首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Tick-borne encephalitis is an emerging vector-borne zoonotic disease reported in several European and Asiatic countries with complex transmission routes that involve various vertebrate host species other than a tick vector. Understanding and quantifying the contribution of the different hosts involved in the TBE virus cycle is crucial in estimating the threshold conditions for virus emergence and spread. Some hosts, such as rodents, act both as feeding hosts for ticks and reservoirs of the infection. Other species, such as deer, provide important sources of blood for feeding ticks but they do not support TBE virus transmission, acting instead as dead-end (i.e., incompetent) hosts. Here, we introduce an eco-epidemiological model to explore the dynamics of tick populations and TBE virus infection in relation to the density of two key hosts. In particular, our aim is to validate and interpret in a robust theoretical framework the empirical findings regarding the effect of deer density on tick infestation on rodents and thus TBE virus occurrence from selected European foci. Model results show hump-shaped relationships between deer density and both feeding ticks on rodents and the basic reproduction number for TBE virus. This suggests that deer may act as tick amplifiers, but may also divert tick bites from competent hosts, thus diluting pathogen transmission. However, our model shows that the mechanism responsible for the dilution effect is more complex than the simple reduction of tick burden on competent hosts. Indeed, while the number of feeding ticks on rodents may increase with deer density, the proportion of blood meals on competent compared with incompetent hosts may decrease, triggering a decline in infection. As a consequence, using simply the number of ticks per rodent as a predictor of TBE transmission potential could be misleading if competent hosts share habitats with incompetent hosts.  相似文献   

2.
Ixodes ricinus ticks were collected from dragging vegetation and from shot roe deer in the province of Trento and Belluno in northern Italy. Ticks were pooled for analyses and from 1060 pools of ticks collected in the province of Belluno and 12390 tick samples collected in Trentino, four proved positive by immunofluorescence microscopy using a tick-borne encephalitis (TBE)-specific antiserum. The identity of the virus isolates was determined by RT-PCR cycle sequencing and they were all found to be closely similar (> 98% nucleotide identity) to typical western European TBE complex viruses as found in Austria. The isolates from Trentino differed from the Neudorfl strain of western European TBE virus at eight nucleotide positions but as these nucleotide substitutions were all synonymous, there were no amino acid changes. These results imply that the virus isolates in Trentino have changed slightly from the typical European strains isolated in nearby Austria. The abundance of questing ticks and ticks feeding on roe deer was greater in TBE positive hunting districts than in hunting districts where TBE complex viruses were only probable or believed to be absent. In TBE positive and probable districts synchrony in the seasonal dynamics of larvae and nymphs of L. ricinus was observed. This study provides evidence to suggest that roe deer may have an important role to play in the maintenance of tick density and in the persistence of TBE virus.  相似文献   

3.
Tick borne encephalitis (TBE) is endemic to eastern and central Europe with broad temporal and spatial variation in infection risk. Although many studies have focused on understanding the environmental and socio-economic factors affecting exposure of humans to TBE, comparatively little research has been devoted to assessing the underlying ecological mechanisms of TBE occurrence in enzootic cycles, and therefore TBE hazard. The aim of this study was to evaluate the effect of the main ungulate tick hosts on the pattern of tick infestation in rodents and TBE occurrence in rodents and questing adult ticks. In this empirical study, we considered three areas where endemic human TBE occurs and three control sites having no reported human TBE cases. In these six sites located in Italy and Slovakia, we assessed deer density using the pellet group count-plot sampling technique, collected questing ticks, live-trapped rodents (primarily Apodemus flavicollis and Myodes glareolus) and counted ticks feeding on rodents. Both rodents and questing ticks were screened for TBE infection. TBE infection in ticks and rodents was positively associated with the number of co-feeding ticks on rodents and negatively correlated with deer density. We hypothesise that the negative relationship between deer density and TBE occurrence on a local scale (defined by the minimum overlapping area of host species) could be attributed to deer (incompetent hosts) diverting questing ticks from rodents (competent hosts), know as the 'dilution effect hypothesis'. We observed that, after an initial increase, the number of ticks feeding on rodents reached a peak for an intermediate value of estimated deer density and then decreased. Therefore, while at a regional scale, tick host availability has already been shown to be directly correlated with TBE distribution, our results suggest that the interactions between deer, rodents and ticks are much more complex on a local scale, supporting the possibility of a dilution effect for TBE.  相似文献   

