首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
We have produced transgenic plants of the tropical forage crop Brachiaria ruziziensis (ruzigrass) by particle bombardment-mediated transformation of multiple-shoot clumps and embryogenic calli. Cultures of multiple-shoot clumps and embryogenic calli were induced on solidified MS medium supplemented with 0.5mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) and 2mg/L 6-benzylaminopurine (BAP) or 4mg/L 2,4-D and 0.2mg/L BAP, respectively. Both cultures were bombarded with a vector containing an herbicide resistance gene (bar) as a selectable marker and the β-glucuronidase (GUS) reporter gene. Sixteen hours after bombardment, embryogenic calli showed a significantly higher number of transient GUS expression spots per plate and callus than multiple-shoot clumps, suggesting that embryogenic callus is the more suitable target tissue. Following bombardment and selection with 10mg/L bialaphos, herbicide-resistant embryogenic calli regenerated shoots and roots in vitro, and mature transgenic plants have been raised in the greenhouse. Polymerase chain reaction (PCR) and DNA gel blot analysis verified that the GUS gene was integrated into the genome of the two regenerated lines. In SacI digests, the two transgenic lines showed two or five copies of GUS gene fragments, respectively, and integration at different sites. Histochemical analysis revealed stable expression in roots, shoots and inflorescences. Transgenic plants derived from diploid target callus turned out to be sterile, while transgenics from colchicine-tetraploidized callus were fertile.  相似文献   

2.
The microprojectile bombardment method was used to transfer DNA into embryogenic callus of asparagus (Asparagus officcinalis L.) and to produce stably transformed asparagus plants. Embryogenic callus, derived from UC 157 and UC72 asparagus cultivars, was bombarded with tungsten particles coated with plasmid DNA that contained genes encoding hygromycin phosphotransferase, phosphinothricin acetyl transferase and -glucuronidase. Putatively transformed calli were identified from the bombarded tissue after 4 months selection on 25 mg/L hygromycin B plus 4 mg/L phosphinothricin (PPT). By selecting embryogenic callus on hygromycin plus PPT the overall transformation and selection efficiencies were substantially improved over selection with hygromycin or PPT alone, where no transgenic clones were recovered. The transgenic nature of the selected material was demonstrated by GUS histochemical assays and Southern blot hybridization analysis. Transgenic asparagus plants were found to withstand the prescribed levels of the PPT-based herbicide BASTATM for weed control.Abbreviations GUS -glucuronidase - HPT hygromycin phosphotransferase - bar phosphinothricin acetyl transferase gene - PPT phosphophinothricin - NAA naphthalene acetic acid - 2iP 2-isopentenyl adenine  相似文献   

3.
Switchgrass (Panicum virgatum L.) has been developed into an important biofuel crop. Embryogenic calli induced from caryopses or inflorescences of the lowland switchgrass cultivar Alamo were used for Agrobacterium-mediated transformation. A chimeric hygromycin phosphotransferase gene (hph) was used as the selectable marker and hygromycin as the selection agent. Embryogenic calli were infected with Agrobacterium tumefaciens strain EHA105. Calli resistant to hygromycin were obtained after 5 to 8 weeks of selection. Soil-grown transgenic switchgrass plants were obtained 4 to 5 months after Agrobacterium infection. The transgenic nature of the regenerated plants was demonstrated by PCR, Southern blot hybridization analysis, and GUS staining. T1 progeny were obtained after reciprocal crosses between transgenic and untransformed control plants. Molecular analyses of the T1 progeny revealed various patterns of segregation. Transgene silencing was observed in the progeny with multiple inserts. Interestingly, reversal of the expression of the silenced transgene was found in segregating progeny with a single insert.  相似文献   

