首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The major objective of this study was to determine the possible effects of common genetic and environmental factors among 18 craniofacial anthropometric traits, with special attention to the differences between skeletal and soft-tissue related phenotypes. The studied sample consisted of 122 nuclear families living in Brussels and included 251 males and 258 females aged from 13 to 72 years. Univariate and bivariate quantitative genetic analyses were performed using a variance components procedure implemented in SOLAR software.All phenotypes were significantly influenced by additive genetic factors with heritability estimates ranging from 0.46 (nose height) to 0.72 (external biocular breadth). Sex, age and their interactions explained 7-46% of the total phenotypic variance of the traits. Bivariate analysis revealed that several traits share a common genetic and/or environmental basis while other traits show genetic and environmental independence from one another. More and greater genetic and environmental correlations were observed among skeletal phenotypes, than among soft-tissue traits and between both categories. Apart from the tissue composition, other characteristics of the craniofacial morphology such as the orientation (e.g. heights, breadths) have shown to be important factors in determining pleiotropy and common environmental effects between some pairs of traits. In conclusion, the results confirm that overall head configuration is largely determined by additive genetic effects, and that common genetic and environmental factors affecting craniofacial size and shape are stronger for the skeletal traits than for the soft-tissue traits.  相似文献   

2.
Evolution of size and growth depends on heritable variation arising from additive and maternal genetic effects. Levels of heritable (and nonheritable) variation might change over ontogeny, increasing through "variance compounding" or decreasing through "compensatory growth." We test for these processes using a meta-analysis of age-specific weight traits in domestic ungulates. Generally, mean standardized variance components decrease with age, consistent with compensatory growth. Phenotypic convergence among adult sheep occurs through decreasing environmental and maternal genetic variation. Maternal variation similarly declines in cattle. Maternal genetic effects are thus reduced with age (both in absolute and relative terms). Significant trends in heritability (decreasing in cattle, increasing in sheep) result from declining maternal and environmental components rather than from changing additive variation. There was no evidence for increasing standardized variance components. Any compounding must therefore be masked by more important compensatory processes. While extrapolation of these patterns to processes in natural population is difficult, our results highlight the inadequacy of assuming constancy in genetic parameters over ontogeny. Negative covariance between direct and maternal genetic effects was common. Negative correlations with additive and maternal genetic variances indicate that antagonistic pleiotropy (between additive and maternal genetic effects) may maintain genetic variance and limit responses to selection.  相似文献   

3.
4.
Birth weight is in large extent influenced by gestational age. In addition genetic and environmental factors determine intrauterine growth and birth weight. The contributions of these factors may be influenced by maternal smoking during pregnancy. We examined birth weight and maternal smoking in a sample of 2930 twin pairs from the Netherlands Twin Register using structural equation modelling. Gestational age accounted for 27-44% of the variance in birth weight. A lower variability of birth weight and a lower association of birth weight with gestational age was found in twins whose mothers smoked during pregnancy. The variance not associated with gestational age was independent of maternal smoking during pregnancy. A systematic smaller part of the variability in birth weight was associated with variability in gestational age in second born twins compared to first born twins. The heritability of interindividual differences in birth weight was modest (10% for twins with non-smoking mothers and 11% for twins with smoking mothers). Common environmental influences other than gestational age accounted for a slightly larger part of the variance not associated with gestational age (17-20%).  相似文献   

5.

Objective

Infancy is a critical period during which rapid growth potentially programs future disease risk. Identifying the modifiable determinants of growth is therefore important. To capture the complexity of infant growth, we modeled growth trajectories from birth to six months in order to compare the genetic and environmental influences on growth trajectory parameters with single time-point measures at birth, three and six months of age.

Methods

Data were from Gemini, a population sample of 2402 UK families with twins. An average 10 weight measurements per child made by health professionals were available over the first six months. Weights at birth, three and six months were identified. Longitudinal growth trajectories were modeled using SITAR utilizing all available weight measures for each child. SITAR generates three parameters: size (characterizing mean weight throughout infancy), tempo (indicating age at peak weight velocity (PWV)), and velocity (reflecting the size of PWV). Genetic and environmental influences were estimated using quantitative genetic analysis.

Results

In line with previous studies, heritability of weight at birth and three months was low (38%), but it was higher at six months (62%). Heritability of the growth trajectory parameters was high for size (69%) and velocity (57%), but low (35%) for tempo. Common environmental influences predominated for tempo (42%).