4.
Tick-borne encephalitis (TBE) is a virus infection which sometimes causes human disease. The TBE virus is found in ticks and certain vertebrate tick hosts in restricted endemic localities termed TBE foci. The formation of natural foci is a combination of several factors: the vectors, a suitable and numerous enough number of hosts and in a habitat with suitable vegetation and climate. The present study investigated the influence of deer on the incidence of tick-borne encephalitis. We were able to obtain data from deer culls. Using this data, the abundance of deer was estimated and temporal and spatial analysis was performed. The abundance of deer has increased in the past decades, as well as the incidence of tick-borne encephalitis. Temporal analysis confirmed a correlation between red deer abundance and tick-borne encephalitis occurrence. Additionally, spatial analysis established, that in areas with high incidence of tick-borne encephalitis red deer density is higher, compared to areas with no or few human cases of tick-borne encephalitis. However, such correlation could not be confirmed between roe deer density and the incidence of tick-borne encephalitis. This is presumably due to roe deer density being above a certain threshold so that availability of tick reproduction hosts has no apparent effect on ticks'' host finding and consequently may not be possible to correlate with incidence of human TBE.  相似文献   

5.
Ixodes ricinus ticks infected with Borrelia burgdorferi sensu lato were numerous on the edges of paths and roads in a recreational park in south-western Ireland. The abundance of ticks at different sites was related to the presence of deer, but a negative relationship was shown between tick abundance and tick infection rates. This is thought to be due to the deposition of large numbers of uninfected ticks by deer, which are apparently not good reservoir hosts of B. burgdorferi s.l. Blood meal analysis only detected deer DNA in uninfected nymphs. Reservoir competent rodents, Apodemus sylvaticus and Clethrionomys glareolus, were abundant at all sites and a high proportion of captured specimens were infested with larval ticks. However, very few rodents were infected with B. burgdorferi s.l. and none of the unfed infected nymphs analysed for the identity of their larval blood meal had fed on rodents. The spirochaetes detected in I. ricinus in the study area may be poorly adapted to rodents or are not transmitted readily because of the absence of nymphal infestation. The majority of spirochaetes in these ticks were apparently acquired from non-rodent hosts, such as birds.  相似文献   

6.
Lyme disease and Tick-Borne Encephalitis (TBE) are two emergent tick-borne diseases transmitted by the widely distributed European tick Ixodes ricinus. The life cycle of the vector and the number of hosts involved requires the development of complex models which consider different routes of pathogen transmission including those occurring between ticks that co-feed on the same host. Hence, we consider here a general model for tick-borne infections. We assumed ticks feed on two types of host species, one competent for viraemic transmission of infection, the second incompetent but included a third transmission route through non-viraemic transmission between ticks co-feeding on the same host. Since a blood meal lasts for several days these routes could lead to interesting nonlinearities in transmission rates, which may have important effects.We derive an explicit formula for the threshold for disease persistence in the case of viraemic transmission, also for the case of viraemic and non-viraemic transmission. From this formula, the effect of parameters on the persistence of infection can be determined. When only viraemic transmission occurs, we confirm that, while the density of the competent host has always a positive effect on infection persistence, the density of the incompetent host may have either a positive effect, by amplifying tick population, or a negative ("dilution") effect, by wasting tick bites on an incompetent host. With non-viraemic transmission, the "dilution" effect becomes less relevant. On the other hand, if the nonlinearity due to extended feeding is included, the dilution effect always occurs, but often at unrealistically high host densities. Finally, we incorporated the effects of tick aggregation on the hosts and correlation of tick stages and found that both had an important effect on infection persistence, if non-viraemic transmission occurred.  相似文献   

7.
Infestation by Ixodes ricinus ticks on rodents, hares and cervids was examined at Bogesund, 10 km north of Stockholm, in south-central Sweden during 1991-1994 and on varying hares (Lepus timidus) at Stora Karlso and Gotska Sandon in the Baltic Sea during 1992-1993. At Bogesund, there were great differences between two consecutive years in the number of I. ricinus larvae infesting bank voles (Clethrionomys glareolus). The seasonal pattern of infestation by I. ricinus larvae and nymphs on bank voles was unimodal in 1991, with peaks in June-July and bimodal in 1992, with peaks in June and August. Male bank voles, compared to females and older voles, compared to young voles, harboured greater numbers of I. ricinus ticks. Apodemus mice, compared to bank voles, harboured greater numbers of I. ricinus ticks. Ixodes ricinus larvae engorged on Apodemus mice were heavier than larvae engorged on bank voles and resulted in larger nymphs. However, there was no difference in the proportions of viable nymphs resulting from larvae engorged on mice or voles. The ranges in the numbers of I. ricinus ticks infesting individual hosts were 1-451 for rodents, 16-2374 for hares and 428-2072 for roe deer (Capreolus capreolus). These ranges of tick numbers are estimated to represent potential blood losses from individual hosts of approximately 0.2-65% for rodents, 0.2-13% for hares and 0.3-9.0% for roe deer. Within the populations of all host species examined, the distributions of all stages of I. ricinus were clumped, with most host individuals harbouring few ticks and only a few individuals harbouring many ticks. The data suggest that, even though a small proportion of tick hosts may be severely affected, the direct effects of feeding by I. ricinus are unlikely to play an important role on mammal population dynamics.  相似文献   

