首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 629 毫秒
1.
The Origin and Fate of Annulate Lamellae in Maturing Sand Dollar Eggs   总被引:10,自引:10,他引:0       下载免费PDF全文
Electron micrograph evidence is presented that the nuclear envelope of the mature ovum of Dendraster excentricus is implicated in a proliferation of what appear as nuclear envelope replicas in the cytoplasm. The proliferation is associated with intranuclear vesicles which apparently coalesce to form comparatively simple replicas of the nuclear envelope closely applied to the inside of the nuclear envelope. The envelope itself may become disorganized at the time when fully formed annulate lamellae appear on the cytoplasmic side and parallel with it. The concept of interconvertibility of general cytoplasmic vesicles with most of the membrane systems of the cytoplasm is presented. The structure of the annuli in the annulate lamellae is shown to include small spheres or vesicles of variable size embedded in a dense matrix. Dense particles which are about 150 A in diameter are often found closely associated with annulate lamellae in the cytoplasm. Similar structures in other echinoderm eggs are basophilic. In this species, unlike other published examples, the association apparently takes place in the cytoplasm only after the lamellae have separated from the nucleus. If 150 A particles are synthesized by annulate lamellae, as their close physical relationship suggests, then in this species at least the necessary synthetic mechanisms and specificity must reside in the structure of annulate lamellae.  相似文献   

2.
Intranuclear and cytoplasmic annulate lamellae were studied in grasshopper spermatocytes (Melanoplus) with the electron microscope. Although cytoplasmic annulate lamellae were observed in all three species examined, intranuclear annulate lamellae were found in only one species. The intranuclear annulate lamellae encompass certain nuclear material adjacent to the nuclear envelope forming a vesicle that is extruded into the spermatocyte cytoplasm. In this same species, cytoplasmic annulate lamellae are seen contiguous with granular masses of varying size. These structures were noted as being morphologically indistinguishable from the "yolk nuclei" of dragonfly oocytes (Kessel and Beams, 1969; Kessel, 1973).  相似文献   

3.
Developing oocytes, ranging from approximately 0.1 to 1.0 mm in diameter, in Necturus were studied with the electron microscope. The outer layer of the nuclear envelope is actively engaged in the formation of vesicular elements along most of its surface, especially in smaller oocytes. Groups of vesicles appear to be released into the ooplasm at about the same time, resulting in long chains of individual vesicles immediately adjacent to the nuclear membrane. This process is repeated so that chains of vesicles grouped in rather ordered ranks extend progressively into the surrounding cytoplasm. Eventually, the cytoplasm becomes more concentrated with chains of vesicles and the distance between the individual rows becomes less. Very soon after a chain of vesicles has been budded off from the nuclear membrane, fine intervesicular connections appear between certain of the vesicles comprising the rows. Several of the vesicles in a row may then fuse, forming short, flattened cisternae. Fusion of vesicles continues, individual rows of vesicles become more closely packed and, finally, regions appear in the cytoplasm which have the appearance of annulate lamellae. Further growth of the lamellae appears to occur by the progressive fusion of vesicles at the ends of those lamellae already present, as well as by the addition of other fusing rows of vesicles.  相似文献   

4.
During spermiogenesis in Drosophila melanogaster, a “perinuclear plasm’ accumulates between the fenestrated portion of the nuclear envelope and an adjacent lamella of ER in the young spermatid. Microtubules appear within the perinuclear plasm and become especially concentrated in a nuclear concavity. Cytoplasmic pores are present locally within the lamella of ER. In addition, localized or discrete bodies composed of fibrogranular material become closely associated with single pore complexes in the lamella of ER. A close association exists between pore complexes (annulate lamellae), the small granular and fibrillar subunits of the fibrogranular bodies, polyribosomes and the nuclear-associated microtubules during much of spermiogenesis. While the fibrogranular material becomes less concentrated during spermiogenesis, the number of pore complexes in a single section increases such that two, three or even four short annulate lamellae are intercalated within many longitudinally oriented microtubules which are present in the furrow of the spermatid nucleus. Structural relationships observed between cytoplasmic pores (annulate lamellae), fibrogranular bodies, polyribosomes and microtubules are discussed in relation to information about the timing of RNA and protein synthesis. This study extends previous observations about the distribution and structural variations of annulate lamellae elsewhere in the spermatid cytoplasm.  相似文献   

