首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.

Background

Mechanisms of antibody-mediated neutralization are of much interest. For plant and bacterial A-B toxins, A chain mediates toxicity and B chain binds target cells. It is generally accepted and taught that antibody (Ab) neutralizes by preventing toxin binding to cells. Yet for some toxins, ricin included, anti-A chain Abs afford greater protection than anti-B. The mechanism(s) whereby Abs to the A chain neutralize toxins are not understood.

Methodology/Principal Findings

We use quantitative confocal imaging, neutralization assays, and other techniques to study how anti-A chain Abs function to protect cells. Without Ab, ricin enters cells and penetrates to the endoplasmic reticulum within 15 min. Within 45–60 min, ricin entering and being expelled from cells reaches equilibrium. These results are consistent with previous observations, and support the validity of our novel methodology. The addition of neutralizing Ab causes ricin accumulation at the cell surface, delays internalization, and postpones retrograde transport of ricin. Ab binds ricin for >6hr as they traffic together through the cell. Ab protects cells even when administered hours after exposure.

Conclusions/Key Findings

We demonstrate the dynamic nature of the interaction between the host cell and toxin, and how Ab can alter the balance in favor of the cell. Ab blocks ricin’s entry into cells, hinders its intracellular routing, and can protect even after ricin is present in the target organelle, providing evidence that the major site of neutralization is intracellular. These data add toxins to the list of pathogenic agents that can be neutralized intracellularly and explain the in vivo efficacy of delayed administration of anti-toxin Abs. The results encourage the use of post-exposure passive Ab therapy, and show the importance of the A chain as a target of Abs.  相似文献   

2.
Secretory IgA (sIgA) Abs are polymeric Igs comprised of two or more IgA monomers joined together at their C termini and covalently associated with a 70-kDa glycoprotein called secretory component. As the predominant Ig type in gastrointestinal sections, sIgA Abs are centrally important in adaptive immunity to enteropathogenic bacteria, viruses, and toxins. In this study, we demonstrate that sIgA Abs may also function in innate defense against ricin, a naturally occurring, galactose-specific plant lectin with extremely potent shiga toxin-like enzymatic activity. In lectin blot overlay assays, we found that ricin bound to secretory component and the H chain of human IgA, and this binding was inhibited by the addition of excess galactose. The toxin also recognized IgM (albeit with less affinity than to IgA), but not IgG. Ricin bound to both human IgA1 and IgA2, primarily via N-linked oligosaccharide side chains. At 100-fold molar excess concentration, sIgA (but not IgG) Abs inhibited ricin attachment to the apical surfaces of polarized intestinal epithelial cells grown in culture. sIgA Abs also visibly reduced toxin binding to the luminal surfaces of human duodenum in tissue section overlay assays. We conclude that sIgA Abs in mucosal secretions may serve as receptor analogues for ricin, thereby reducing the effective dose of toxin capable of gaining access to glycolipid and glycoprotein receptors on epithelial cell surfaces.  相似文献   

3.
This paper describes a protocol for the preparation of highly purified A (A1 and A2) and B chains of the plant toxin, ricin, and biochemical and biological characterization of these proteins. Intact ricin was bound to acid-treated Sepharose 4B and was split on the column into A and B chains with 2-mercaptoethanol. The A chains were eluted with borate buffer containing 2-mercaptoethanol. A1 and A2 were then partially separated by cation exchange chromatography and the contaminating B chain was removed by affinity chromatography on Sepharose-asialofetuin and Sepharose-monoclonal anti-B chain. The B chain was eluted from the Sepharose 4B column by treatment with galactose and was further purified by cation and anion exchange chromatography; contaminating A chains were removed by affinity chromatography on Sepharose-monoclonal anti-A chain. The purified A and B chains were active as determined by their ability to inhibit protein synthesis in a cell-free assay and their binding to asialofetuin, respectively. Furthermore, by polyacrylamide gel electrophoresis, toxicity in mice, and toxicity on several different cell types, both A and B chains were shown to be minimally cross-contaminated. Finally, it was shown that ammonium chloride significantly enhanced the nonspecific toxicity of B chains for cells in vitro. In contrast, ammonium chloride did not enhance either the nonspecific toxicity of A chains in vitro or the specific toxicity of A chain-containing immunotoxins prepared with the highly purified A1, A2 chains.  相似文献   