Conclusion

Modeled growth parameters using SITAR indicated that size and velocity were primarily under genetic influence but tempo was predominantly environmentally determined. These results emphasize the importance of identifying specific modifiable environmental determinants of the timing of peak infant growth.  相似文献   

6.
Estimates of (co)variance components were obtained for weights at birth, weaning and at 6, 9 and 12 months of age in Jamunapari goats maintained at the Central Institute for Research on Goats, Makhdoom, Mathura, India, over a period of 23 years (1982 to 2004). Records of 4301 kids descended from 204 sires and 1233 does were used in the study. Analyses were carried out by restricted maximum likelihood (REML), fitting an animal model and ignoring or including maternal genetic or permanent environmental effects. Six different animal models were fitted for all traits. The best model was chosen after testing the improvement of the log-likelihood values. Direct heritability estimates were inflated substantially for all traits when maternal effects were ignored. Heritability estimates for weights at birth, weaning and at 6, 9 and 12 months of age were 0.12, 0.18, 0.13, 0.17 and 0.21, respectively. Maternal heritability of body weight declined from 0.19 at birth to 0.08 at weaning and was near zero and not significant thereafter. Estimates of the fraction of variance due to maternal permanent environmental effects were 0.09, 0.13 and 0.10 for body weights at weaning, 6 months and 9 months of age, respectively. Results suggest that maternal additive effects were important only in the early stages of growth, whereas a permanent environmental maternal effect existed from weaning to 9 months of age. These results indicate that modest rates of genetic progress appear possible for all weights.  相似文献   

7.
Objective: This study identified genetic and environmental influences on the tracking of body size from birth to 16 to 18.5 years of age. Research Methods and Procedures: Longitudinal information was collected from a nationally representative sample of Finnish twin adolescents (birth cohorts 1975 to 1979) and their parents through questionnaires mailed when the twins were ages 16 and 18.5 years old. The sample included 702 monozygotic, 724 same‐sex dizygotic, and 762 opposite‐sex dizygotic sets of twins. The measures used were length, weight, ponderal index (kilograms per cubic meters), and gestational age at birth, and height, weight, and body mass index (kilograms per square meters) at 16 to 18.5 years of age. The changes in genetic and environmental influences on body size from birth to early adulthood were analyzed by quantitative genetic modeling. Results: The twins who had a higher weight or ponderal index at birth were taller and heavier in early adulthood, whereas those who were longer at birth were taller, but not heavier, later in life. Adult height was affected more by the birth size than body mass index. In the genetic modeling analyses, the genetic factors accounting for the variation of body size became more apparent with age, and both genetic and environmental influences on stature had a sizable carry‐over effect from birth to late adolescence, whereas for relative weight, the influences were more age‐specific. Discussion: The genetic and environmental architecture of body size changes from birth to adulthood. Even in monozygotic twins who share their genetic background, the initially larger twin tended to remain larger, demonstrating the long‐lasting effects of fetal environment on final body size.  相似文献   

8.
A positive association between intelligence (IQ) and height has been reported previously. It is generally assumed that this association reflects the effect of childhood environment on IQ, but there is still little research supporting directly this hypothesis. We studied the association between height and IQ in 209 Dutch twin pairs at the ages of 5, 7, 10 and 12 years, 208 twin pairs at 16 and 18 years of age and 567 twin pairs and their siblings in adulthood. The heritability of height was high in all cohorts and across all ages (a2 = 0.93 − 0.96). In adulthood, heritability was also high for full-scale IQ (FSIQ: a2 = 0.83–0.84) and somewhat lower for verbal IQ (VIQ: a2 = 0.66–0.84). In early childhood, the heritability was lower, and common environmental factors had a substantial effect on FSIQ and VIQ. A positive association of height and IQ was found in early childhood and adolescence. In adulthood, a correlation was found between height and FSIQ in young adulthood and between height and VIQ in middle age. All correlations could be ascribed to genetic factors influencing both height and IQ. Thus, these results show that the association between height and IQ should not be directly regarded as evidence for childhood living conditions affecting IQ, but the effect of genetic factors affecting independently or interacting with environmental factors should be considered as well.  相似文献   

