首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
Seasonal germination timing of Arabidopsis thaliana strongly influences overall life history expression and is the target of intense natural selection. This seasonal germination timing depends strongly on the interaction between genetics and seasonal environments both before and after seed dispersal. DELAY OF GERMINATION 1 (DOG1) is the first gene that has been identified to be associated with natural variation in primary dormancy in A. thaliana. Here, we report interaccession variation in DOG1 expression and document that DOG1 expression is associated with seed‐maturation temperature effects on germination; DOG1 expression increased when seeds were matured at low temperature, and this increased expression was associated with increased dormancy of those seeds. Variation in DOG1 expression suggests a geographical structure such that southern accessions, which are more dormant, tend to initiate DOG1 expression earlier during seed maturation and achieved higher expression levels at the end of silique development than did northern accessions. Although elimination of the synthesis of phytohormone abscisic acid (ABA) results in the elimination of maternal temperature effects on dormancy, DOG1 expression predicted dormancy better than expression of genes involved in ABA metabolism.  相似文献   

4.
The temporal control or timing of the life cycle of annual plants is presumed to provide adaptive strategies to escape harsh environments for survival and reproduction. This is mainly determined by the timing of germination, which is controlled by the level of seed dormancy, and of flowering initiation. However, the environmental factors driving the evolution of plant life cycles remain largely unknown. To address this question we have analysed nine quantitative life history traits, in a native regional collection of 300 wild accessions of Arabidopsis thaliana. Seed dormancy and flowering time were negatively correlated, indicating that these traits have coevolved. In addition, environmental–phenotypic analyses detected strong altitudinal and climatic clines for most life history traits. Overall, accessions showing life cycles with early flowering, small seeds, high seed dormancy and slow germination rate were associated with locations exposed to high temperature, low summer precipitation and high radiation. Furthermore, we analysed the expression level of the positive regulator of seed dormancy DELAY OF GERMINATION 1 (DOG1), finding similar but weaker altitudinal and climatic patterns than seed dormancy. Therefore, DOG1 regulatory mutations are likely to provide a quantitative molecular mechanism for the adaptation of A. thaliana life cycle to altitude and climate.  相似文献   

5.
6.
7.
  • Hypoxic floodwaters can seriously damage seedlings. Seed dormancy could be an effective trait to avoid lethal underwater germination. This research aimed to discover novel adaptive dormancy responses to hypoxic floodwaters in seeds of Echinochloa crus‐galli, a noxious weed from rice fields and lowland croplands.
  • Echinochloa crus‐galli dormant seeds were subjected to a series of sequential treatments. Seeds were: (i) submerged under hypoxic floodwater (simulated with hypoxic flasks) at different temperatures for 15 or 30 days, and germination tested under drained conditions while exposing seeds to dormancy‐breaking signals (alternating temperatures, nitrate (KNO3), light); or (ii) exposed to dormancy‐breaking signals during hypoxic submergence, and germination monitored during incubation and after transfer to drained conditions.
  • Echinochloa crus‐galli seed primary dormancy was attenuated under hypoxic submergence but to a lesser extent than under drained conditions. Hypoxic floodwater did not reinforced dormancy but hindered secondary dormancy induction in warm temperatures. Seeds did not germinate under hypoxic submergence even when subjected to dormancy‐breaking signals; however, these signals broke dormancy in seeds submerged under normoxic water. Seeds submerged in hypoxic water could sense light through phytochrome signals and germinated when normoxic conditions were regained.
  • Hypoxic floodwaters interfere with E. crus‐galli seed seasonal dormancy changes. Dormancy‐breaking signals are overridden during hypoxic floods, drastically decreasing underwater germination. In addition, results indicate that a fraction of E. crus‐galli seeds perceive dormancy‐breaking signals under hypoxic water and germinate immediately after aerobic conditions are regained, a hazardous yet less competitive environment for establishment.
  相似文献   