4.
The extracellular virion form (EV) of vaccinia virus (VACV) is essential for viral pathogenesis and is difficult to neutralize with antibodies. Why this is the case and how the smallpox vaccine overcomes this challenge remain incompletely understood. We previously showed that high concentrations of anti-B5 antibodies are insufficient to directly neutralize EV (M. R. Benhnia, et al., J. Virol. 83:1201–1215, 2009). This allowed for at least two possible interpretations: covering the EV surface is insufficient for neutralization, or there are insufficient copies of B5 to allow anti-B5 IgG to cover the whole surface of EV and another viral receptor protein remains active. We endeavored to test these possibilities, focusing on the antibody responses elicited by immunization against smallpox. We tested whether human monoclonal antibodies (MAbs) against the three major EV antigens, B5, A33, and A56, could individually or together neutralize EV. While anti-B5 or anti-A33 (but not anti-A56) MAbs of appropriate isotypes were capable of neutralizing EV in the presence of complement, a mixture of anti-B5, anti-A33, and anti-A56 MAbs was incapable of directly neutralizing EV, even at high concentrations. This remained true when neutralizing the IHD-J strain, which lacks a functional version of the fourth and final known EV surface protein, A34. These immunological data are consistent with the possibility that viral proteins may not be the active component of the EV surface for target cell binding and infectivity. We conclude that the protection afforded by the smallpox vaccine anti-EV response is predominantly mediated not by direct neutralization but by isotype-dependent effector functions, such as complement recruitment for antibodies targeting B5 and A33.  相似文献   

5.
N-acetylimidazole (NAI) was used to O-acetylate the plant seed toxin ricin. O-acetylation of one to two tyrosine residues per molecule of ricin inhibited ricin binding to Sepharose 4B and decreased toxicity by 90% in a protein synthesis inhibition assay in HeLa cells. Lactose, known to block the binding site on the ricin B subunit, protected ricin from NAI modification of binding or toxicity. Thus NAI, under these conditions, can be a lactose site-specific inhibitor. The lactose site-specific modification of the hybrid toxin, Man6P-ricin, performed under the same conditions, exhibited the same 90% inhibition of Man6P receptor-mediated toxicity as the galactose-containing receptor-mediated toxicity of either Man6P-ricin or ricin. Thus the ricin B chain lactose-binding site appears to be essential for the high potency of Man6P-ricin via the new cell type-specific Man6P receptor. Treatment of fibroblasts with neuraminidase exposes galactose residues, thus increasing the sensitivity to ricin eight fold. The Man6P receptor-mediated toxicity of Man6P-ricin is not affected by this treatment, although the galactose-inhibited route is potentiated eight fold. The Man6P-ricin hybrid appears to require the ricin B chain galactose-binding site to enter the cytosol after initially binding to the Man6P receptor. These data provide some insights into the proper design of hybrid toxins. We discuss a number of possible models for hybrid toxin entry.  相似文献   

6.
Using a newly developed fluorescent nanoparticle (NP) that gives rise to a high-intensity and stable fluorescent light, a sensitive antibody (Ab) microarray assay system has been developed for specific detection of bioterrorism agents, as exemplified by ricin, cholera toxin (CT), and staphylococcal enterotoxin B (SEB). The Ab microarray uses a sandwich format that consists of capture Abs, analytes (toxins), biotinylated detection Abs, and avidin-conjugated NP. In all three cases, polyclonal Abs (pAbs) displayed superiority over monoclonal antibodies (mAbs) in capturing toxins on microarray slides even when the pAbs and mAbs had similar affinity as determined by enzyme-linked immunosorbent assay (ELISA). The detection system was successfully used to detect toxins spiked in milk, apple cider, and blood samples. We were able to detect ricin at 100 pg/ml in buffer and at 1 ng/ml in spiked apple cider or milk, whereas CT and SEB were detected at 10 pg/ml in buffer and 100 pg/ml in spiked apple cider or milk. High specificities were also demonstrated in the detection of mixed toxin samples with similar sensitivities. The matrix effect of blood samples on the detection of mixed toxins seems to be minimal when the toxin concentration is at or above 100 ng/ml. The current study highlights the significant role of pAb and NP in increasing selectivity and sensitivity of toxin detection in a microarray format.  相似文献   