4.
We have developed a system to produce transgenic plants in tea (Camelia sinensis [L.] O. Kuntze) viaAgrobacterium tumefaciens-mediated transformation of embryogenic calli. Cotyledon-derived embryogenic callus cultures were cocultivated with anA. tumefaciens strain (AGL 1) harboring a binary vector carrying the hygromycin phosphotransferase (hpt II), glucuronidase (uid A), and green fluorescent protein (GFP) genes in the tDNA region. Following cocultivation, embryogenic calli were cultured in medium containing 500 mg/L carbenicillin for 1 wk and cultured on an antibiotic selection medium containing 75 mg/L hygromycin for 8–10 wk. Hygromycin-resistant somatic embryos were selected. The highest production efficiency of hygromycin-resistant calli occurred with cocultivation for 6–7 d in the presence of 400 μM acetosyringone (AS). Hygromycin-resistant somatic embryos developed into complete plantlets in regeneration medium containing half-strength Murashige and Skoog (MS) salts with 1 mg/L benzyl amino purine (BAP) and 9 mg/L giberellic acid (GA3). Transformants were subjected to GFP expression analysis, β-glucuronidase (GUS) histochemical assay, PCR analysis, and Southern hybridization to confirm gene integration.  相似文献   

5.
 Embryogenic calli were induced from leaf explants of coffee (Coffea canephora) on McCown's woody plant medium (WPM) supplemented with 5 μM N6–(2-isopentenyl)-adenosine (2-iP). These calli were co-cultured with Agrobacterium tumefaciens EHA101 harboring pIG121-Hm, containing β-glucuronidase (GUS), hygromycin phosphotransferase (HPT), and neomycin phosphotransferase II genes. Selection of putative transgenic callus was performed by gradual increase in hygromycin concentration (5, 50, 100 mg/l). The embryogenic calli surviving on medium containing 100 mg/l hygromycin showed a strong GUS-positive reaction with X-Gluc solution. Somatic embryos were formed from these putative transgenic calli and germinated on WPM medium with 5 μM 2-iP. Regenerated small plantlets with shoots and roots were transferred to medium containing both 100 mg/l hygromycin and 100 mg/l kanamycin for final selection of transgenic plants. The selected plantlets exhibited strong GUS activity in leaves and roots as indicated by a deep blue color. GUS and HPT genes were confirmed to be stably integrated into the genome of the coffee plants by the polymerase chain reaction. Received: 14 December 1998 / Revision received: 12 March 1999 / Accepted: 24 March 1999  相似文献   

6.
Russian wildrye (Psathyrostachys juncea (Fisch.) Nevski) is a cool-season forage species well adapted to semi-arid climates. We are interested in developing biotechnological methods to improve this monocot forage species. Single genotype-derived embryogenic suspension cultures were established from the Russian wildrye cultivar Bozoisky-Select, and were used as target cells for biolistic transformation. A chimeric hygromycin phosphotransferase gene (hph) was used as the selectable marker, and a chimeric -glucuronidase (gusA) gene was co-transformed with hph. Resistant calli were obtained from 29% of the bombarded dishes after selection with 200 mg/l hygromycin. Plants were regenerated from 45% of the hygromycin resistant calli. Thirty-six transgenic Russian wildrye plants were recovered after microprojectile bombardment of suspension cells and subsequent hygromycin selection. The transgenic nature of the regenerated plants was demonstrated by Southern hybridization analysis using undigested and digested genomic DNA samples. When a second gene (gusA) was co-transformed with hph, a reasonably high co-transformation frequency of 78% was observed. Transgenic expression of gusA was confirmed by GUS staining of shoot and leaf tissues. Fertile transgenic plants were obtained after two winters of vernalization under field conditions. This is the first report on the generation of transgenic plants in Russian wildrye.  相似文献   

