performance. Sophisticated remote sequence homology detection added templates to the pool of those identified by structure-based alignment, suggesting that for practical docking, the combination of the structure alignment protocols and the remote sequence homology detection may be useful in order to avoid potential flaws in generation of the structural templates library.  相似文献   

11.
We present a protein fold recognition method, MANIFOLD, which uses the similarity between target and template proteins in predicted secondary structure, sequence and enzyme code to predict the fold of the target protein. We developed a non-linear ranking scheme in order to combine the scores of the three different similarity measures used. For a difficult test set of proteins with very little sequence similarity, the program predicts the fold class correctly in 34% of cases. This is an over twofold increase in accuracy compared with sequence-based methods such as PSI-BLAST or GenTHREADER, which score 13-14% correct first hits for the same test set. The functional similarity term increases the prediction accuracy by up to 3% compared with using the combination of secondary structure similarity and PSI-BLAST alone. We argue that using functional and secondary structure information can increase the fold recognition beyond sequence similarity.  相似文献   

12.
In the past few years, a new generation of fold recognition methods has been developed, in which the classical sequence information is combined with information obtained from secondary structure and, sometimes, accessibility predictions. The results are promising, indicating that this approach may compete with potential-based methods (Rost B et al., 1997, J Mol Biol 270:471-480). Here we present a systematic study of the different factors contributing to the performance of these methods, in particular when applied to the problem of fold recognition of remote homologues. Our results indicate that secondary structure and accessibility prediction methods have reached an accuracy level where they are not the major factor limiting the accuracy of fold recognition. The pattern degeneracy problem is confirmed as the major source of error of these methods. On the basis of these results, we study three different options to overcome these limitations: normalization schemes, mapping of the coil state into the different zones of the Ramachandran plot, and post-threading graphical analysis.  相似文献   

13.
Rohl CA  Strauss CE  Chivian D  Baker D 《Proteins》2004,55(3):656-677
A major limitation of current comparative modeling methods is the accuracy with which regions that are structurally divergent from homologues of known structure can be modeled. Because structural differences between homologous proteins are responsible for variations in protein function and specificity, the ability to model these differences has important functional consequences. Although existing methods can provide reasonably accurate models of short loop regions, modeling longer structurally divergent regions is an unsolved problem. Here we describe a method based on the de novo structure prediction algorithm, Rosetta, for predicting conformations of structurally divergent regions in comparative models. Initial conformations for short segments are selected from the protein structure database, whereas longer segments are built up by using three- and nine-residue fragments drawn from the database and combined by using the Rosetta algorithm. A gap closure term in the potential in combination with modified Newton's method for gradient descent minimization is used to ensure continuity of the peptide backbone. Conformations of variable regions are refined in the context of a fixed template structure using Monte Carlo minimization together with rapid repacking of side-chains to iteratively optimize backbone torsion angles and side-chain rotamers. For short loops, mean accuracies of 0.69, 1.45, and 3.62 A are obtained for 4, 8, and 12 residue loops, respectively. In addition, the method can provide reasonable models of conformations of longer protein segments: predicted conformations of 3A root-mean-square deviation or better were obtained for 5 of 10 examples of segments ranging from 13 to 34 residues. In combination with a sequence alignment algorithm, this method generates complete, ungapped models of protein structures, including regions both similar to and divergent from a homologous structure. This combined method was used to make predictions for 28 protein domains in the Critical Assessment of Protein Structure 4 (CASP 4) and 59 domains in CASP 5, where the method ranked highly among comparative modeling and fold recognition methods. Model accuracy in these blind predictions is dominated by alignment quality, but in the context of accurate alignments, long protein segments can be accurately modeled. Notably, the method correctly predicted the local structure of a 39-residue insertion into a TIM barrel in CASP 5 target T0186.  相似文献   

14.
Kifer I  Nussinov R  Wolfson HJ 《Proteins》2008,73(2):380-394
How a one-dimensional protein sequence folds into a specific 3D structure remains a difficult challenge in structural biology. Many computational methods have been developed in an attempt to predict the tertiary structure of the protein; most of these employ approaches that are based on the accumulated knowledge of solved protein structures. Here we introduce a novel and fully automated approach for predicting the 3D structure of a protein that is based on the well accepted notion that protein folding is a hierarchical process. Our algorithm follows the hierarchical model by employing two stages: the first aims to find a match between the sequences of short independently-folding structural entities and parts of the target sequence and assigns the respective structures. The second assembles these local structural parts into a complete 3D structure, allowing for long-range interactions between them. We present the results of applying our method to a subset of the targets from CASP6 and CASP7. Our results indicate that for targets with a significant sequence similarity to known structures we are often able to provide predictions that are better than those achieved by two leading servers, and that the most significant improvements in comparison with these methods occur in regions of a gapped structural alignment between the native structure and the closest available structural template. We conclude that in addition to performing well for targets with known homologous structures, our method shows great promise for addressing the more general category of comparative modeling targets, which is our next goal.  相似文献   

15.
Many proteins need to form oligomers to be functional, so oligomer structures provide important clues to biological roles of proteins. Prediction of oligomer structures therefore can be a useful tool in the absence of experimentally resolved structures. In this article, we describe the server and human methods that we used to predict oligomer structures in the CASP13 experiment. Performances of the methods on the 42 CASP13 oligomer targets consisting of 30 homo-oligomers and 12 hetero-oligomers are discussed. Our server method, Seok-assembly, generated models with interface contact similarity measure greater than 0.2 as model 1 for 11 homo-oligomer targets when proper templates existed in the database. Model refinement methods such as loop modeling and molecular dynamics (MD)-based overall refinement failed to improve model qualities when target proteins have domains not covered by templates or when chains have very small interfaces. In human predictions, additional experimental data such as low-resolution electron microscopy (EM) map were utilized. EM data could assist oligomer structure prediction by providing a global shape of the complex structure.  相似文献   

