首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The peptide chain initiation factor, Co-EIF-1 has been purified to homogeneity. Upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the homogeneous preparation gives a single protein band corresponding to a molecular weight of approximately 20,000. In the crude preparation, Co-EIF-1 exists in two molecular forms: Co-EIF-1H (Mr = 200,000) and Co-EIF-1L (Mr = 20,000). Both forms are equally active in all the reactions studied. Upon heating, the heavy form (Co-EIF-1H) is completely converted into the light form (Co-EIF-1L). Radioactively labeled [14C]Co-EIF-1 was prepared by reductive alkylation using [14C]formaldehyde and borohydride. [14C]Methyl-Co-EIF-1 binds specifically to EIF-1; EIF-1.[14C]Co-EIF-1 complex was analyzed by gel (Sephadex G-100) filtration. EIF-1.Co-EIF-1 complex is distinctly more stable towards heat than EIF-1 alone and the quarternary complex, Met-tRNAf.EIF-1.Co-EIF-1.GTP is more resistant to aurintricarboxylic acid than the ternary complex, Met-tRNAf.EIF-1.GTP. Both the quarternary complex, Met-tRNAf.EIF-1.Co-EIF-1.GTP, and the ternary complex, Met-tRNAf.EIF-1.GTP, are equally sensitive to Mg2+ in the presence of EIF-2 (TDF). In the presence of Co-EIF-1, the initial rate of Met-tRNAf binding to 40 S ribosomes was significantly increased.  相似文献   

2.
We have used an in vitro translation initiation assay to investigate the requirements for the efficient transfer of Met-tRNAf (as Met-tRNAf.eIF2.GTP ternary complex) to 40 S ribosomal subunits in the absence of mRNA (or an AUG codon) to form the 40 S preinitiation complex. We observed that the 17-kDa initiation factor eIF1A is necessary and sufficient to mediate nearly quantitative transfer of Met-tRNAf to isolated 40 S ribosomal subunits. However, the addition of 60 S ribosomal subunits to the 40 S preinitiation complex formed under these conditions disrupted the 40 S complex resulting in dissociation of Met-tRNAf from the 40 S subunit. When the eIF1A-dependent preinitiation reaction was carried out with 40 S ribosomal subunits that had been preincubated with eIF3, the 40 S preinitiation complex formed included bound eIF3 (40 S.eIF3. Met-tRNAf.eIF2.GTP). In contrast to the complex lacking eIF3, this complex was not disrupted by the addition of 60 S ribosomal subunits. These results suggest that in vivo, both eIF1A and eIF3 are required to form a stable 40 S preinitiation complex, eIF1A catalyzing the transfer of Met-tRNAf.eIF2.GTP to 40 S subunits, and eIF3 stabilizing the resulting complex and preventing its disruption by 60 S ribosomal subunits.  相似文献   

3.
Dissociation of eukaryotic ribosomes by purified initiation factor EIF-3   总被引:1,自引:0,他引:1  
Purified eukaryotic initiation factor, EIF-3, prepared from ascites cells dissociated rat liver 80S ribosomes into subunits. Ribosomes bearing endogenous mRNA and nascent peptide were not dissociated by EIF-3. When 80S ribosomes reconstituted from subunits were used as substrate the reaction had the following characteristics: Dissociation was rapid--the reaction being completed within 2 min at 30°. The extent of dissociation was directly proportional to the amount of EIF-3; with 21 μg of EIF-3 about 70% (or 10.5 μg) of the 80S monomers were dissociated. The dissociation of 80S monomers by EIF-3 decreased with increasing concentrations of magnesium. The reaction was not catalytic: 28 moles of EIF-3 were required to dissociate 1 mole of 80S ribosomes. The characteristic of the dissociation reaction promoted by EIF-3 and by E. coli initiation factor IF-3 are remarkably similar. The dissociation reaction provides a practical assay for EIF-3 independent of complimentation of other initiating factors.  相似文献   