7.
Sandvig K  van Deurs B 《The EMBO journal》2000,19(22):5943-5950
A large number of plant and bacterial toxins with enzymatic activity on intracellular targets are now known. These toxins enter cells by first binding to cell surface receptors, then they are endocytosed and finally they become translocated into the cytosol from an intracellular compartment. In the case of the plant toxin ricin and the bacterial toxin Shiga toxin, this happens after retrograde transport through the Golgi apparatus and to the endoplasmic reticulum. The toxins are powerful tools to reveal new pathways in intracellular transport. Furthermore, knowledge about their action on cells can be used to combat infectious diseases where such toxins are involved, and a whole new field of research takes advantage of their ability to enter the cytosol for therapeutic purposes in connection with a variety of diseases. This review deals with the mechanisms of entry of ricin and Shiga toxin, and the attempts to use such toxins in medicine are discussed.  相似文献   

8.
Kinetic data on toxin and antibody-toxin-conjugate inactivation of protein synthesis have been used to assess the variables which affect the transport of these toxins into the cytosol compartment. First-order inactivation rate constants of protein synthesis (ki) are compared under conditions of known receptor occupancy. The effect of inclusion of toxin B chains, both homologous and heterologous, in antibody-toxin conjugates is observed, and factors which affect toxin lag periods are studied. The results show that the inclusion of B chains in conjugates increases ki values 3-10-fold, but only if the B chain is homologous with the A chain. In spite of the augmentation of antibody-toxin-conjugate ki values by homologous toxin B chain, these ki values are only 1/20 those observed with unmodified toxins on sensitive cells. A further difference noted between toxins and antibody-toxin conjugates is the presence of a dose-dependent lag when toxins, but not antibody-toxin conjugates, effect sensitive cell types. This lag period for ricin can be shortened by alkalinizing the cell medium. The kinetic data can be fit by assuming a processing step interposed between the binding of ricin to surface receptors and the interaction of the A chain with ribosomes which is first-order in toxin concentration and pH-dependent. The time constant of this event is reflected in the dose-dependent lag period. It is proposed that antibody-toxin conjugates do not participate in this processing event and therefore fail to achieve the high entry levels exhibited by unmodified toxins.  相似文献   

9.
Cell surface and intracellular functions for ricin galactose binding.   总被引:4,自引:0,他引:4  
The role of the two galactose binding sites of ricin B chain in ricin toxicity was evaluated by studying a series of ricin point mutants. Wild-type (WT) ricin and three ricin B chain point mutants having mutations in either 1) the first galactose binding domain (site 1 mutant, Met in place of Lys-40 and Gly in place of Asn-46), 2) the second galactose binding domain (site 2 mutant, Gly in place of Asn-255), or 3) both galactose binding domains (double site mutant containing all three amino acid replacements formerly stated) were expressed in Xenopus oocytes and then reassociated with recombinant ricin A chain. The different ricin B chains were mannosylated to the same extent. Cytotoxicity of these toxins was evaluated when cell entry was mediated either by galactose-containing receptors or through an alternate receptor, the mannose receptor of macrophages. WT ricin and each of the single domain mutants was able to kill Vero cells following uptake by galactose containing receptors. Lactose blocked the toxicity of each of these ricins. Site 1 and 2 mutants were 20-40 times less potent than WT ricin, and the double site mutant had no detectable cytotoxicity. WT ricin, the site 1 mutant, and the site 2 mutant also inhibited protein synthesis of mannose receptor-containing cells. Ricin can enter these cells through either a cell-surface galactose-containing receptor or through the mannose receptor. By including lactose in the cell medium, galactose-containing receptor-mediated uptake is blocked and cytotoxicity occurs solely via the mannose receptor. WT ricin, site 1, and site 2 mutants were cytotoxic to macrophages in the presence of lactose with the relative potency, WT greater than site 2 mutant greater than site 1 mutant. The double site mutant lacked cytotoxicity either in the absence or presence of lactose. Thus, even for mannose receptor-mediated toxicity of ricin, at least one galactose binding site remains necessary for cytotoxicity and two galactose binding sites further increases potency. These results are consistent with the model that the ricin B chain galactose binding activity plays a role not only in cell surface binding but also intracellularly for ricin cytotoxicity.  相似文献   