7.
Yang J  Bi HP  Fan WJ  Zhang M  Wang HX  Zhang P 《Plant science》2011,181(6):701-711
Efficient Agrobacterium tumefaciens-mediated transformation was developed using embryogenic suspension cell cultures of elite sweet potato (Ipomoea batatas [L.] Lam.) cultivars, including Ayamurasaki, Sushu2, Sushu9, Sushu11, Wanshu1, Xushu18 and Xushu22. Embryogenic suspension cultures were established in LCP medium using embryogenic calli induced from apical or axillary buds on an induction medium containing 2 mg l−1 2,4-D. Suspension cultures were co-cultivated with A. tumefaciens strain LBA4404 harboring the binary plasmid pCAMBIA1301 with the hpt gene as a selectable marker and an intron-interrupted uidA gene as a visible marker. Several key steps of the sweet potato transformation system have been investigated and optimized, including the appropriate antibiotics and their concentrations for suppressing Agrobacterium growth and the optimal doses of hygromycin for transformant selection. A total of 485 putative transgenic plant lines were produced from the transformed calli via somatic embryogenesis and germination to plants under 10 mg l−1 hygromycin and 200 mg l−1 cefotaxime. PCR, GUS and Southern blot analyses of the regenerated plants showed that 92.35% of them were transgenic. The number of T-DNA insertions varied from one to three in most transgenic plant lines. Plants showed 100% survival when 308 transgenics were transferred to soil in the greenhouse and then to the field. Most of them were morphologically normal, with the production of storage roots after 3 months of cultivation in the greenhouse or fields. The development of such a robust transformation method suitable to a range of sweet potato genotypes not only provides a routine tool for genetic improvement via transgenesis but also allows us to conduct a functional verification of endogenous genes in sweet potato.  相似文献   

8.
Summary An analysis of the progeny of primary transgenic pea plants in terms of transmission of the transferred DNA, fertility and morphology is presented. A transformation system developed for pea that allows the regeneration of fertile transgenic pea plants from calli selected for antibiotic resistance was used. Expiants from axenic shoot cultures were co-cultivated with a nononcogenic Agrobacterium tumefaciens strain carrying a gene encoding hygromycin phosphotransferase as selectable marker, and transformed callus could be selected on callus-inducing media containing 15 mg/l hygromycin. After several passages on regeneration medium, shoot organogenesis could be reproducibly induced on the hygromycin resistant calli, and the regenerated shoots could subsequently be rooted and transferred to the greenhouse, where they proceeded to flower and set seed. The transmission of the introduced gene into the progeny of the regenerated transgenic plants was studied over two generations, and stable transmission was shown to take place. The transgenic nature of the calli and regenerated plants and their progeny was confirmed by DNA and RNA analysis. The DNA and ploidy levels of the progeny plants and primary regenerants were studied by chromosome analysis, and the offspring of the primary transformants were evaluated morphologically.Abbreviations 2,4-D 2,4-Dichlorophenoxyacetic acid - BA 6-ben-zyladenine - hpt hygromycin phosphotransferase gene - IAA indole acetic acid, kin, kinetin - NAA -naphtalene acetic acid - picloram 4-amino-3,5,6-trichloropicolinic acid  相似文献   

9.
Three antibiotics were evaluated for their effects on the elimination of Agrobacterium tumefaciens during the genetic transformation of loblolly pine ( Pinus taeda L.) using mature zygotic embryos as targets. Agrobacterium tumefaciens strains, EHA105, GV3101, and LBA 4404, all harbouring the plasmid pCAMBIA1301, which carries the selectable marker gene, hygromycin phosphotransferase ( hpt) controlled by the cauliflower mosaic virus 35S promoter and terminator, and the uidA reporter gene (GUS) driven by the cauliflower mosaic virus 35S promoter and the terminator of nopaline synthase gene, were used in this study. Exposure to 350 mg l-1 carbenicillin, claforan, and timentin respectively for up to 6 weeks did not eliminate the Agrobacterium, while antibiotics at 500 mg l-1 eradicated them from the co-cultivated zygotic embryos. All three antibiotics increased callus growth and shoot regeneration at 350 and 500 mg l-1 each, but reduced callus growth and shoot regeneration at 650 mg l-1 when compared with controls. Putative transgenic calli were selected for continued proliferation and differentiation on 4.5 mg l-1 hygromycin-containing medium. Transformed calli and transgenic plants produced on a selection medium containing 4.5 mg l-1 hygromycin were confirmed by GUS histochemical assays, by polymerase chain reaction (PCR), and by Southern blot analysis. These results are useful for future studies on optimizing genetic transformation procedures in loblolly pine.  相似文献   