4.
Dormant and developing embryos of Artemia salina contain equivalent amounts of eIF-2, the eukaryotic initiation factor which forms a ternary complex with GTP and Met-tRNAf. The factor was purified from 0.5 M NH4Cl ribosomal washes by (NH4)2SO4 fractionation, followed by chromatography on heparin-Sepharose, DEAE-cellulose, hydroxyapatite and phosphocellulose. Purified preparations from dormant and developing embryos have similar specific activities and nucleotide requirements. The mobility of both proteins in dodecylsulfate gel electrophoresis is indistinguishable, and each contains three major polypeptide chains of molecular weight 52 000, 45 000 and 42 000. Both proteins are also immunologically identical, and each stimulates amino acid incorporation in a cell-free system of protein synthesis. The binding of [35S]Met-tRNAf to 40-S ribosomal subunits is catalyzed by eIF-2 isolated from dormant or developing embryos and is dependent upon GPT and AUG. Binding of [35S]Met-tRNAf to 40-S ribosomal subunits, and ternary complex formation with eIF-2, GTP, and [35S]Met-tRNAf is stimulated 2--3-fold by a factor present in the 0.5 M NH4Cl ribosomal wash and which elutes from DEAE-cellulose at 50 mM KCl. This protein does not exhibit GTP-dependent binding of [35S]Met-tRNAf. Binding of GDP and GTP was investigated with purified eIF-2 from developing embryos. The factor forms a binary complex with GDP or GTP, and eIF-2-bound [3H]GDP exchanges very slowly with free nucleotides. Our results suggest that eIF-2 does not limit resumption of embryo development following encystment, nor does it limit mRNA translation in extracts from dormant embryos.  相似文献   

5.
The hepatitis C viral mRNA initiates translation using an internal ribosome entry site (IRES) located in the 5' noncoding region of the viral genome. At physiological magnesium ion concentrations, the HCV IRES forms a binary complex with the 40S ribosomal subunit, recruits initiation factor eIF3 and the ternary eIF2/GTP/Met-tRNA(i)Met complex, and joins 60S subunits to assemble translation-competent 80S ribosomes. Here we show that in the presence of 5 mM MgCl2, the HCV IRES can initiate translation by an alternative mechanism that does not require known initiation factors. Specifically, the HCV IRES was shown to initiate translation in a reconstituted system consisting only of purified 40S and 60S subunits, elongation factors, and aminoacylated tRNAs at high magnesium concentration. Analyses of assembled complexes supported a mechanism by which preformed 80S ribosomes can assemble directly on the HCV IRES at high cation concentrations. This mechanism is reminiscent of that employed by the divergent IRES elements in the Dicistroviridae, exemplified by the cricket paralysis virus, which mediates initiation of protein synthesis without initiator tRNA.  相似文献   

6.
Eukaryotic initiation factor 5 (eIF-5), isolated from rabbit reticulocyte lysates, is a monomeric protein of 58-62 kDa. The function of eIF-5 in the formation of an 80 S polypeptide chain initiation complex from a 40 S initiation complex has been investigated. Incubation of the isolated 40 S initiation complex (40 S.AUG.Met.tRNAf.eIF-2 GTP) with eIF-5 resulted in the rapid and quantitative hydrolysis of GTP bound to the 40 S initiation complex. The rate of this reaction was unaffected by the presence of 60 S ribosomal subunits. Analysis of eIF-5-catalyzed reaction products by gel filtration indicated that both eIF-2.GDP binary complex and Pi formed were released from the ribosomal complex whereas Met-tRNAf remained bound to 40 S ribosomes as a Met-tRNAf.40 S.AUG complex. Reactions carried out with biologically active 32P-labeled eIF-5 indicated that this protein was not associated with the 40 S.AUG.Met-tRNAf complex; similar results were obtained by immunological methods using monospecific anti-eIF-5 antibodies. The isolated 40 S.AUG.Met-RNAf complex, free of eIF-2.GDP binary complex and eIF-5, readily interacted with 60 S ribosomal subunits in the absence of exogenously added eIF-5 to form the 80 S initiation complex capable of transferring Met-tRNAf into peptide linkages. These results indicate that the sole function of eIF-5 in the initiation of protein synthesis is to mediate hydrolysis of GTP bound to the 40 S initiation complex in the absence of 60 S ribosomal subunits. This leads to formation of the intermediate 40 S.AUG.Met-tRNAf and dissociation of the eIF-2.GDP binary complex. Subsequent joining of 60 S ribosomal subunits to the intermediate 40 S.AUG.Met-tRNAf complex does not require participation of eIF-5. Thus, the formation of an 80 S ribosomal polypeptide chain initiation complex from a 40 S ribosomal initiation complex can be summarized by the following sequence of partial reactions. (40 S.AUG.Met-tRNAf.eIF-2.GTP) eIF-5----(40 S.AUG.Met-tRNAf) + (eIF-2.GDP) + Pi (1) (40 S.AUG.Met-tRNAf) + 60 S----(80 S.AUG.Met-tRNAf) (2) 80 S initiation complex.  相似文献   