8.
9.
10.
Seed dormancy controls the start of a plant's life cycle by preventing germination of a viable seed in an unfavorable season. Freshly harvested seeds usually show a high level of dormancy, which is gradually released during dry storage (after-ripening). Abscisic acid (ABA) has been identified as an essential factor for the induction of dormancy, whereas gibberellins (GAs) are required for germination. The molecular mechanisms controlling seed dormancy are not well understood. DELAY OF GERMINATION1 (DOG1) was recently identified as a major regulator of dormancy in Arabidopsis thaliana. Here, we show that the DOG1 protein accumulates during seed maturation and remains stable throughout seed storage and imbibition. The levels of DOG1 protein in freshly harvested seeds highly correlate with dormancy. The DOG1 protein becomes modified during after-ripening, and its levels in stored seeds do not correlate with germination potential. Although ABA levels in dog1 mutants are reduced and GA levels enhanced, we show that DOG1 does not regulate dormancy primarily via changes in hormone levels. We propose that DOG1 protein abundance in freshly harvested seeds acts as a timer for seed dormancy release, which functions largely independent from ABA.  相似文献   

11.
The effects of stratification temperatures and burial in soil on dormancy levels of Carex pendula L. and C. remota L., two spring-germinating perennials occurring in moist forests, were investigated. Seeds buried for 34 months outdoors, and seeds stratified in the laboratory at temperatures between 3 and 18 °C for periods between 2 and 28 weeks, were tested over a range of temperatures. Seeds of the two species responded similarly to stratification treatments, except for an absolute light requirement in C. pendula. Primary dormancy was alleviated at all stratification temperatures, but low temperatures were more effective than higher ones . (≥ 12 °C). Dormancy induction in non-dormant seeds kept at 5 °C occurred when seeds were subsequently exposed to 18 °C. Dormancy was not induced by a transfer to lower temperatures. Buried seeds of both species exhibited seasonal dormancy cycles with high germination from autumn to spring and low germination during summer. Temperatures at which the processes of dormancy relief and of dormancy induction occurred, overlapped to a high degree. Whether, and when, dormancy changes occurred depended on test conditions. The lower temperature limit for germination (> 10%) was 9 °C in C. remota and 15 °C in C. pendula. Germination ceased abruptly above 36 °C. Germination requirements and dormancy patterns suggest regeneration from seed in late spring and summer at disturbed, open sites (forest gaps) and the capability to form long, persistent seed banks in both species.  相似文献   

12.
Seeds use environmental cues to sense the seasons and their surroundings to initiate the life cycle of the plant. The dormancy cycling underlying this process is extensively described, but the molecular mechanism is largely unknown. To address this we selected a range of representative genes from published array experiments in the laboratory, and investigated their expression patterns in seeds of Arabidopsis ecotypes with contrasting life cycles over an annual dormancy cycle in the field. We show how mechanisms identified in the laboratory are coordinated in response to the soil environment to determine the dormancy cycles that result in winter and summer annual phenotypes. Our results are consistent with a seed‐specific response to seasonal temperature patterns (temporal sensing) involving the gene DELAY OF GERMINATION 1 (DOG1) that indicates the correct season, and concurrent temporally driven co‐opted mechanisms that sense spatial signals, i.e. nitrate, via CBL‐INTERACTING PROTEIN KINASE 23 (CIPK23) phosphorylation of the NITRATE TRANSPORTER 1 (NRT1.1), and light, via PHYTOCHROME A (PHYA). In both ecotypes studied, when all three genes have low expression there is enhanced GIBBERELLIN 3 BETA‐HYDROXYLASE 1 (GA3ox1) expression, exhumed seeds have the potential to germinate in the laboratory, and the initiation of seedling emergence occurs following soil disturbance (exposure to light) in the field. Unlike DOG1, the expression of MOTHER of FLOWERING TIME (MFT) has an opposite thermal response in seeds of the two ecotypes, indicating a role in determining their different dormancy cycling phenotypes.  相似文献   

13.
To clarify the adaptive significance of seed dormancy, the effects of burial duration were examined for two deciduousRubus species:Rubus palmatus var.coptophyllus andRubus parvifolius, which are found mainly in relatively stable, shaded sites and disturbed sites, respectively. In early summer, newly ripened seeds were buried under litter on the soil surface in a pine forest, and germination tests were carried out for the seeds retrieved from the soil litter after 0 (not buried), 1, 2, 3, 5 and 8 or 9 months of burial. In general, the germination percentages increased and light requirements for germination decreased with increased burial duration. The percentage of seeds germinated with alternating temperatures in darkness also increased with increasing burial duration for both species. After 8 or 9 months of burial (corresponding to the next germination season in the field), the percentage of non-dormant seeds (including germination under alternating temperatures in the dark) was about 80% and 40% forR. palmatus var.coptophyllus andR. parvifolius, respectively. These seed dormancy traits of the twoRubus species may explain the differences in germination strategy in their habitats:R. palmatus var.coptophyllus seems to have adapted to the seasonal occurrence of favorable growing conditions after the dormancy breakage, whileR. parvifolius seems to have adapted to favorable conditions created by temporally unpredictable disturbances.  相似文献   