8.
The diversity and abundance of questing ticks and ticks parasitizing birds was assessed during 1?year in two recreational forests in western Portugal, a suburban forest and an enclosed game area. The aim of this study was to assess the distribution and seasonality of tick species and to understand the role of bird species as hosts for ticks. Ixodes ricinus was the most abundant questing tick collected in the enclosed game area, whereas in the suburban forest, only three ticks were collected by blanket dragging. Tick species parasitizing birds included I. ricinus, I. frontalis, I. arboricola, I. acuminatus, Haemaphysalis punctata, Hyalomma marginatum and H. lusitanicum. This is the first record of I. arboricola in Portugal. Tick prevalence and intensity of infestation differed between study areas and was higher in birds from the game area where a large population of deer and wild boar may support tick populations. Ground and shrub dwelling bird species such as Turdus merula, Erithacus rubecula and Sylvia melanocephala were the most heavily parasitized by ticks, but the importance of different bird species as hosts of larvae and nymphs of I. ricinus and I. frontalis differed. Therefore, different bird species may contribute differently for tick population maintenance.  相似文献   

9.
We report, for the first time, the presence of tick-borne encephalitis (TBE) virus in the tick Ixodes ricinus collected in the Friuli Venezia Giulia region of north-eastern Italy. Using molecular methods, we demonstrate that the TBE virus carried by ticks from FVG is a western European strain. Sequence analysis of the 5' NCR showed 98.4% identity to the Neudoerfl strain.  相似文献   

10.
Abstract. To investigate the role of ticks in TBE virus transmission, salivary gland extract (SGE) was derived from partially fed female Ixodes ricinus, Dermacentor reticulatus and Rhipicephalus appendiculatus ticks. Guinea-pigs were infested with uninfected R.appendiculatus nymphs and inoculated with a mixture of TBE virus and SGE or with virus alone. The number of ticks which on average acquired virus from feeding on animals inoculated with TBE virus and SGE from partially fed ticks was 4-fold greater than the number that became infected by feeding on animals inoculated with virus alone or virus plus SGE from unfed I.ricinus. Viraemia was detected in 67% of guinea-pigs inoculated with virus plus SGE compared to 30% of guinea-pigs inoculated with virus alone. Virus titres in the blood were similar for both groups of animals [range 2.0-2.8 log10 plaque-forming units (PFU)/ml of blood]; however, the number of ticks that became infected was significantly higher on animals inoculated with virus plus SGE from partially fed ticks. No significant difference was observed with respect to the tick species used to derive SGE. The results indicate that TBE virus transmission is enhanced by factor(s) associated with the salivary glands of feeding ticks, and that these factor(s) may facilitate efficient transmission of TBE virus between infected and uninfected ticks even when they feed on hosts that have no detectable viraemia.  相似文献   