7.
1. A protein factor promoting the binding of initiator tRNA to the 40S ribosomal subunit was purified to homogeneity (more than 2500-fold) from rat liver cytosol. It has a mol.wt. of 265000 and is composed of four subunits of identical molecular weight. 2. This factor directs the binding of methionyl-tRNA(fMet) and to a lesser extent also of N-acetylphenylalanyl-tRNA, but not of methionyl-tRNA(Met) or phenylalanyl-tRNA, to the smaller ribosomal subunit at high concentrations of GTP (8-10mm) with an optimum at pH4.0. As evidenced by sucrose-density-gradient centrifugation, initiator tRNA becomes bound to the 40S subunit or to 80S ribosomes. 3. A deacylase activity specific for methionyl-tRNA(fMet) is associated with the pure factor. The factor significantly stimulates the translation of natural message in systems containing polyribosomes and both purified peptide-elongation factors. 4. The factor binds initiator tRNA or GTP to form unstable binary complexes and forms a ternary complex with methionyl-tRNA(fMet) and GTP. This complex is relatively stable. 5. In the absence of any cofactors the factor forms a stable complex with 40S and 80S ribosomes. This preformed ribosomal complex binds efficiently initiator tRNA at pH7.5 and low concentrations of GTP (1-2mm). The ternary complex of the factor with methionyl-tRNA(fMet) and GTP may be liberated from this ribosomal complex. 6. A protein factor capable of promoting the binding and simultaneously the deacylation of initiator tRNA may apparently have a regulatory function in physiological gene translation by removing an excess of methionyl-tRNA(fMet) not required for translation.  相似文献   

8.
Evidence is presented that the GTP initially bound in ternary complex (Met-tRNAf.GTP.eukaryotic initiation factor 2 (eIF-2)) is the same GTP that is hydrolyzed to allow joining of a 40 S preinitiation complex with 60 S subunits. This evidence was obtained by two quite dissimilar techniques. The first was a kinetic analysis of AUG-directed methionyl-puromycin synthesis using either eIF-2 of eIF-2A to direct the binding of Met-tRNAf to 40 S subunits. The second technique was the isolation of 40 S preinitiation complexes by Sepharose 6B chromatography and subsequent quantitation of GTP hydrolysis and methionyl-puromycin synthesis under conditions where 80 S complex formation is permitted.  相似文献   

9.
The AUG-dependent formation of an 80 S ribosomal initiation complex was studied using purified rabbit reticulocyte initiation factors radiolabeled by reductive methylation. The radiolabeled initiation factors were as biologically active as untreated factors. Reaction mixtures containing a variety of components (AUG, GTP, Met-tRNAf, initiation factors, and 40 S and 60 S ribosomal subunits) were incubated at 30 degrees C and then analyzed on linear sucrose gradients for the formation of ribosomal complexes. The results show that both eukaryotic initiation factor (eIF)-3 and the ternary complex (eIF-2.GTP.Met-tRNAf) bind independently to the 40 S subunit and each of these components enhances the binding of the other. All of the polypeptides of eIF-2 and eIF-3 participate in this binding. Formation of an 80 S ribosomal complex requires eIF-5 and 60 S subunits in a reaction that is stimulated by eIF-4C. Both eIF-2 and eIF-3 are released from the 40 S preinitiation complex during formation of the 80 S initiation complex. Release of eIF-2 and eIF-3 does not occur and 80 S ribosomal complexes are not formed if GTP is replaced by a nonhydrolyzable analog such as guanosine 5'-O3-(1,2-mu-imido)triphosphate. Despite a variety of attempts, it has not yet been possible to demonstrate binding of eIF-4C, eIF-4D, or eIF-5 to either 40 S or 80 S ribosomal complexes.  相似文献   

10.
The peptide chain initiation factor, EIF-2 has been partially purified from the 0.5 M KCl ribosomal wash. The molecular weight of EIF-2 is approximately 450,000. The purified EIF-2 preparation promotes the dissociation of the ternary complex, Met-tRNAf·EIF-1·GTP in the presence of Mg++ and is also required along with EIF-1 for AUG-directed Met-tRNAf binding to 40S ribosomes.  相似文献   