10.
The two exotoxins A and B produced by Clostridium difficile are responsible for antibiotic-associated enterocolitis in human and animals. When added apically to human colonic carcinoma-derived T84 cell monolayers, toxin A, but not toxin B, abolished the transepithelial electrical resistance and altered the morphological integrity. Apical addition of suboptimal concentration of toxin A made the cell monolayer sensitive to toxin B. Both toxins induced drastic and rapid epithelial alterations when applied basolaterally with a complete disorganization of tight junctions and vacuolization of the cells. Toxin A-specific IgG2a from hybridoma PCG-4 added apically with toxin A alone or in combination with toxin B abolished the toxin-induced epithelial alterations for up to 8 h. The Ab neutralized basolateral toxin A for 4 h, but not the mixture of the two toxins. Using an identical Ab:Ag ratio, we found that recombinant polymeric IgA (IgAd/p) with the same Fv fragments extended protection against toxin A for at least 24 h in both compartments. In contrast, the recombinant monomeric IgA counterpart behaved as the PCG-4 IgG2a Ab. The direct comparison between different Ig isotype and molecular forms, but of unique specificity, demonstrates that IgAd/p Ab is more efficient in neutralizing toxin A than monomeric IgG and IgA. We conclude that immune protection against C. difficile toxins requires toxin A-specific secretory Abs in the intestinal lumen and IgAd/p specific for both toxins in the lamina propria.  相似文献   

11.
Ricin is an A-B ribosome inactivating protein (RIP) toxin composed of an A-chain subunit (RTA) that contains a catalytic N-glycosidase and a B-chain (RTB) lectin domain that binds cell surface glycans. Ricin exploits retrograde transport to enter into the Golgi and the endoplasmic reticulum, and then dislocates into the cytoplasm where it can reach its substrate, the rRNA. A subset of isolated antibodies (Abs) raised against the RTA subunit protect against ricin intoxication, and RTA-based vaccine immunogens have been shown to provide long-lasting protective immunity against the holotoxin. Anti-RTA Abs are unlikely to cross a membrane and reach the cytoplasm to inhibit the enzymatic activity of the A-chain. Moreover, there is not a strict correlation between the apparent binding affinity (Ka) of anti-RTA Abs and their ability to successfully neutralize ricin toxicity. Some anti-RTA antibodies are toxin-neutralizing, whereas others are not. We hypothesize that neutralizing anti-RTA Abs may interfere selectively with conformational change(s) or partial unfolding required for toxin internalization. To test this hypothesis, we measured the melting temperatures (Tm) of neutralizing single-domain Ab (sdAb)-antigen (Ag) complexes relative to the Tm of the free antigen (Tm-shift = Tmcomplex – TmAg), and observed increases in the Tmcomplex of 9–20 degrees. In contrast, non-neutralizing sdAb-Ag complexes shifted the TmComplex by only 6–7 degrees. A strong linear correlation (r2 = 0.992) was observed between the magnitude of the Tm-shift and the viability of living cells treated with the sdAb and ricin holotoxin. The Tm-shift of the sdAb-Ag complex provided a quantitative biophysical parameter that could be used to predict and rank-order the toxin-neutralizing activities of Abs. We determined the first structure of an sdAb-RTA1-33/44-198 complex, and examined other sdAb-RTA complexes. We found that neutralizing sdAb bound to regions involved in the early stages of unfolding. These Abs likely interfere with steps preceding or following endocytosis that require conformational changes. This method may have utility for the characterization or rapid screening of other Ab that act to prevent conformational changes or unfolding as part of their mechanism of action.  相似文献   