9.
Parasitism reduces the potential for evolution in a wild bird population   总被引:1,自引:0,他引:1  
We tested the effect of detrimental environmental conditions during growth on the heritability of chick body size in a wild population of blue tits (Parus caeruleus) highly parasitized by blowfly larvae. During nine years, we experimentally induced deparasitized broods, whereas unmanipulated control broods remained heavily infested by two species of Protocalliphora ectoparasites. The heritability of tarsus length was significantly higher in deparasitized broods than control broods, due in part to a very low common brood environment effect in deparasitized broods. We also found evidence for significant genotype-by-environment interactions, which further reflected the effect of the ecological conditions on the expression of additive genetic effects and could represent an additional constraint on the evolution of tarsus length. To our knowledge, this experiment provides the first evidence of host quantitative genetics being influenced by parasitism, and illustrates the potential for parasitism to constrain an evolutionary response to selection.  相似文献   

10.
Variance components for five consecutive measurements of body weight in Polish sheep were estimated using random regression and multi-trait animal models. The data included between 7856 and 31694 body weight records at 5 age classes from birth to 150 days of age. The random additive genetic, maternal environmental and individual permanent environmental effects were fitted. All variance components were increasing over time (not at equal rates), which reflects increasing phenotypic mean and variance with age. Direct heritability tended to increase with age, whereas the effect of dam was reduced for older ages, and the proportion of permanent environmental component was relatively stable. Generally, similar tendencies were registered for estimates obtained via multi-trait animal model. The results confirm that there is a scope for genetic improvement in growth pattern in Polish sheep.  相似文献   

11.
The heritability of birth weight was estimated in 3,562 captive pigtailed macaques using 30 years of breeding and pedigree records. Based on a pedigree of over 12,000 animals, quantitative genetic analyses were performed using statistical variance decomposition methods. The model included additive genetic effects, cytoplasmic genetic effects, birth environment, shared maternal environment, and unmeasured environmental effects. The results demonstrated a strong (h(2) = 0.51) heritable component of birth weight overall, and included significant additive genetic heritability (h(2) = 0.23), and cytoplasmic heritability (h(2) = 0.09). In addition, a significant effect of birth location and cage type was identified, explaining an additional 6% of birth weight variance. The use of a nonhuman primate model for studying the effects of genes on birth weight eliminated many of the problems associated with confounding variables in human studies, and allowed for the quantification of a heritable component of birth weight.  相似文献   

12.
Genetic parameters for growth, mortality and reproductive performances of Markhoz goats were estimated from data collected during 1993–2010 at Markhoz goat Performance Testing Station in Sanandaj, Iran. For kid performance traits 3763 records were available for birth weight (BW), 2931 for weaning weight (WW), average daily gain (ADG) and Kleiber ratio (KR) (approximated as ADW/WW0.75) and 3032 for pre-weaning mortality (PWM). For doe reproductive performance traits there were 2920 records available for litter size at birth (LSB), litter size at weaning (LSW), total litter weight at birth (TLWB) and litter mean weight per kid born (LMWKB), and 2182 for total litter weight at weaned (TLWW) and litter mean weight per kid weaned (LMWKW). Genetic parameters were estimated with univariate and bivariate models using restricted maximum likelihood (REML) procedures. Random effects were explored by fitting additive direct genetic effects, maternal additive genetic effects, maternal permanent environmental effects, the covariance between direct and maternal genetic effects, and common litter effects in different models for pre-weaning traits of kids. Also, in addition to an animal model, sire and threshold models, using a logit link function, were used for analyses of PWM. Models for LSB, LSW, TLWB, TLWW, LMWKB, and LMWKW included direct additive genetic effects, permanent environmental effects due to the animal as well as service sire effects. Estimated direct heritabilities were moderate for pre-weaning traits (0.22 for BW, 0.16 for WW, 0.21 for ADG, and 0.27 for KR and 0.29 for PWM), and low for reproduction traits (0.01 for LSB, 0.01 for LSW, 0.02 for TLWB, 0.03 for TLWW, 0.07 for LMWKB, and 0.06 for LMWKW). The estimates for the maternal additive genetic variance ratios were lower than direct heritability for BW (0.07) and KR (0.04). The estimate for the maternal permanent environmental variance ratios (c2) varied from 0.01 for KR to 0.07 for WW and ADG. The magnitude of common litter variance ratios (l2) was more substantial for BW (0.46) than the PWM (0.19) and KR (0.16). The estimate for the permanent environmental variance due to the animal (c2) ranged from 0.03 for LMWKB to 0.07 for TLWB and LMWKW, whereas service sire effects (s2) ranged from 0.02 to 0.04. The correlation between direct and maternal genetic effects were negative and high for BW (?0.51) and KR (?0.62). The genetic correlations between pre-weaning growth traits were positive and moderate to strong, as were genetic correlations between reproductive traits. Between BW and PWM the correlation was ?0.35. Phenotypic and environmental correlations for all traits were generally lower than genetic correlations.  相似文献   