5.
E V Zybina 《Tsitologiia》1979,21(12):1419-1426
Intranuclear and cytoplasmic annulate lamellae in polyploid giant cells of the trophoblast have been studied in rat placenta on days 12--17 of development. The annulate lamellae are present in the cytoplasm within a limited time, being visible on day 12 only. These are arranged in bundles near the nucleus to be moving then to the cytoplasm. The end parts of annulate lamellae are broadened to make cisterns of rough endoplasmic reticulum. Unlike the cytoplasmic annulate lamellae, those found within the nucleus are seen in part of the nuclei investigated throughout the whole period examined to look as single structures (not gathered in bundles), they can be branching, separating closed spaces within the nucleus (making local swellings in the loci of branching; the latter having electron dense or transparent vesicles). Association with nuclear chromatin in some regions is a peculiar feature of the intranuclear annulate lamellae. This association is especially obvious at endoprophase in the cycle ofthe polytene nucleus during the somatic conjugation--chromonemes unite in a bundle and condense. Ultrastructural changes of the annulate lamellae is noted throughout the polytene nucleus cycle and during the cell differentiation. It is supposed that in the case of temporary labile chromosome polyteny in the nuclear cycle, which is characteristic of mammalian trophoblasts, annulate lamellae can well compare, in their function, with the synaptonemal complex--these prevent from too tight associations of homologues in the course of somatic conjugation of chromosomes.  相似文献   

6.
During initial stages of oogenesis, many nucleoli are adpressed to the inner membrane of the nuclear envelope. Small nucleolar fragments appear to traverse the pores of the nuclear envelope and accumulate in the perinuclear ooplasm as fibrogranular bodies. Mitochondria become closely associated with some of the fibrogranular bodies. In addition to ribosomes and polyribosomes that are present in small oocytes, lamellae of rough-surfaced endoplasmic reticulum (rER) increase greatly in number during early stages of differentiation. Some individual lamellae are attached at their ends to the outer membrane of the nuclear envelope. Many parallel lamellae of rER are then encountered as well as numerous circular profiles consisting of concentric loops of rER. Soon after the differentiation of the extensive system of rER, lipid droplets or spheres appear in the ooplasm and they are initially surrounded by many circular, concentric lamellae of rER. Initially, the number of concentric lamellae of rER surrounding a lipid droplet may vary from less than a dozen to more than two dozen. During middle and late phases of vitellogenesis, most of the lipid spheres that comprise the most numerous and significant component of the yolk are surrounded by only one or two concentric lamellae of rER (in some cases the lamellae are part rough-surfaced and part smooth-surfaced). In addition, annulate lamellae are then observed to be associated with a portion of the lipid droplet surface. The number of annulate lamellae that extend focally from the lipid sphere distally into the cytoplasm is variable; often two or three to more than a dozen lamellae. Small granules, many of which range from 6 to 12 nm and thin fibrils (approximately 2–3 nm in width) may be associated with the annulate lamellae. In addition, polyribosomes frequently appear to be continuous with the pore-associated material of the annulate lamellae. The ends of some annulate lamellae may extend as lamellae of the rER. The morphologic relationships and relationships and variations observed between the lipid droplets, rER, annulate lamellae, and polyribosomes during lipidogenesis in this oocyte are interpreted to support a recent hypothesis (Kessel, 1981a,b) that the pores of annulate lamellae may be involved in some manner with the processing of ribosomal subunits or precursors into functioning polyribosomes, and that their appearance in specific association with the surface of many lipid spheres and rER in the oocyte late in vitellogenesis may be related to the formation of additional functional polyribosomes necessary to complete the final synthesis of many lipid droplets that are present in the ooplasm of the full-grown oocyte.  相似文献   

7.
Summary Intranuclear annulate lamellae have been observed with the electron microscope in oocytes of the tunicate, Styela partita. Morphological evidence suggests that the annulate lamellae may arise by a specialized fusion process of individual vesicles. Intranuclear vesicles appear to be formed, in time, before differentiated annulate lamellae. It is also suggested that the position and structure of an annulus is in large part determined by the fusion of the vesicles. An annulus may be present as soon as two vesicles have completed their fusion process. Finally, it is again suggested on the basis of morphological evidence that the intranuclear vesicles are derived by the blebbing activity of the inner layer of the nuclear envelope.This investigation was supported by grants (RG-9229, 9230) from the National Institutes of Health, Public Health Service. The electron microscope facilities used were also supported by a grant (GM-05479) from the National Institutes of Health to Professor H. W. Beams.  相似文献   