10.
Rapid and widespread evolution of multiple herbicide resistance in global weed species endowed by increased capacity to metabolize (degrade) herbicides (metabolic resistance) is a great threat to herbicide sustainability and global food production. Metabolic resistance in the economically damaging crop weed species Lolium rigidum is well known but a molecular understanding has been lacking. We purified a metabolic resistant (R) subset from a field evolved R L. rigidum population. The R, the herbicide susceptible (S) and derived F2 populations were used for candidate herbicide resistance gene discovery by RNA sequencing. A P450 gene CYP81A10v7 was identified with higher expression in R vs. S plants. Transgenic rice overexpressing this Lolium CYP81A10v7 gene became highly resistant to acetyl-coenzyme A carboxylase- and acetolactate synthase-inhibiting herbicides (diclofop-methyl, tralkoxydim, chlorsulfuron) and moderately resistant to hydroxyphenylpyruvate dioxygenase-inhibiting herbicide (mesotrione), photosystem II-inhibiting herbicides (atrazine and chlorotoluron) and the tubulin-inhibiting herbicide trifluralin. This wide cross-resistance profile to many dissimilar herbicides in CYP81A10v7 transgenic rice generally reflects what is evident in the R L. rigidum. This report clearly showed that a single P450 gene in a cross-pollinated weed species L. rigidum confers resistance to herbicides of at least five modes of action across seven herbicide chemistries.  相似文献   

11.
Summary A highly efficient method for stable wheat transformation using hygromycin resistance as a selectable marker is described. Young embryogenic calli growing from immature wheat embryos were transformed using a gunpowder-driven microparticle accelerator. Transgenic wheat plants were determined by PCR amplification of transgene fragments and confirmed by Southern hybridization, activity of the transgene expression and by analysis of the progeny. The hpt gene was as good as or a better selectable marker than the bar gene with an average efficiency (number of transgenic plants relative to the number of bombarded calli) of 5.5% compared with 2.6% for the bar gene.  相似文献   

12.
Meadow fescue (Festuca pratensis Huds.) is an important cool-season forage grass in Europe and Asia. We developed a protocol for producing meadow fescue transgenic plants mediated by Agrobacterium tumefaciens transformation. Embryogenic calli derived from mature embryos were transformed with A. tumefaciens strain AGL1 carrying the binary vector pDM805, coding for the phosphinothricin acetyltransferase (bar) and β-glucuronidase (uidA) genes. Bialaphos was used as the selective agent throughout all phases of tissue culture. In total, 40 independent transgenic plants were recovered from 45 bialaphos-resistant callus lines and an average transformation efficiency of 2% was achieved. The time frame from infection of embryogenic calli with Agrobacterium to transferring the transgenic plants to the greenhouse was 18 weeks. In a study of 11 BASTA-resistant transgenic lines, the uidA gene was expressed in 82% of the transgenic lines. Southern blot analysis revealed that 82% of the tested lines integrated one or two copies of the uidA gene. C. Gao and J. Liu contributed equally to the work.  相似文献   