11.
A primer extension inhibition (toeprint) assay was developed using ribosomes and ribosomal subunits from Streptomyces lividans. This assay allowed the study of ribosome binding to streptomycete leaderless and leadered mRNA. Purified 30S subunits were unable to form a ternary complex on aph leaderless mRNA, whereas 70S ribosomes could form ternary complexes on this mRNA. 30S subunits formed ternary complexes on leadered aph and malE mRNA. The translation initiation factors (IF1, IF2, and IF3) from S. lividans were isolated and included in toeprint and filter binding assays with leadered and leaderless mRNA. Generally, the IFs reduced the toeprint signal on leadered mRNA; however, incubation of IF1 and IF2 with 30S subunits that had been washed under high-salt conditions promoted the formation of a ternary complex on aph leaderless mRNA. Our data suggest that, as reported for Escherichia coli, initiation complexes with leaderless mRNAs might use a novel pathway involving 70S ribosomes or 30S subunits bound by IF1 and IF2 but not IF3. Some mRNA-ribosome-initiator tRNA reactions that yielded weak or no toeprint signals still formed complexes in filter binding assays, suggesting the occurrence of interactions that are not stable in the toeprint assay.  相似文献   

12.
It has been previously reported by J. R. Lenz et al. [(1978) Biochemistry 17, 80--87] that certain phosphorylated sugars stimulate protein synthesis in extracts of mammalian cells. This effect was found to be due to a stimulation of Met-tRNAf binding to 40S ribosomal subunits, both in whole extracts and with isolated ribosomes. However, formation of a ternary complex of Met-tRNAf, initiation factor eIF-2, and GTP was not stimulated. It was also shown that the stimulation is not due solely to metabolism of the sugars. The present communication further characterizes the stimulatory effect of the sugars. They were found to prevent the inactivation of ribosomes that occurs during protein synthesis incubations. The sugars were also found to inhibit cAMP-dependent protein kinases noncompetitively. However, they stimulate Met-tRNAf binding to 40S ribosomal subunits even under conditions in which an inhibition of protein kinase has no effect. Although it has bot been possible to demonstrate a direct association of the sugars with the 40S initiation complex, the evidence suggests that their effect is mediated by an interaction with one of the components involved in the formation of this complex.  相似文献   

13.
Partially purified polypeptide chain initiation factors were prepared from the 0.5 M KCl wash of rat liver microsomes. Their activities in connection with dimethylnitrosamine (DMNA)-induced inhibition of protein synthesis were studied by use of the following reactions: (1) poly(U)-directed binding of Phe-tRNA to ribosomes, (2) formation of a GTP-dependent ternary initiation complex with Met-tRNAf, (3) binding of Met-tRNAf to 40-S ribosomal subunits, (4) assembly of a Met-tRNAf containing 80-S ribosomal initiation complex and (5) ribosome-dependent GTPase activity. The inhibition of protein synthesis with DMNA was not associated with a loss of factor activity in any of these reactions. In the binding of Met-tRNAf to 40-S subunits there was a noticeable increase, probably related to the stability of the resulting complex. The Met-tRNA deacylase activity was also increased.  相似文献   

14.
Monospecific polyclonal antibodies against seven proteins of the 40 S subunit of rat liver ribosomes were used to identify ribosomal proteins involved in interaction with initiation factor eIF-2 in the quaternary initiation complex [eIF-2 X GMPPCP X [3H]Met-tRNAf X 40 S ribosomal subunit]. Dimeric immune complexes of 40 S subunits mediated by antibodies against ribosomal proteins S3a, S13/16, S19 and S24 were found to be unable to bind the ternary initiation complex [eIF-2 X GMPPCP X [3H]Met-tRNAf]. In contrast, 40 S dimers mediated by antibodies against proteins S2, S3 and S17 were found to bind the ternary complex. Therefore, from the ribosomal proteins tested, only proteins S3a, S13/16, S19 and S24 are concluded to be involved in eIF-2 binding to the 40 S subunit.  相似文献   