12.
Abrin, an A/B toxin obtained from the Abrus precatorius plant is extremely toxic and a potential bio-warfare agent. Till date there is no antidote or vaccine available against this toxin. The only known neutralizing monoclonal antibody against abrin, namely D6F10, has been shown to rescue the toxicity of abrin in cells as well as in mice. The present study focuses on mapping the epitopic region to understand the mechanism of neutralization of abrin by the antibody D6F10. Truncation and mutational analysis of abrin A chain revealed that the amino acids 74–123 of abrin A chain contain the core epitope and the residues Thr112, Gly114 and Arg118 are crucial for binding of the antibody. In silico analysis of the position of the mapped epitope indicated that it is present close to the active site cleft of abrin A chain. Thus, binding of the antibody near the active site blocks the enzymatic activity of abrin A chain, thereby rescuing inhibition of protein synthesis by the toxin in vitro. At 1∶10 molar concentration of abrin:antibody, the antibody D6F10 rescued cells from abrin-mediated inhibition of protein synthesis but did not prevent cell attachment of abrin. Further, internalization of the antibody bound to abrin was observed in cells by confocal microscopy. This is a novel finding which suggests that the antibody might function intracellularly and possibly explains the rescue of abrin’s toxicity by the antibody in whole cells and animals. To our knowledge, this study is the first report on a neutralizing epitope for abrin and provides mechanistic insights into the poorly understood mode of action of anti-A chain antibodies against several toxins including ricin.  相似文献   

13.
Novel antibody constructs consisting of two or more different camelid heavy-chain only antibodies (VHHs) joined via peptide linkers have proven to have potent toxin-neutralizing activity in vivo against Shiga, botulinum, Clostridium difficile, anthrax, and ricin toxins. However, the mechanisms by which these so-called bispecific VHH heterodimers promote toxin neutralization remain poorly understood. In the current study we produced a new collection of ricin-specific VHH heterodimers, as well as VHH homodimers, and characterized them for their ability neutralize ricin in vitro and in vivo. We demonstrate that the VHH heterodimers, but not homodimers were able to completely protect mice against ricin challenge, even though the two classes of antibodies (heterodimers and homodimers) had virtually identical affinities for ricin holotoxin and similar IC50 values in a Vero cell cytotoxicity assay. The VHH heterodimers did differ from the homodimers in their ability to promote toxin aggregation in solution, as revealed through analytical ultracentrifugation. Moreover, the VHH heterodimers that were most effective at promoting ricin aggregation in solution were also the most effective at blocking ricin attachment to cell surfaces. Collectively, these data suggest that heterodimeric VHH-based neutralizing agents may function through the formation of antibody-toxin complexes that are impaired in their ability to access host cell receptors.  相似文献   

14.
Ricin is a potent plant toxin consisting of two disulfide-bonded subunits. The A chain of ricin is an N-glycosidase which inactivates 28 S RNA and inhibits protein synthesis. The B chain is a galactose-specific lectin with two galactose-binding sites. The genes encoding preproricin and its A and B chains have been cloned and expressed. In addition, X-ray crystallographic studies have identified the galactose-contact residues in both the high- and low-affinity galactose-binding sites of the B chain. In this study, the high-affinity galactose-contact residue of the B chain was changed from Asn-255 to Ala-255 by oligonucleotide-directed mutagenesis. The resulting mutant was sequenced to confirm the presence of a single mutation and was expressed in Cos-M6 cells. Both wild-type and mutant recombinant B chain could be immunoprecipitated with a heterologous anti-B chain antibody and both could form A-B heterodimers. However, as compared to the wild-type, the mutant B chain lacked more than 99% of its lectin activity and cytotoxicity as an A-B dimer. In conclusion, altering the contact residue of the high-affinity galactose-binding site of ricin B chain from Asn-255 to Ala-255 abrogates more than 99% of its lectin activity and the cytotoxicity of the A-B heterodimer to ricin-sensitive cells.  相似文献   