13.
14.
Mature seed‐derived callus from an elite Chinese japonica rice (Oryza sativa L.) cv. Eyi 105 was cotransformed with two plasmids, pWRG1515 and pRSSGNA1,containing the selectable marker hygromycin phosphotransferase gene (hpt), the reporter β‐glucuronidase gene (gusA) and the snow‐drop (Galanthus nivalis) lectin gene (gna) via particle bombardment. After two rounds of selection on hygromycin‐containing medium, resistant callus was transferred to hygromycin‐containing regeneration medium for plant regeneration. Twenty‐six independent transgenic rice plants were regenerated from 152 bombarded calli with a transformation frequency of 17%. Seventy‐three percent of transgenic plants contained all three genes, which was revealed by PCR/Southern blot analysis. Thirteen out of 19 transgenic plants containing the gna gene expressed GNA (68%) at various levels with the highest expression being approximately 0.5% of total soluble protein. Genetic analysis confirmed Mendelian segregation of transgenes in progeny. From R2 generations with their R1 parentplants showing 3:1 Mendelian segregation patterns, we identified three independent homozygous lines containing and expressing all three transgenes.Insect bioassay and feeding tests showed that these homozygous lines had significant inhibition to the rice brown planthopper (Nilaparvata lugens, BPH) by decreasing BPH survival and overall fecundity, retarding BPH development and reducing BPH feeding.This is the first report that homozygous transgenic rice lines expressing GNA, developed by genetic transformation and through genetic analysis‐based selection, conferred enhanced resistance to BPH, one of the most damaging insect pests in rice.  相似文献   

15.
An improved rice transformation system using the biolistic method   总被引:38,自引:0,他引:38  
Immature embryos and embryogenic calli of rice, both japonica and indica subspecies, were bombarded with tungsten particles coated with plasmid DNA that contained a gene encoding hygromycin phosphotransferase (HPH, conferring hygromycin resistance) driven by the CaMV 35S promoter or Agrobactenum tumefaciens NOS promoter. Putatively transformed cell clusters were identified from the bombarded tissues 2 weeks after selection on hygromycin B. By separating these cell clusters from each other, and by stringent selection not only at the callus growth stage but also during regeneration and plantlet growth, the overall transformation and selection efficiencies were substantially improved over those previously reported. From the most responsive cultivar used in these studies, an average of one transgenic plant was produced from 1.3 immature embryos or from 5 pieces of embryogenic calli bombarded. Integration of the introduced gene into the plant genome, and inheritance to the offspring were demonstrated. By using this procedure, we have produced several hundred transgenic plants. The procedure described here provides a simple method for improving transformation and selection efficiencies in rice and may be applicable to other monocots.Abbreviations bp base pairs - CaMV cauliflower mosaic virus - GUS -glucuronidase - HPH hygromycin phosphotransferase - hyg B hygromycin B - hygr hygromycin resistance - NOS Agrobactenum tumefaciens nopaline synthase - PCR polymerase chain reaction - X-Gluc 5-bromo-4-chloro-3-indolyl--D-glucuronide  相似文献   

16.
Dioscorea zingiberensis Wright has been cultivated as a pharmaceutical crop for production of diosgenin, a precursor for synthesis of various important steroid drugs. Because breeding of D. zingiberensis through sexual hybridization is difficult due to its unstable sexuality and differences in timing of flowering in male and female plants, gene transfer approaches may play a vital role in its genetic improvement. In this study, the Agrobacterium tumefaciens-mediated transformation of D. zingiberensis was investigated with leaves and calli as explants. The results showed that both leaf segments and callus pieces were sensitive to 30 mg/l hygromycin and 50–60 mg/l kanamycin, and using calli as explants and addition of acetosyringone (AS) in cocultivation medium were crucial for successful transformation. We first immersed callus explants in A. tumefaciens cells for 30 min and then transferred the explants onto a co-cultivation medium supplemented with 200 μM AS for 3 days. Three days after, we cultured the infected explants on a selective medium containing 50 mg/l kanamycin and 100 mg/l timentin for formation of kanamycin-resistant calli. After the kanamycin-resistant calli were produced, we transferred them onto fresh selective medium for shoot induction. Finally, the kanamycin resistant shoots were rooted and the stable incorporation of the transgene into the genome of D. zingiberensis plants was confirmed by GUS histochemical assay, PCR and Southern blot analyses. The method reported here can be used to produce transgenic D. zingiberensis plants in 5 months and the transformation frequency is 24.8% based on the numbers of independent transgenic plants regenerated from initial infected callus explants.  相似文献   