15.
Elongation factor 3 (EF-3) is a unique and essential requirement of the fungal translational apparatus. EF-3 is a monomeric protein with a molecular mass of 116,000. EF-3 is required by yeast ribosomes for in vitro translation and for in vivo growth. The protein stimulates the binding of EF-1 alpha :GTP:aa-tRNA ternary complex to the ribosomal A-site by facilitating release of deacylated-tRNA from the E-site. The reaction requires ATP hydrolysis. EF-3 contains two ATP-binding sequence motifs (NBS). NBSI is sufficient for the intrinsic ATPase function. NBSII is essential for ribosome-stimulated activity. By limited proteolysis, EF-3 was divided into two distinct functional domains. The N-terminal domain lacking the highly charged lysine blocks failed to bind ribosomes and was inactive in the ribosome-stimulated ATPase activity. The C-terminally derived lysine-rich fragment showed strong binding to yeast ribosomes. The purported S5 homology region of EF-3 at the N-terminal end has been reported to interact with 18S ribosomal RNA. We postulate that EF-3 contacts rRNA and/or protein(s) through the C-terminal end. Removal of these residues severely weakens its interaction mediated possibly through the N-terminal domain of the protein.  相似文献   

16.
The roles of Co-eIF-2, Co-eIF-2A80, and GDP in ternary complex and Met-tRNAf X 40 S initiation complex formation were studied. 1) Partially purified eukaryotic initiation factor 2 (eIF-2) (50% pure) preparations contained 0.4-0.6 pmol of bound GDP/pmol of eIF-2. eIF-2 purity was calculated from ternary complex formation in the absence of Mg2+ and in the presence of excess Co-eIF-2. 2) In the absence of Mg2+, approximately 30% of the potentially active eIF-2 molecules formed ternary complexes, and both Co-eIF-2 and Co-eIF-2A80 were equally effective in full activation of the eIF-2 molecules for ternary complex formation. 3) In the presence of Mg2+, approximately 10% of the potentially active eIF-2 molecules formed ternary complexes in the absence of ancillary factors, and the ancillary factors Co-eIF-2A80 and Co-eIF-2 raised the incorporation to 20 and 50% of the eIF-2 molecules, respectively. 4) In the absence of Mg2+, [3H]GDP in preformed eIF-2 X [3H]GDP was readily displaced by GTP during ternary complex formation. 5) In the presence of Mg2+, [3H]GDP remained tightly bound to eIF-2 and ternary complex formation was inhibited. Co-eIF-2, but not Co-eIF-2A80, was effective in promoting [3H]GDP displacement and the former was more effective in promoting ternary complex formation than the latter. 6) eIF-2 X [3H]GDP was converted to eIF-2 X [3H] GTP by incubation in the presence of nucleoside-5'-diphosphate kinase and ATP, but the eIF-2 X [3H]GTP thus formed did not bind Met-tRNAf in the presence of Mg2+ and required exogeneous addition of Co-eIF-2 and GTP for ternary complex formation and GTP displacement. 7) In the absence of Mg2+, the increased ternary complex formed in the presence of eIF-2 X [3H] GDP and Co-eIF-2A80 (with accompanying loss of [3H] GDP) was inactive in a subsequent reaction, which involves Met-tRNAf transfer to 40 S ribosomes (in the presence of Mg2+), and required trace amounts of Co-eIF-2 for such activity. Based on the above observations, we have suggested a two-step activation of eIF-2 molecules by the Co-eIF-2 protein complex for functional ternary complex formation. One of these steps involves the Co-eIF-2A component of Co-eIF-2. This activation results in stimulated Met-tRNAf binding to eIF-2 and is most apparent in the absence of Mg2+ and with aged eIF-2 molecules.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
We have purified seven protein factors from rabbit reticulocytes, all of which are presumed to be involved in the initiation of mammalian protein synthesis. They are termed eIF-1, eIF-2, eIF-3, eIF4A, eIF-4B, eIF-4C and e-IF-5. The purification from the KCl wash of crude ribosomes involves fractionation with ammonium sulphate, ion-exchange chromatography and separation by size. The operational definition of an initiation factor was its requirement for translation of natural messenger RNA (globin mRNA) in a highly purified and fractionated system using completely defined elongation components, i.e. aminoacyl-tRNA, the two elongation factors EF-1 and EF-2, and GTP. By the same criterion ATP was also shown to be required for initiation. The initiation factors were purified to homogeneity with the exception of eIF-4B, which was 60% to 70% pure. They were characterized physically by sucrose gradient centrifugation and by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate. With the exception of eIF-2 and eIF-3, they consist of single polypeptide chains ranging in molecular weight from 15,000 (eIF-1) to about 160,000 (eIF-5). The factor eIF-2 has three subunits of about 35,000, 50,000 and 55,000 molecular weight. The factor eIF-3 appears to be homogeneous as judged by gel electrophoresis in non-dissociating conditions and sedimentation analysis. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate, however, reveals at least nine subunits ranging in molecular weight from about 35,000 to 160,000. Initiation complexes (mRNA · Met-tRNAf · 80 S ribosome), made in the presence of the seven initiation factors, ATP and GTP were isolated on a sucrose gradient and shown to be fully active in polypeptide chain elongation when supplied with aminoacyl-tRNA, the two elongation factors and GTP.  相似文献   