13.
14.
Estimation of genetic parameters for post-weaning traits of Kermani sheep   总被引:3,自引:0,他引:3  
The objective of the present study was to estimate genetic parameters for post-weaning traits in Kermani sheep. Traits were included 6-month weight (6MW), 9-month weight (9MW), yearling weight (YW), greasy fleece weight at first shearing (GFW) and greasy fleece weights at various shearings (RFW). Data and pedigree information used in this research were collected at Breeding Station of Kermani sheep during 1993–2004. Genetic parameters were estimated with single- and multi-traits analysis using restricted maximum likelihood (REML) procedures, under animal models. Log likelihood ratio test indicated the most appropriate model for 6MW and 9MW should included direct additive genetic effects as well as maternal permanent environmental effects. However the most appropriate model for YW and GFW had only the direct additive genetic effects. The effects of sex, age of dam and year of birth were significant on body weight traits (P < 0.01). GFW was influenced significantly by sex and year of birth (P < 0.01) but was not affected by age of dam (P > 0.05). Type of birth was no significant effect on studied traits (P > 0.05). Also, the age of lamb at weighing time was a significant influence on 6MW, 9MW and YW. Direct heritability estimates for 6MW, 9MW, YW and GFW were 0.32, 0.03, 0.15 and 0.15, respectively. Maternal permanent environmental estimates of 0.09 were obtained for 6MW and 9MW. Genetic correlation estimates between mentioned traits ranged from 0.51 to 0.99. Phenotypic correlations were generally lower than those of genetic correlation and varied from 0.05 to 0.79 for various traits. The environmental correlations estimates between GFW with growth traits were low, but between other traits were positive and high, ranged from 0.54 to 0.72. The value of repeatability estimated for greasy fleece weight was 0.22.  相似文献   

15.
Body size is an important determinant of fitness in many organisms. While size will typically change over the lifetime of an individual, heritable components of phenotypic variance may also show ontogenetic variation. We estimated genetic (additive and maternal) and environmental covariance structures for a size trait (June weight) measured over the first 5 years of life in a natural population of bighorn sheep Ovis canadensis. We also assessed the utility of random regression models for estimating these structures. Additive genetic variance was found for June weight, with heritability increasing over ontogeny because of declining environmental variance. This pattern, mirrored at the phenotypic level, likely reflects viability selection acting on early size traits. Maternal genetic effects were significant at ages 0 and 1, having important evolutionary implications for early weight, but declined with age being negligible by age 2. Strong positive genetic correlations between age-specific traits suggest that selection on June weight at any age will likely induce positively correlated responses across ontogeny. Random regression modeling yielded similar results to traditional methods. However, by facilitating more efficient data use where phenotypic sampling is incomplete, random regression should allow better estimation of genetic (co)variances for size and growth traits in natural populations.  相似文献   

16.
The aim of this study was to explore, in a large and non-censored twin cohort, the nature (i.e., additive versus non-additive) and magnitude (i.e., heritability) of genetic influences on inter-individual differences in human longevity. The sample comprised all identified and traced non-emigrant like-sex twin pairs born in Denmark during the period 1870–1900 with a zygosity diagnosis and both members of the pairs surviving the age of 15 years. A total of 2872 pairs were included. Age at death was obtained from the Danish Central Person Register, the Danish Cause-of-Death Register and various other registers. The sample was almost non-censored on the date of the last follow-up (May 1, 1994), all but 0.6% had died, leaving a total of 2872 pairs for analysis. Proportions of variance attributable to genetic and environmental factors were assessed from variance-covariance matrices using the structural equation model approach. The most parsimonious explanation of the data was provided by a model that included genetic dominance (non-additive genetic effects caused by interaction within gene loci) and non-shared environmental factors (environmental factors that are individual-specific and not shared in a family). The heritability of longevity was estimated to be 0.26 for males and 0.23 for females. The small sex-difference was caused by a greater impact of non-shared environmental factors in the females. Heritability was found to be constant over the three 10-year birth cohorts included. Thus, longevity seems to be only moderately heritable. The nature of genetic influences on longevity is probably non-additive and environmental influences non-shared. There is no evidence for an impact of shared (family) environment.  相似文献   