8.
Summary During an ultrastructural study of the eggs of the serpulid wormPomatoceros triqueter L., annulate lamellae were frequently encountered in the cytoplasm. In particular, some observations indicated that they originate by successive outfoldings of the nuclear envelope. Consequently, annulate lamellae must consist of alternating layers of nuclear and cytoplasmic material, each layer being separated by part of the nuclear envelope. It was observed that there was a similarity between nuclear and inter-annulate lamellar material. Moreover tritiated thymidine was shown to be present in the stacks. It is inferred that this system might well function as an efficient means of transporting nuclear material into the cytoplasm. The authors wish to thank Messrs. P. C. Lloyd, P. Henley and D. Williams for technical assistance.  相似文献   

9.
Summary Primary fixation of the frog oocyte with glutaraldehyde, compared to osmium tetroxide, alters the appearance of components involved in the morphogenesis of annulate lamellae. With glutaraldehyde, the outer layer of the nuclear envelope is connected with membranous laminae of variable length. Rounded blebs of the outer layer of the nuclear envelope are infrequently observed. Further, rather than clusters or rows of cytoplasmic vesicles as are observed in osmium tetroxide-fixed cells; numerous and long, smooth-surfaced lamellae are present in the ooplasm after glutaraldehyde fixation. The long membranous laminae then become concentrated in several ooplasmic packets. This is followed by the progressive alignment or orientation of the laminae within the packet. Eventually, those aligned and formerly smooth-surfaced lamellae are converted into annulate lamellae.This study was supported by research grants (HD-00699, GM-09229) and a Career Development Award from the National Institutes of Health, U.S. Public Health Service.  相似文献   

10.
Extract prepared from activated Xenopus eggs is capable of reconstituting nuclei from added DNA or chromatin. We have incubated such extract in the absence of DNA and found that numerous flattened membrane cisternae containing densely spaced pore complexes (annulate lamellae) formed de novo. By electron and immunofluorescence microscopy employing a pore complex-specific antibody we followed their appearance in the extract. Annulate lamellae were first detectable at a 30-min incubation in the form of short cisternae which already contained a high pore density. At 90-120 min they were abundantly present and formed large multilamellar stacks. The kinetics of annulate lamellae assembly were identical to that of nuclear envelope formation after addition of DNA to the extract. However, in the presence of DNA or chromatin, i.e., under conditions promoting the assembly of nuclear envelopes, annulate lamellae formation was considerably reduced and, at sufficiently high chromatin concentrations, completely inhibited. Incubation of the extract with antibodies to lamin LIII did not interfere with annulate lamellae assembly, whereas in the presence of DNA formation of nuclear envelopes around chromatin was inhibited. Our data show that nuclear membrane vesicles are able to fuse spontaneously into membrane cisternae and to assemble pore complexes independently of interactions with chromatin and a lamina. We propose that nuclear envelope precursor material will assemble into a nuclear envelope when chromatin is available for binding the membrane vesicles, and into annulate lamellae when chromatin is absent or its binding sites are saturated.  相似文献   

11.
This review is devoted to annulate lamellae, a specific compartment of endoplasmic reticulum that occurs, presumably, in actively growing and rapidly dividing cells (oocytes, embryonic and tumor cells). We summarized both earlier and recent data on the dustribution of annulate lamellae in various cell types, on their morphology, and the distribution of interaction with intracellular structures at various treatments. As the annulate lamellae contain cytoplasmic pore complexes, a special attention was paid to their relation with nuclear pores. Possible functions of the annulate lamellae in intracellular processes and, particularly, in nuclear envelope assembly, are discussed.  相似文献   

12.
Semi-isolated annulate lamellae were prepared from single newt oocytes (Triturus alpestris) by a modified Callan-Tomlin technique. Such preparations were examined with the electron microscope, and the negative staining appearance of the annulate lamellae is described. The annulate lamellae can be detected either adhering to the nuclear envelope or being detached from it. Sometimes they are observed to be connected with slender tubular-like structures interpreted as parts of the endoplasmic reticulum. The results obtained from negative staining are combined with those from sections. Especially, the structural data on the annulate lamellae and the nuclear envelope of the very same cell were compared. Evidence is presented that in the oocytes studied the two kinds of porous cisternae, namely annulate lamellae and nuclear envelope, are markedly distinguished in that the annulate lamellae exhibit a much higher pore frequency (generally about twice that found for the corresponding nuclear envelope) and have also a relative pore area occupying as much as 32% to 55% of the cisternal surface (compared with 13% to 22% in the nuclear envelopes). The pore diameter and all other ultrastructural details of the pore complexes, however, are equivalent in both kinds of porous cisternae. Like the annuli of the nuclear pore complexes of various animal and plant cells, the annuli of the annulate lamellae pores reveal also an eightfold symmetry of their subunits in negatively stained as well as in sectioned material. Furthermore, the annulate lamellae are shown to be a site of activity of the Mg-Na-K-stimulated ATPase.  相似文献   