11.
The tick Ixodes ricinus has been recorded in most Italian regions especially in thermo-mesophilous woods and shrubby habitats where the relative humidity allow the tick to complete its 3 year developmental cycle, as predicted for the European climatic ranges. This tick acts both as vector and reservoir for a series of wildlife zoonotic pathogens, especially the agents of Lyme diseases, Tick borne encephalitis and Human Granulocytic Ehrlichiosis, which are emerging in most of Europe. To assess the spatial distribution of these pathogens and the infection risk for humans and animals within the territory of the Province of Trento, we carried out a long term study using a combination of eco-epidemiological surveys and mathematical modelling. An extensive tick collection with a GIS based habitat suitability analysis allowed us to identify the areas where tick occurs at various density. To identify the areas with higher infection risk, we estimated the values of R0 for Borrelia burgdorferi s.l., TBE virus and Anaplasma phagocytophila under different ecological conditions. We assessed the infection prevalence in the vector and in the wildlife reservoir species that play a central role in the persistence of these infections, ie the small mammals A. flavicollis and C. glareolus. We also considered the double effect of roe deer (Capreolus capreolus) which act as reservoir for A. phagocytophila but is an incompetent host for B. burgdorferi and TBE virus, thus reducing the infection prevalence in ticks of these last two pathogens. Infection prevalence with B. burgdorferi and A. phagocytophila in the vector was assessed by PCR screening 1212 I. ricinus nymphs collected by dragging in six main study areas during 2002. The mean infection prevalence recorded was 1.32% for B. burgdorferi s.l. and 9.84% for A. phagocytophila. Infection prevalence in nymphs with TBE virus, as assessed in a previous study was 0.03%. Infection prevalence in rodents was assessed by screening (with ELISA and PCR) tissues and blood samples collected from 367 rodent individuals trapped extensively during 2002 within 6 main study areas. A. flavicollis (N=238) was found to be infected with all three pathogens investigated, with infection prevalence ranging from 3.3% for TBE virus to 11.7% for A. phagocytophila, and 16.6% with B. burgdorferi s.l. C. glareolus (N=108) showed an infection prevalence of 6.5% with A. phagocytophila and 12.7% with B. burgdorferi s.l., while no individuals were infected with TBE virus. We also screened 98 spleen samples collected from roe deer with PCR, resulting in a mean prevalence of infection with A. phagocytophila of 19.8%. Using a deterministic model we explored the condition for diseases persistence under different rodent and roe deer densities. R0 values resulted largely above 1 for B. burgdorferi s.l. in the vast majority of the areas classified as suitable for I. ricinus occurrence in Trentino, while the condition for TBE persistence appeared to be more restricted by a combination of climatic condition and host densities.  相似文献   

12.
The analysis of different multi-host systems suggests that even hosts that are not capable of transmitting Borrelia burgdorferi sensu lato (s.l.) to the tick vector, Ixodes ricinus, or that are secondary reservoirs for these agents contribute to the intensity of transmission and to the overall risk of Lyme borreliosis, through the process of vector augmentation and pathogen amplification. On the other hand, above certain threshold densities, or in the presence of competition with primary reservoir hosts or low attachment rate of ticks to reservoir hosts, incompetent or less competent hosts may reduce transmission through dilution. The transmission of B. burgdorferi s.l. is affected by molecular processes at the tick-host interface including mechanisms for the protection of spirochaetes against the host's immune response. Molecular biology also increasingly provides important identification tools for the study of tick-borne disease agents. Ixodes ricinus and B. burgdorferi s.l. are expanding their geographical range to northern latitudes and to higher altitudes through the effects of climate change on host populations and on tick development, survival and seasonal activity. The integration of quantitative ecology with molecular methodology is central to a better understanding of the factors that determine the main components of Lyme borreliosis eco-epidemiology and should result in more accurate predictions of the effects of climate change on the circulation of pathogens in nature.  相似文献   

13.

Background

The flaviviruses causing tick-borne encephalitis (TBE) persist at low but consistent levels in tick populations, despite short infectious periods in their mammalian hosts and transmission periods constrained by distinctly seasonal tick life cycles. In addition to systemic and vertical transmission, cofeeding transmission has been proposed as an important route for the persistence of TBE-causing viruses. Because cofeeding transmission requires ticks to feed simultaneously, the timing of tick activity may be critical to pathogen persistence. Existing models of tick-borne diseases do not incorporate all transmission routes and tick seasonality. Our aim is to evaluate the influence of seasonality on the relative importance of different transmission routes by using a comprehensive mathematical model.

Methodology/Principal Findings

We developed a stage-structured population model that includes tick seasonality and evaluated the relative importance of the transmission routes for pathogens with short infectious periods, in particular Powassan virus (POWV) and the related “deer tick virus,” emergent encephalitis-causing flaviviruses in North America. We used the next generation matrix method to calculate the basic reproductive ratio and performed elasticity analyses. We confirmed that cofeeding transmission is critically important for such pathogens to persist in seasonal tick populations over the reasonable range of parameter values. At higher but still plausible rates of vertical transmission, our model suggests that vertical transmission can strongly enhance pathogen prevalence when it operates in combination with cofeeding transmission.