14.
Milk thistle (Silybum marianum) is a medicinal plant; however, lack of consistency in past dormancy studies has hindered propagation of this species from seeds. We tested the germination responses of freshly harvested and after-ripened (stored for 2 and 7 months; 25°C at 50% relative humidity) seeds from three populations (P1, P2 and P3) in Iran at varying constant or alternating temperatures, with or without GA3 and in light and continuous darkness. No germination occurred in freshly harvested seeds incubated at any condition without GA3 application, indicating that all the seeds were dormant. Seeds from P1 and P2, which developed under relatively dry, warm conditions, germinated over a wider range of temperatures after 2 months of dry storage, indicating type 6 of non-deep physiological dormancy (PD). Seeds from P3, which developed under relatively wet, cool conditions, incubated at constant temperatures (especially on GA3), exhibited an increase in maximum temperature for germination, indicating type 1 of non-deep PD. Light improved germination of after-ripened seeds, and GA3 application substituted for the light requirement for germination. This is the first report that environmental conditions during seed development may be correlated with differences in the type of non-deep PD. We conclude that milk thistle seeds are positively photoblastic and photodormant and the germination responses of after-ripened seeds from different populations are different under darkness. Therefore, the impacts of genetic differences and maternal effects on the induction of dormancy during seed development should be considered in attempts to domesticate this medicinal plant.  相似文献   

15.
Tissue-specific functions of the circadian clock in Arabidopsis have recently been revealed. The vasculature clock shows distinctive gene expression profiles compared to the clock in other tissues under light-dark cycles. However, it has not yet been established whether the vasculature clock also shows unique gene expression patterns that correlate with temperature cycles, another important environmental cue. Here, we detected diel phase of TIMING OF CAB EXPRESSION 1 (TOC1) expression in the vasculature and whole leaf under long-day light-dark cycles and temperature cycles. We found that the vasculature clock had advanced TOC1 phase under light-dark cycles but not under temperature cycles, suggesting that the vasculature clock has lower sensitivity against temperature signals. Furthermore, the phase advancement of TOC1 was seen only under long-day condition but not under short-day condition. These results support our previous conclusion that the circadian clock in vasculature preferentially senses photoperiodic signals.  相似文献   

16.
S. J. Bostock 《Oecologia》1978,36(1):113-126
Summary The germination responses of seeds of Achillea millefolium L., Artemisia vulgaris L., Cirsium arvense (L.) Scop., Taraxacum officinale Weber, sensu lato, and Tussilago farfara L. to light, nitrate, alternating temperatures, chilling, light quality, and water availability were studied in laboratory tests, using fresh seed and seed stored for 6 months at 27°C and buried in the soil. A factorial experiment with light, nitrate, alternating temperatures, and seed age as factors found that all four affected germination except in T. farfara. All three external factors were stimulatory, especially in combinations. Fresh seed of A. vulgaris and C. arvense showed a light x alternating temperature synergism, responded to chilling, and after-ripened in cold dry storage. That of T. farfara had no dormancy and rapid germination, and germinated well on substrates with a water content too low for the other species. Seed of A. millefolium and A. vulgaris had good survival in both experimental storage conditions, while that of C. arvense and T. officinale did not, and that of T. farfara did not survive. Longevity in both conditions was associated with depth of initial dormancy. The two conditions caused different changes in dormancy in both A. vulgaris and A. millefolium. The germination behaviour, and the size, morphology and dispersal of the seeds of the species are discussed as strategies adapted to intermittently available situations for seedling establishment.  相似文献   