18.
The present study has examined the requirements for the binding of rabbit reticulocyte elongation factor 1 (EF-1) to ribosomes under different assay conditions. When a centrifugation procedure was used to separate the ribosome EF-1 complex, the binding of EF-1 to ribosomes required GTP and Phe-tRNA, but not poly(U). The results suggested that undr these conditions a ternary complex, EF-1 . GTP . aminoacyl-tRNA, is necessary for the formation of a ribosome . EF-1 complex. However, when gel filtration was used to isolate the ribosome . EF-1 complex, only template and tRNA were required. These studie emphasize the fact that the procedure used to isolate the ribosome . EF-1 complex determines the requirements for stable complex formation. EF-1 can also interact with nucleic acids such as 28 S and 18 S rRNA, messenger RNA and DNA. In contrast to the binding to ribosomes, EF-1 binding to nucleic acids requires only Mg2+.  相似文献   

19.
Initiation factor MP was purified 1570-fold with 67% recovery of total activity present in 0.5 M KCl extracts of rabbit reticulocyte ribosomes. Initiation factor MP forms a ternary complex with Met-tRNAf and GTP or a binary complex with Met-tRNAf alone, the details of which are presented in the accompanying paper (Safer, B., Adams, S. L., Anderson. W. F., and Merrick, W. C. (1975) J. Biol. Chem. 250, 9076-9082). Initiation factor MP was homogeneous by the following criteria: (a) electrophoresis as a single band in gels of 5, 6, 7, 8, 9, and 10% acrylamide; (b) equilibration as a single band during isoelectric focusing; (c) sedimentation as a single symmetrical boundary during sedimentation velocity experiments; (d) linear plots of sedimentation equilibrium data; (e) symmetrical absorbance (at 280 nm) and activity profiles during DEAE-cellulose and Sephadex G-200 chromatography, and (f) symmetrical distribution of initiation factor MP during sucrose density gradient band sedimentation. The molecular weight of the initiation factor MP monomer (0.2 mg/ml) by low speed sedimentation equilibrium was 90,800. Calculations based on the Stokes radius and sedimentation velocity show the existence of relatively stable 90,000-dalton monomers or 180,000-dalton dimers at low (0.1 mg/ml) and high (9.75 mg/ml) concentrations of initiation factor MP, respectively. Electrophoresis in sodium dodecyl sulfate gels indicates that initiation factor MP monomer is composed of two noncovalently linked subunits with molecular weights of 52,000 and 34,000. Despite a relatively normal amino acid composition and an isoelectric point of 6.4, initiation factor MP behaves as a basic protein, eluting from phosphocellulose at 650 mM KCl (pH 7.9). Both ternary complex formation and methionyl-puromycin synthesis co-purify, indicating that a single protein is required for both activities.  相似文献   

20.
The requirement for ATP for initiation of eukaryotic mRNA translation was tested using gel-filtered rabbit reticulocyte lysates incubated with labelled Met-tRNAfMet and exogenous RNA templates, and assaying the formation of labelled 80S initiation complexes in the presence of GTP, or labelled 40S initiation complexes in the presence of a non-hydrolysable analogue of GTP. Initiation complex formation on globin mRNA, or on capped viral RNAs such as papaya mosaic virus RNA and tobacco mosaic virus RNA, was strongly stimulated by ATP. In contrast, initiation complex formation on (uncapped) encephalomyocarditis virus RNA was uninfluenced by the presence or absence of ATP, which may be correlated with the recent evidence for scanning-independent internal initiation on this viral RNA. In addition, initiation complex formation on uncapped cowpea mosaic virus RNA and on poly(A,U,G) was only slightly stimulated by ATP, much less than in the case of the capped RNAs. These results suggest that most of the ATP hydrolysed during translation initiation is consumed in cap-dependent processes, probably in unwinding the mRNA, and relatively little in the actual migration or scanning of 40S subunits along the mRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号