15.
Ag-induced B cell proliferation in vivo requires a costimulatory signal through CD40, whereas B cell Ag receptor (BCR) ligation by anti-Ig H chain Abs, such as anti-Ig micro H chain Ab and anti-Ig delta H chain Ab, alone induces proliferation of B cells in vitro, even in the absence of CD40 ligation. In this study, we demonstrate that CD40 signaling is required for survival and proliferation of B cells stimulated by protein Ags in vitro as well as in vivo. This indicates that the in vitro system represents B cell activation in vivo, and that protein Ags generate BCR signaling distinct from that by anti-Ig H chain Abs. Indeed, BCR ligation by Ags, but not by anti-Ig H chain Abs, efficiently phosphorylates the inhibitory coreceptors CD22 and CD72. When these coreceptors are activated, anti-Ig H chain Ab-stimulated B cells can survive and proliferate only in the presence of CD40 signaling. Conversely, treatment of Ag-stimulated B cells with anti-CD72 mAb blocks CD72 phosphorylation and induces proliferation, even in the absence of CD40 signaling. These results strongly suggest that activation of B cells by anti-Ig H chain Abs involves their ability to silence the inhibitory coreceptors, and that the inhibitory coreceptors install requirement of CD40 signaling for survival and proliferation of Ag-stimulated B cells.  相似文献   

16.
Protein-based subunit smallpox vaccines have shown their potential as effective alternatives to live virus vaccines in animal model challenge studies. We vaccinated mice with combinations of three different vaccinia virus (VACV) proteins (A33, B5, L1) and examined how the combined antibody responses to these proteins cooperate to effectively neutralize the extracellular virus (EV) infectious form of VACV. Antibodies against these targets were generated in the presence or absence of CpG adjuvant so that Th1-biased antibody responses could be compared to Th2-biased responses to the proteins with aluminum hydroxide alone, specifically with interest in looking at the ability of anti-B5 and anti-A33 polyclonal antibodies (pAb) to utilize complement-mediated neutralization in vitro. We found that neutralization of EV by anti-A33 or anti-B5 pAb can be enhanced in the presence of complement if Th1-biased antibody (IgG2a) is generated. Mechanistic differences found for complement-mediated neutralization showed that anti-A33 antibodies likely result in virolysis, while anti-B5 antibodies with complement can neutralize by opsonization (coating). In vivo studies found that mice lacking the C3 protein of complement were less protected than wild-type mice after passive transfer of anti-B5 pAb or vaccination with B5. Passive transfer of anti-B5 pAb or monoclonal antibody into mice lacking Fc receptors (FcRs) found that FcRs were also important in mediating protection. These results demonstrate that both complement and FcRs are important effector mechanisms for antibody-mediated protection from VACV challenge in mice.  相似文献   

17.
AB toxins such as ricin and cholera toxin (CT) consist of an enzymatic A domain and a receptor-binding B domain. After endocytosis of the surface-bound toxin, both ricin and CT are transported by vesicle carriers to the endoplasmic reticulum (ER). The A subunit then dissociates from its holotoxin, unfolds, and crosses the ER membrane to reach its cytosolic target. Since protein unfolding at physiological temperature and neutral pH allows the dissociated A chain to attain a translocation-competent state for export to the cytosol, the underlying regulatory mechanisms of toxin unfolding are of paramount biological interest. Here we report a biophysical analysis of the effects of anionic phospholipid membranes and two chemical chaperones, 4-phenylbutyric acid (PBA) and glycerol, on the thermal stabilities and the toxic potencies of ricin toxin A chain (RTA) and CT A1 chain (CTA1). Phospholipid vesicles that mimic the ER membrane dramatically decreased the thermal stability of RTA but not CTA1. PBA and glycerol both inhibited the thermal disordering of RTA, but only glycerol could reverse the destabilizing effect of anionic phospholipids. In contrast, PBA was able to increase the thermal stability of CTA1 in the presence of anionic phospholipids. PBA inhibits cellular intoxication by CT but not ricin, which is explained by its ability to stabilize CTA1 and its inability to reverse the destabilizing effect of membranes on RTA. Our data highlight the toxin-specific intracellular events underlying ER-to-cytosol translocation of the toxin A chain and identify a potential means to supplement the long-term stabilization of toxin vaccines.  相似文献   