17.
Seed germination and seedling emergence of ‘Arctic’ and ‘Lineta’ orchardgrass (Dactylis glomerata L.) and ‘Walsh’ and ‘LC9078a’ western wheatgrass (Pascopyrum smithii [Rydb.] L.) were studied both in the field and laboratory. Four seeding dates were conducted each year over 2 years and seedling emergence and seed fate in the soil were monitored. The effects of alternating temperature and light on germination were quantified and correlated with seedling emergence from soil and in the field. Orchardgrass seeds were less dormant than western wheatgrass as indicated by the disparity in germination percentage between constant and alternating temperatures. Seed germination percentage was usually higher than seedling emergence in the field for orchardgrass but lower for western wheatgrass, and temperature was not responsible for the difference. Exposing orchardgrass seeds to light during germination check helped break dormancy in orchardgrass when temperature was unfavorable (low and/or constant temperatures), while favorable temperatures (optimal, alternating temperatures) conditions overcame the inhibiting effect of light in western wheatgrass. The final seedling emergence of orchardgrass was either similar among the four seeding dates or decreased slightly from early May to early June. For western wheatgrass, however, final seedling emergence increased with seeding dates from early to late May and decreased in early June. Soil temperatures of the first 2 weeks after seeding increased from the early May to late May and then decreased. These temperatures were below or near the optimal temperatures for western wheatgrass seeds to release dormancy and germinate. Germination of the previously buried seeds indicated that orchardgrass and western wheatgrass had the potential for a high germination percentage under field conditions for all seeding dates. While soil temperatures close to the optimal temperature for dormancy breaking and germination promoted germination of orchardgrass, the same conditions could cause deterioration of seeds if they failed to germinate. For western wheatgrass, deeper dormancy reduced seed mortality.  相似文献   

18.
19.
The involvement of chromatin remodelling in dormancy cycling in the soil seed bank (SSB) is poorly understood. Natural variation between the winter and summer annual Arabidopsis ecotypes Cvi and Bur was exploited to investigate the expression of genes involved in chromatin remodelling via histone 2B (H2B) ubiquitination/de‐ubiquitination and histone acetylation/deacetylation, the repressive histone methyl transferases CURLY LEAF (CLF) and SWINGER (SWN), and the gene silencing repressor ROS1 (REPRESSOR OF SILENCING1) and promoter of silencing KYP/SUVH4 (KRYPTONITE), during dormancy cycling in the SSB. ROS1 expression was positively correlated with dormancy while the reverse was observed for CLF and KYP/SUVH4. We propose ROS1 dependent repression of silencing and a sequential requirement of CLF and KYP/SUVH4 dependent gene repression and silencing for the maintenance and suppression of dormancy during dormancy cycling. Seasonal expression of H2B modifying genes was correlated negatively with temperature and positively with DOG1 expression, as were histone acetyltransferase genes, with histone deacetylases positively correlated with temperature. Changes in the histone marks H3K4me3 and H3K27me3 were seen on DOG1 (DELAY OF GERMINATION1) in Cvi during dormancy cycling. H3K4me3 activating marks remained stable along DOG1. During relief of dormancy, H3K27me3 repressive marks slowly accumulated and accelerated on exposure to light completing dormancy loss. We propose that these marks on DOG1 serve as a thermal sensing mechanism during dormancy cycling in preparation for light repression of dormancy. Overall, chromatin remodelling plays a vital role in temporal sensing through regulation of gene expression.  相似文献   

20.
Light and temperature control of germination in Agropyron smithii seeds   总被引:2,自引:0,他引:2  
In darkness, A. smithii seeds germinated poorly at constanttemperatures but well at alternating temperatures. Prolongedperiods on the high part of the temperature cycles reduced germination;the higher the temperature the shorter was the period requiredon the high part of the temperature cycles for optimum germination.Continuous, unfiltered, incandescent illumination and intermittentfar red at 15?–25?C alternation also inhibited germination;the inhibitory effects were similar to those caused by the highintensity reaction. Far red inhibited germination when appliedafter 1 and 2 complete 15?–25?C cycles in darkness butnot after 3 cycles. Less than 20% of the seeds were under phytochromecontrol at constant 20?C. When red light was applied directlyafter far red that was applied in intermittent cycles at 15?–25?C,however, 50% of the seeds caused to germinate by the alternatingtemperature were shown to be controlled by the reversible phytochromereaction. The induced high-temperature dormancy was overcome by gibberellicacid (GA3) plus kinetin. The hormonal treatment was much moreeffective than light for breaking dormancy. Inhibition fromprolonged illumination was alleviated or eliminated by GA3+kinetin.The failure of red light to promote good germination at 20?Cwas also overcome with GA3+kinetin; effects of light plus thehormone treatments were more than additive. These data suggestthat optimum alternating temperatures facilitate a proper balanceand interaction of hormones, enzymes, substrates and possiblypreexistent Pfr so that the germination of A. smithii seedscan proceed without benefit of a light treatment. (Received July 7, 1976; )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号