16.
Protein structure prediction by comparative modeling benefits greatly from the use of multiple sequence alignment information to improve the accuracy of structural template identification and the alignment of target sequences to structural templates. Unfortunately, this benefit is limited to those protein sequences for which at least several natural sequence homologues exist. We show here that the use of large diverse alignments of computationally designed protein sequences confers many of the same benefits as natural sequences in identifying structural templates for comparative modeling targets. A large-scale massively parallelized application of an all-atom protein design algorithm, including a simple model of peptide backbone flexibility, has allowed us to generate 500 diverse, non-native, high-quality sequences for each of 264 protein structures in our test set. PSI-BLAST searches using the sequence profiles generated from the designed sequences ("reverse" BLAST searches) give near-perfect accuracy in identifying true structural homologues of the parent structure, with 54% coverage. In 41 of 49 genomes scanned using reverse BLAST searches, at least one novel structural template (not found by the standard method of PSI-BLAST against PDB) is identified. Further improvements in coverage, through optimizing the scoring function used to design sequences and continued application to new protein structures beyond the test set, will allow this method to mature into a useful strategy for identifying distantly related structural templates.  相似文献   

17.
McGuffin LJ  Jones DT 《Proteins》2003,52(2):166-175
If secondary structure predictions are to be incorporated into fold recognition methods, an assessment of the effect of specific types of errors in predicted secondary structures on the sensitivity of fold recognition should be carried out. Here, we present a systematic comparison of different secondary structure prediction methods by measuring frequencies of specific types of error. We carry out an evaluation of the effect of specific types of error on secondary structure element alignment (SSEA), a baseline fold recognition method. The results of this evaluation indicate that missing out whole helix or strand elements, or predicting the wrong type of element, is more detrimental than predicting the wrong lengths of elements or overpredicting helix or strand. We also suggest that SSEA scoring is an effective method for assessing accuracy of secondary structure prediction and perhaps may also provide a more appropriate assessment of the "usefulness" and quality of predicted secondary structure, if secondary structure alignments are to be used in fold recognition.  相似文献   

18.
Protein threading using PROSPECT: design and evaluation   总被引:14,自引:0,他引:14  
Xu Y  Xu D 《Proteins》2000,40(3):343-354
The computer system PROSPECT for the protein fold recognition using the threading method is described and evaluated in this article. For a given target protein sequence and a template structure, PROSPECT guarantees to find a globally optimal threading alignment between the two. The scoring function for a threading alignment employed in PROSPECT consists of four additive terms: i) a mutation term, ii) a singleton fitness term, iii) a pairwise-contact potential term, and iv) alignment gap penalties. The current version of PROSPECT considers pair contacts only between core (alpha-helix or beta-strand) residues and alignment gaps only in loop regions. PROSPECT finds a globally optimal threading efficiently when pairwise contacts are considered only between residues that are spatially close (7 A or less between the C(beta) atoms in the current implementation). On a test set consisting of 137 pairs of target-template proteins, each pair being from the same superfamily and having sequence identity 相似文献   

19.
McGuffin LJ  Jones DT 《Proteins》2002,48(1):44-52
The ultimate goal of structural genomics is to obtain the structure of each protein coded by each gene within a genome to determine gene function. Because of cost and time limitations, it remains impractical to solve the structure for every gene product experimentally. Up to a point, reasonably accurate three‐dimensional structures can be deduced for proteins with homologous sequences by using comparative modeling. Beyond this, fold recognition or threading methods can be used for proteins showing little homology to any known fold, although this is relatively time‐consuming and limited by the library of template folds currently available. Therefore, it is appropriate to develop methods that can increase our knowledge base, expanding our fold libraries by earmarking potentially “novel” folds for experimental structure determination. How can we sift through proteomic data rapidly and yet reliably identify novel folds as targets for structural genomics? We have analyzed a number of simple methods that discriminate between “novel” and “known” folds. We propose that simple alignments of secondary structure elements using predicted secondary structure could potentially be a more selective method than both a simple fold recognition method (GenTHREADER) and standard sequence alignment at finding novel folds when sequences show no detectable homology to proteins with known structures. Proteins 2002;48:44–52. © 2002 Wiley‐Liss, Inc.  相似文献   

20.
Liu S  Zhang C  Liang S  Zhou Y 《Proteins》2007,68(3):636-645
Recognizing the structural similarity without significant sequence identity (called fold recognition) is the key for bridging the gap between the number of known protein sequences and the number of structures solved. Previously, we developed a fold-recognition method called SP(3) which combines sequence-derived sequence profiles, secondary-structure profiles and residue-depth dependent, structure-derived sequence profiles. The use of residue-depth-dependent profiles makes SP(3) one of the best automatic predictors in CASP 6. Because residue depth (RD) and solvent accessible surface area (solvent accessibility) are complementary in describing the exposure of a residue to solvent, we test whether or not incorporation of solvent-accessibility profiles into SP(3) could further increase the accuracy of fold recognition. The resulting method, called SP(4), was tested in SALIGN benchmark for alignment accuracy and Lindahl, LiveBench 8 and CASP7 blind prediction for fold recognition sensitivity and model-structure accuracy. For remote homologs, SP(4) is found to consistently improve over SP(3) in the accuracy of sequence alignment and predicted structural models as well as in the sensitivity of fold recognition. Our result suggests that RD and solvent accessibility can be used concurrently for improving the accuracy and sensitivity of fold recognition. The SP(4) server and its local usage package are available on http://sparks.informatics.iupui.edu/SP4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号