18.
Autoantibodies directed against spliceosomal heterogeneous nuclear ribonucleoproteins (hnRNPs) are a typical feature of rheumatoid arthritis, systemic lupus erythematosus, and mixed-connective tissue disease. With the aim of investigating a potential pathogenic role of these Abs, we have studied the Ab response to A2/B1 hnRNPs in different murine models of lupus. The specificity of anti-A2/B1 Abs was tested with a series of 14 overlapping synthetic peptides covering the region 1-206 of A2 that contains most of the epitopes recognized by patients' Abs. A major epitope recognized very early during the course of the disease by Abs from most of MRL lpr/lpr mice but not from other lupus mice and from mice of different MHC haplotypes immunized against B1 was identified in residues 50-70. This peptide contains a highly conserved sequence RGFGFVTF also present in other hnRNPs and small nuclear ribonucleoproteins. Abs reacting with a second A2 epitope identified in residues 35-55 were detectable several weeks later, suggesting an intramolecular B cell epitope spreading during the course of the disease. We identified several T cell epitopes within the region 35-175 that generated an effective Th cell response with IL-2 and IFN-gamma secretion in nonautoimmune CBA/J mice sharing the same MHC haplotype H-2k as MRL/lpr mice. None of the peptides stimulated T cells primed in vivo with B1. Because Abs to peptide 50-70 were detected significantly earlier than Abs reacting with other A2 peptides and the protein itself, it is possible that within the protein, this segment contains residues playing an initiator role in the induction of the anti-A2/B1 and antispliceosome Ab response.  相似文献   

19.
Immunizing pregnant women with a malaria vaccine is one approach to protecting the mother and her offspring from malaria infection. However, specific maternal Abs generated in response to vaccination and transferred to the fetus may interfere with the infant's ability to respond to the same vaccine. Using a murine model of malaria, we examined the effect of maternal 19-kDa C-terminal region of merozoite surface protein-1 (MSP1(19)) and Plasmodium yoelii Abs on the pups' ability to respond to immunization with MSP1(19). Maternal MSP1(19)-specific Abs but not P. yoelii-specific Abs inhibited Ab production following MSP1(19) immunization in 2-wk-old pups. This inhibition was correlated with the amount of maternal MSP1(19) Ab present in the pup at the time of immunization and was due to fewer specific B cells. Passively acquired Ab most likely inhibited the development of an Ab response by blocking access to critical B cell epitopes. If a neonate's ability to respond to MSP1(19) vaccination depends on the level of maternal Abs present at the time of vaccination, it may be necessary to delay immunization until Abs specific for the vaccinating Ag have decreased.  相似文献   

20.
Conformation-dependent antigenic determinants in the toxic lectin ricin.   总被引:2,自引:0,他引:2  
The major part of the ricin-precipitable antibodies in sera produced by immunizing rabbits with formaldehyde-treated ricin is precipitated also by the isolated ricin A and B chains. In contrast, in antisera produced by immunizing with formaldehyde-treated ricinus agglutinin only a small part of the antibodies cross-reacting with ricin can be precipitated by the isolated A and B chains, or bound to immunoabsorbents containing the isolated ricin chains. In immunodiffusion studies with anti-ricinus agglutinin sera, a star-shaped precipitate was formed when isolated A and B chains recombined to form intact ricin. Both anti-ricin and anti-ricinus agglutinin sera neutralized effectively the ability of ricin to inhibit protein synthesis in HeLa cells. Anti-ricin serum also neutralized the inhibitory effect of the isolated A chain on protein synthesis in a cell-free system and the ability of the isolated B chain to induce indirect hemagglutination. In contrast, antiricinus agglutinin serum did not neutralize the biologic activities of the isolated ricin A and B chains. Anti-ricinus agglutinin serum formed a precipitate with the hybrid ricin A chain/abrin B chain, and protected against the toxic effect on HeLa cells of this hybrid, indicating conformational changes of ricin A chain upon binding to the B chain. It is concluded that the anti-ricinus agglutinin serum contains antibodies directed against conformational determinants present on intact ricin, but not present or exposed in the isolated A and B chains. At least part of these conformational determinants appears to be carried by the A chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号