13.
Electron microscope studies were made on various tunicate oocytes at different stages of growth and development. Both the inner and outer lamellae of the perforated nuclear envelope demonstrate considerable blebbing activity. The blebs of the inner lamella detach into the nucleoplasm where they undergo a special type of fusion process resulting in the formation of numerous, usually single, differentiated annulate lamellae of various lengths. The blebbing of the outer layer of the nuclear envelope contributes to the vesicular and granular endoplasmic reticulum characteristically present in the ooplasm and perhaps to the differentiation of cytoplasmic annulate lamellae as well. Cytoplasmic stacks of annulate lamellae frequently have ribosomes associated with them. In addition, granular accumulations are sometimes observed around or between the annuli. The morphological evidence suggests that, at least in many cases, the annuli in the annulate lamellae are patent.  相似文献   

14.
The structure of the eggs of the sea urchin, Arbacia punctulata, has been investigated after the removal of one-half of the cellular protein. The procedure involves treatment of the eggs with 30 per cent ethanol at -10°C. followed by extraction of the soluble proteins with water. The eggs remain intact, although all of the cytoplasmic matrix is removed. Most cell structures can still be identified, although only the membranes of most remain. The mitochondria lose all of their matrix but retain the inner membranes or cristae. The annulate lamellae appear unaffected by this extraction procedure, remaining intact and apparently undamaged. The nuclear envelope is also retained, although it often undergoes a curious disorganization, apparently as the result of the separation of its two layers. The significance of these observations with respect to the structure of the envelope is discussed.  相似文献   

15.
THE RABBIT ZYGOTE : III. Formation of the Blastomere Nucleus   总被引:2,自引:2,他引:0       下载免费PDF全文
The formation of the blastomere nucleus was examined in the rabbit zygote with the electron microscope. In late anaphase the chromosomes are bare and vesicles of the smooth endoplasmic reticulum are numerous in the vicinity of the chromosomes. In early telophase individual chromosomes attain their own nuclear envelope and they are called karyomeres. The envelope of the karyomeres contains small gaps within it at several places where the chromatin is exposed to the cytoplasm. Nuclear pores are also observed. In the cytoplasm short annulate lamellae appear adjacent to the karyomeres, and clusters of punctate substance are also present. From early telophase onward the karyomeres extend pseudopod-like structures, called karyopods, which extend toward other karyomeres or karyopods, and consequently fuse together and serve as chromosomal bridges. Eventually all of the karyomeres fuse into a dense nucleus and decondensation of the chromosomes occurs.  相似文献   

16.
Morphological data are presented concerning the single-membrane-bound vesicles ("oval bodies") associated with the nuclear envelopes of larval salivary gland cells of Drosophila. Data are also presented concerning the existence of cytoplasmic annulate lamellae in these same cells. The mode of formation of these structures, as well as the relationships between them and with other cytoplasmic organelles are described. The possible functional significance of these phenomena is discussed.  相似文献   