17.
18.
The genetic improvement of garlic plants (Allium sativum L.) with agronomical beneficial traits is rarely achieved due to the lack of an applicable transformation system. Here, we developed an efficient Agrobacterium-mediated transformation procedure with Danyang, an elite Korean garlic cultivar. Examination of sGFP (synthetic green fluorescence protein) expression revealed that treatment with 2-(N-morpholino) ethanesulfonic acid (MES), L-cysteine and/or dithiothreitol (DTT) gives the highest efficiency in transient gene transfer during Agrobacterium co-cultivation with calli derived from the roots of in vitro plantlets. To increase stable transformation efficiency, a two-step selection was employed on the basis of hygromycin resistance and sGFP expression. Of the hygromycin-resistant calli initially produced, only sGFP-expressing calli were subcultured for selection of transgenic calli. Transgenic plantlets produced from these calli were grown to maturity. The transformation efficiency increased up to 10.6% via our optimized procedure. DNA and RNA gel-blot analysis indicated that transgenic garlic plants stably integrated and expressed the phosphinothricin acetyltransferase (PAT) gene. A herbicide spraying assay demonstrated that transgenic plants of garlic conferred herbicide resistance, whilst nontransgenic plants and weeds died. These results indicate that our transformation system can be efficiently utilized to produce transgenic garlic plants with agronomic benefits.  相似文献   

19.
Russian wildrye [Psathyrostachys juncea (Fisch.) Nevski] is a cool-season forage grass with a broad adaptation to semi-arid regions of North America. In order to explore the potential of biotechnology for genetic improvement of this important forage species, we developed an efficient tissue culture system. Embryogenic calli were induced from mature embryos with an induction frequency in the range of 2-7%. The selected highly embryogenic calli allowed the regeneration of dozens of plants from a single callus. Individual embryogenic calli were then used to establish single genotype-derived suspension cultures. Eighteen embryogenic cell suspension lines were established from three cultivars (Bozoisky-Select, Sawki and Tetracan). A relatively high green plant regeneration frequency, up to 70%, was achieved from plated cell clusters of the established suspension cultures. The regenerated plants were fertile after two winters of vernalization in the field. This efficient plant regeneration system provides a solid basis for generating transgenic plants.  相似文献   

20.
We utilized gene transfer technology for genetic perennial ryegrass improvement, efficient regeneration, and Agrobacterium-mediated transformation of phosphinothricin acetyltransferase gene (bar). Four growth regulator combinations were compared and intact seeds of six turf-type cultivars as mature embryo sources were tested to optimize the regeneration conditions. Callus formation and regeneration were observed in all seeds. The highest callus formation frequency was observed in the seeds cultured on MS medium supplemented with 9 mg/l 2,4-D, without benzyladenine. Cv. TopGun revealed the highest callus induction and regeneration frequencies of 96 and 48.9%, respectively. By using an optimized regeneration system, embryogenic calli were transformed by an Agrobacterium strain LBA4404 containing the plasmid pCAMBIA3301. After the selection of the potentially transgenic calli with phosphinothricin, a herbicide, 22 transgenic resistant plants were regenerated. With PCR, Southern-blot hybridizations, and GUS expression techniques, we confirmed that some regenerants were transgenic. Two of the tested transgenic plants showed herbicide resistance. Our results indicated that embryogenic calli from mature seeds can be directly used for perennial ryegrass efficient regeneration and transformation and this protocol is applicable for genetic engineering of herbicide-resistant plants. Published in Russian in Fiziologiya Rastenii, 2007, Vol. 54, No. 4, pp. 590–596. The text was submitted by the authors in English.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号