17.
刘燕  李玉玲 《人类学学报》2022,41(5):875-882
目前有关儿童青少年坐高、下肢长及其比值的报道多为非双生子人群的研究。为了解遗传和环境因素对儿童青少年坐高、下肢长及坐高与下肢长比值影响的相对大小,我们对796对6~18岁双生子的身高和坐高进行了测量,计算下肢长及坐高与下肢长比值,采用结构方程模型分析其遗传和环境相对效应。结果发现,校正年龄后,男女15~18岁年龄组坐高和下肢长的遗传度(0.63~0.78)均分别高于同性别低年龄段儿童青少年(0.31~0.68);坐高与下肢长比值的遗传度除9~11岁女生(0.84)外,其他年龄组均较低(男0.16~0.46,女0.21~0.57);共同环境因素和特殊环境因素对6~14岁儿童青少年各指标的作用较大。本研究提示,在快速发育时期,坐高、下肢长和坐高与下肢长比值对环境因素更为敏感,遗传度较低;机体越成熟,其遗传效应更强。  相似文献   

18.
Genetic parameters and (co)variance components were estimated for weights at birth and at 30, 90 and 180 days of age for Draa goat maintained at Ouarzazate station over a period of 18 years (1988–2005). Records of 1498 kids, the progeny of 46 sires and 404 dams were used in the study. Analyses were carried out by restricted maximum likelihood. Six different animal models including or ignoring maternal genetic or permanent environmental effects were fitted for all traits. The Model 2 with only permanent environmental maternal effects seemed most suitable. Estimates of direct heritability from this model were 0.16 for birth weight and 0.07, 0.11 and 0.11 for weights at 30, 90 and 180 days, respectively. Maternal heritability estimates varied from 0.00 to 0.24 for all traits according to the model used (Models 4–6). Bivariate analysis by Model 2 was also used to estimate genetic correlations between traits. The estimates of genetic and phenotypic correlations among weights were positive and intermediate to high in value. Despite the low estimated heritabilities of body weight traits of Draa goat, there is a small genetic variability that may be exploited to improve growth performance.  相似文献   

19.
Uller T  Olsson M  Ståhlberg F 《Heredity》2002,88(6):480-484
Heritability characteristically shows large variation between traits, among populations and species, and through time. One of the reasons for this is its dependence on gene frequencies and how these are altered by selection and drift through the evolutionary process. We studied variation in heritability of tadpole growth rate in populations of the Swedish common frog, Rana temporaria. In populations evolving under warmer conditions, we have demonstrated elsewhere that tadpoles show better growth and physiological performance at relatively higher temperatures than tadpoles with an evolutionary history in a relatively cooler part of the distribution range. In the current study, we ask whether this process of divergence under natural selection has influenced the genetic architecture as visualised in estimates of heritability of growth rate at different temperature treatments under laboratory conditions. The results suggest that the additive genetic variance varies between treatments and is highest in a treatment that is common to both populations. Our estimates of narrow sense heritability are generally higher in the thermal regime that dominates in the natural environment. The reason for this appears not primarily to be because the component of additive genetic variation is higher in relation to the total phenotypic variation under these conditions, but because the part of the phenotypic variance explained by environmental variation increases at temperatures to which the current populations has been less frequently under selection.  相似文献   

20.
We evaluated genetic and environmental factors affecting age at first farrowing of sows in the Brazilian southeast. For this purpose, 466 observations regarding the age at first farrowing were made for Dalland-C40? animals belonging to two herds. The effects of the environmental factors on this trait were assessed by means of a model that included, as random effects, the influence of the sow's father and mother and, as fixed effects, the influence the year of birth, the herd and the birth season, along with the covariable litter size at birth. The variance components were estimated using the derivative-free restricted maximum likelihood method. The estimated mean was 354.8 ± 25.87 days, with a coefficient of variation of 7.29%. Significant effects on the trait were observed for the herd, the year and the season of birth; but a linear effect of litter size at birth on the age at first farrowing was not observed. The boar did not significantly contribute to the variation occurring among the sows, whereas the sow's mother caused significant variation. The heritability estimate for the age at first farrowing was 0.44 ± 0.15, which is considered high. We concluded that herd effect and year and season of birth should be taken into consideration for an accurate genetic comparison; consequently, the animals should be joined into contemporary groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号