17.
Summary The formation of the extranuclear annulate lamellae has been revealed to be connected with a process of nuclear emission which is very active during the previtellogenetic stages of the Boltenia oocyte development. This process involves both of the nuclear membranes. At many spots on the surface of the nuclear envelope, the outer membrane pulls away from the inner membrane, thus forming what has been designated as blisters of various sizes and shapes. Masses of nuclear content, apparently not from the nucleolus, are pushed into the blisters. These blisters may become detached from the nuclear envelope and lie free in the cytoplasm. But in many cases, the detachment seems delayed, and in each blister many emission masses are squeezed tightly together and flat one on top of the other. These masses, in sections, may present the appearance of a stack of elongated outlines. The membrane, limiting any two adjacent masses in close contact, develop annuli. It is thus that an annulate lamella is formed. Whether an annulate lamella is formed between a pair of neighboring masses depends on their proximity. So the production of the annulate lamellae is incidental to, but not a necessary part of the process of nuclear emission. After the original outer nuclear membrane forming the blister has disintegrated, the annulate lamellae are left exposed in the cytoplasm.It is clear that, 1. both membranes of an annulate lamella are of inner nuclear membrane origin, 2. they hold between them some of the content of the enlarged perinuclear space resulting from the raising of the outer nuclear membrane when the blister is formed, and 3. the material held between any two lamellae is from the nucleus.The intranuclear annulate lamellae simply arise from the narrow pouches formed by the inner nuclear membrane towards the interior of the nucleus, and on these narrow pouches annuli are developed. So the intranuclear annulate lamellae is also composed of two membranes of an inner nuclear membrane origin holding between them a quantity of the content of the perinuclear space.Supported by Grant GM-11858 of National Institute of Health. The author is indebted to Dr. Richard Cloney of the Department of Zoology, University of Washington, for the use of the electron microscope.  相似文献   

18.
Summary Early diplotene oocytes from Necturus maculosus ranging from 0.2 to 0.5 mm in diameter were examined by electron microscopy. In the smallest oocytes of this range, the cytoplasm is largely devoid of membranes, but contains primarily ribosomes and mitochondria. In slightly larger oocytes, smooth-surfaced cytomembranes first appear in the perinuclear cytoplasm. At this time, the outer layer of the germinal vesicle nuclear envelope (GVNE) shows frequent connections with long membranous lamellae that extend for considerable, but variable distances into the juxtanuclear ooplasm. The number of smooth membranous lamellae increases tremendously as the oocytes increase in diameter. In such oocytes as well, frequent continuities are observed between the outer membrane of the GVNE and many of the cytoplasmic membranes. Eventually, as the ooplasm becomes populated with extensive numbers of membranous lamellae, instances of continuity between the membranous lamellae and nuclear envelope now become sparse and eventually non-existent. The frequent connections observed between membranous lamellae and the outer membrane of the GVNE during a circumscribed interval of diplotene strongly implicate the GVNE in the generation of extensive amounts of cytoplasmic membrane. The ooplasm of larger oocytes in the size range indicated contain numerous Golgi complexes and large quantities of annulate lamellae most of which are positioned in the peripheral or subcortical ooplasm, as well as extensive quantities of smooth membranes of the endoplasmic reticulum and lipid droplets.  相似文献   

19.
The nuclear pore complexes are complex protein structures located in the nuclear envelope, where they control the nuclear-cytoplasmic transport, and inside the stacks of endoplasmic reticulum cisternae, annulate lamellae. After overexpression of some nucleoporins, numerous granules are visible in the cytoplasm. According to the published data, these granules are the annulate lamellae. In the current paper, the structural organization of POM121-containing granules was analyzed using correlative light and electron microscopy. The ultrastructural study demonstrates that POM121-containing granules are not annulate lamellae but aggregates of endoplasmic reticulum membranes. Thus, overexpressed POM121 is not able to induce the annulate lamella formation. The mechanisms of self-organization of non-functional structures (such as the aggregates of endoplasmic reticulum membranes described here) and possible involvement of these mechanisms in the formation of cellular structures are discussed.  相似文献   

20.
Annulated membranes in the form of single and short lamellae are present adjacent to and parallel to the nuclear envelope in oogonia and early oocyte (synaptene) stages of the dragonfly, Libellula pulchella. These solitary and short annulate lamellae are usually continuous with long, part rough- and part smooth-surfaced cisternae which extend into more distal areas of the oogonial ooplasm. These particular annulate lamellae then either disappear or decrease in number to be replaced by a much more extensive system of annulate lamellae in the cortical ooplasm of previtellogenic oocytes. The differentiation of extensive stacks of annulate lamellae is consistently observed to be restricted to large cytoplasmic areas of considerable electron density. These cytoplasmic regions consist of material which stains basophilic and contains RNA but differs structurally from the large number of ribosomes which surround the dense masses. The cytoplasmic dense masses, in terms of their formation and staining reactions, are comparable to the "yolk nuclei" or "Balbiani bodies" described in insect oocytes in earlier studies. The results of the present study thus provide evidence that the appearance of cortical ooplasmic stacks of annulate lamellae in the dragonfly oocyte is specifically limited to cytoplasmic areas of high electron density which contain RNA but which do not have a ribosomal morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号