Conclusions/Significance

Our results demonstrate that the consistent prevalence of POWV observed in tick populations could be maintained by a combination of low vertical, intermediate cofeeding and high systemic transmission rates. When vertical transmission is weak, nymphal ticks support integral parts of the transmission cycle that are critical for maintaining the pathogen. We also extended the model to pathogens that cause chronic infections in hosts and found that cofeeding transmission could contribute to elevating prevalence even in these systems. Therefore, the common assumption that cofeeding transmission is not relevant in models of chronic host infection, such as Lyme disease, could lead to underestimating pathogen prevalence.  相似文献   

14.
The morbidity of tick‐borne encephalitis (TBE) varies yearly by as much as 10‐fold among the people of Western Siberia. This long‐term variation is dependent on many factors such as the density of the tick populations, the prevalence of TBE virus (TBEV) among sub‐adult ticks, the yearly virulence of the TBEV, and prophylactic measures. Here we highlight the role of small mammal hosts in the circulation of TBEV through the ecosystem. Refining classical models of non‐viremic horizontal transmission, we emphasize the recently understood fact that the physiological and immunological status of the small mammal hosts affects the tick and virus‐host interactions. In addition to its theoretical interest, our approach may lead to some practical improvements in the precision of epidemiological forecasts and perhaps in forestalling the severity of outbreaks of TBE, or, at least, in forewarning medical authorities and the general public of impending TBE outbreaks.  相似文献   

15.
The impact of ticks on pheasant territoriality   总被引:1,自引:0,他引:1  
Pheasants are competent reservoir hosts for the Lyme disease spirochaete, Borrelia burgdorferi s.l., and carry large, but highly over-dispersed, infestations of the vector ticks, Ixodes ricinus . The effects of experimental reduction of tick infestation levels on the survival and territorial behaviour of male pheasants were studied. Over three years in two woodlands in southern England, birds were marked individually and half were fitted with a slow-release acaricide, which substantially reduced their tick burdens from March to August. Acaricide treatment affected reproductive success but had no discernible impact on the survival rates of male pheasants. The degree of wattle inflation by males, an indicator of territorial status and a correlate of harem acquisition, was significantly greater among treated males. In each year, a significantly higher proportion of treated (overall 44%) than control (22%) males acquired harems. Males that acquired females ranged over small areas on field edges. By contrast, those with no females ranged more widely in woods and the adjoining fields, increasing their exposure to questing ticks. The relative contribution of such roving males to tick-borne pathogen transmission may thus increase.  相似文献   

16.
This paper describes a case of Anaplasma phagocytophilum infection in a roe deer (Capreolus capreolus) calf in Norway. The calf was found deserted, paretic, and heavily infested with Ixodes ricinus ticks. It was euthanized and investigated postmortem. Anaplasma phagocytophilum was detected in several tissues by polymerase chain reaction (PCR) and 16S rRNA sequence analyses. Analyses for Borrelia burgdorferi sensu lato and tick-borne encephalitis (TBE) virus infections were negative. This is the first report of a possible paretic condition in A. phagocytophilum infected roe deer.  相似文献   

17.
A survey for tick-borne encephalitis virus in Ixodes ricinus ticks was conducted in May 2000 in two districts of the South-Bohemian region of the Czech Republic with a high occurrence of tick-borne encephalitis (TBE) in humans. Homogenized ticks were tested on PS cells, which were examined for any cytopathic effect, plaque assay and indirect fluorescent antibody test (IFT). The IFT has proved to be the most sensitive and most rapid test to demonstrate the virus in ticks. TBE virus was found in 17 of 187 pooled samples, consisting of a total of 2,968 ticks. The mean minimum infection rate was 0.6% for all tick stages combined. Infection rates in nymphs collected indifferent locations varied between 0.2 and 1.3% and between 5.9 and 11.1% in adult ticks. The observed TBE prevalence in ticks was compared with data obtained elsewhere in the Czech Republic. It is concluded that screening of ticks for TBE virus prevalence using IFT is a valuable indicator for the degree of risk to contract TBE in as particular habitat. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Lucy Gilbert 《Oecologia》2010,162(1):217-225
The impact of climate change on vector-borne infectious diseases is currently controversial. In Europe the primary arthropod vectors of zoonotic diseases are ticks, which transmit Borrelia burgdorferi sensu lato (the agent of Lyme disease), tick-borne encephalitis virus and louping ill virus between humans, livestock and wildlife. Ixodes ricinus ticks and reported tick-borne disease cases are currently increasing in the UK. Theories for this include climate change and increasing host abundance. This study aimed to test how I. ricinus tick abundance might be influenced by climate change in Scotland by using altitudinal gradients as a proxy, while also taking into account the effects of hosts, vegetation and weather effects. It was predicted that tick abundance would be higher at lower altitudes (i.e. warmer climates) and increase with host abundance. Surveys were conducted on nine hills in Scotland, all of open moorland habitat. Tick abundance was positively associated with deer abundance, but even after taking this into account, there was a strong negative association of ticks with altitude. This was probably a real climate effect, with temperature (and humidity, i.e. saturation deficit) most likely playing an important role. It could be inferred that ticks may become more abundant at higher altitudes in response to climate warming. This has potential implications for pathogen prevalence such as louping ill virus if tick numbers increase at elevations where competent transmission hosts (red grouse Lagopus lagopus scoticus and mountain hares Lepus timidus) occur in higher numbers.  相似文献   

19.
Ixodes ricinus L. (Acari: Ixodida) were sampled during 1996-99 in southern Scotland, on vegetation using cloth drags, on humans by removal from clothing and on roe deer (Capreolus capreolus L.) by searching legs of culled deer. Developmental microclimate was recorded by automatic recorders and questing microclimate by portable instruments during tick collections. Ticks and deer were examined for infection with Ehrlichia phagocytophila bacteria (Rickettsiales) using microscopy and polymerase chain reaction. This pathogen causes tick-borne fever of sheep in Europe and human granulocytic ehrlichiosis in North America, but in Europe human clinical ehrlichiosis due to E. phagocytophila has not been recorded despite serological evidence of exposure. Among three types of habitat, coniferous woodland was most infested with questing ticks (560 ticks/km of drag; mean numbers collected on long trousers: 24.3 larvae, 13.5 nymphs and 0.8 adult ticks/km walked), deciduous woodland had slightly lower infestation (426 ticks/km drag) and upland sheep pasture had much lower infestation (220 ticks/km drag). Of the three main vegetation types, bracken was least infested (360 ticks/km drag), ericas most (430 ticks/km drag) and grassland had intermediate infestation density (413 ticks/km drag). Questing and developmental microclimates were poor predictors of exposure within these habitats, except lower infestation of pastures was attributed to greater illumination there. Collectors who walked a total of 300 km through all habitats (taking 360 h in all seasons), wearing cotton trousers hanging outside rubber boots, were bitten by only four nymphs and 11 larvae of I. ricinus (but no adult ticks). There was a negative correlation between densities of deer and ticks collected, although presence of deer remains a major indicator of exposure. The proportion of infected ticks was fairly uniform at four sites studied. Overall prevalence of E. phagocytophila in I. ricinus was 3.3% in nymphs (40/1203) but only approximately 1.5% in adults of both sexes (although males do not bite). It was estimated that nymphs of I. ricinus gave 4.4% probability of one infected bite/person/year (for occupational exposure during this research) due to presence in all seasons and habitats, their human biting rate of 0.011 nymphs/h or 0.013 nymphs/km and widespread infection with E. phagocytophila. The frequency distribution of intensity of infection in ticks was approximately normal (mean 98 morulae/nymph infected), thus there is a high risk of receiving a high dose from any one infected tick bite.  相似文献   

20.
The spread of tick-borne pathogens represents an important threat to human and animal health in many parts of Eurasia. Here, we analysed a 9-year time series of Ixodes ricinus ticks feeding on Apodemus flavicollis mice (main reservoir-competent host for tick-borne encephalitis, TBE) sampled in Trentino (Northern Italy). The tail of the distribution of the number of ticks per host was fitted by three theoretical distributions: Negative Binomial (NB), Poisson-LogNormal (PoiLN), and Power-Law (PL). The fit with theoretical distributions indicated that the tail of the tick infestation pattern on mice is better described by the PL distribution. Moreover, we found that the tail of the distribution significantly changes with seasonal variations in host abundance. In order to investigate the effect of different tails of tick distribution on the invasion of a non-systemically transmitted pathogen, we simulated the transmission of a TBE-like virus between susceptible and infective ticks using a stochastic model. Model simulations indicated different outcomes of disease spreading when considering different distribution laws of ticks among hosts. Specifically, we found that the epidemic threshold and the prevalence equilibria obtained in epidemiological simulations with PL distribution are a good approximation of those observed in simulations feed by the empirical distribution. Moreover, we also found that the epidemic threshold for disease invasion was lower when considering the seasonal variation of tick aggregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号