首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Climate change can profoundly alter species’ distributions due to changes in temperature, precipitation, or seasonality. Migratory monarch butterflies (Danaus plexippus) may be particularly susceptible to climate-driven changes in host plant abundance or reduced overwintering habitat. For example, climate change may significantly reduce the availability of overwintering habitat by restricting the amount of area with suitable microclimate conditions. However, potential effects of climate change on monarch northward migrations remain largely unknown, particularly with respect to their milkweed (Asclepias spp.) host plants. Given that monarchs largely depend on the genus Asclepias as larval host plants, the effects of climate change on monarch northward migrations will most likely be mediated by climate change effects on Asclepias. Here, I used MaxEnt species distribution modeling to assess potential changes in Asclepias and monarch distributions under moderate and severe climate change scenarios. First, Asclepias distributions were projected to extend northward throughout much of Canada despite considerable variability in the environmental drivers of each individual species. Second, Asclepias distributions were an important predictor of current monarch distributions, indicating that monarchs may be constrained as much by the availability of Asclepias host plants as environmental variables per se. Accordingly, modeling future distributions of monarchs, and indeed any tightly coupled plant-insect system, should incorporate the effects of climate change on host plant distributions. Finally, MaxEnt predictions of Asclepias and monarch distributions were remarkably consistent among general circulation models. Nearly all models predicted that the current monarch summer breeding range will become slightly less suitable for Asclepias and monarchs in the future. Asclepias, and consequently monarchs, should therefore undergo expanded northern range limits in summer months while encountering reduced habitat suitability throughout the northern migration.  相似文献   

2.
Roadsides cover an extensive area within the United States, are actively managed, and have been considered potential areas of habitat for several taxa. For monarch butterflies (Danaus plexippus), roadsides may act as important habitat along their migration route by providing nectar and host plant resources, which is especially important considering the loss and fragmentation of monarch habitat throughout their breeding range. However, the interactions between monarchs and their parasites may be altered in these areas by management regimes. Monarchs are infected by Ophryocystis elektroscirrha (OE), an obligate, spore-forming protist of monarchs and queens, and Lespesia archippivora, a generalist tachinid fly parasitoid. Roadsides could increase parasitism by concentrating monarchs in certain areas or decrease parasitism by modifying habitat (e.g., the roadside management practice of mowing could reduce the availability of OE spores by removing the above ground portion of host plants and generating re-growth), including the distribution and abundance of host plants. In this study, we compared the proportion of infected monarchs between roadside prairies and managed prairies to evaluate the potential of roadside prairies as habitat for monarch butterflies. Our results suggest that the proportion of infected monarchs does not differ between roadside prairies and managed prairies. Thus, roadsides may provide habitat for monarchs that is similar in quality (at least in terms of parasitism rates) to managed prairies. The role of roadsides as habitat for monarchs should be considered when developing roadside management strategies.  相似文献   

3.
Each spring, millions of monarch butterflies (Danaus plexippus) migrate from overwintering sites in Mexico to recolonize eastern North America. However, few monarchs are found along the east coast of the USA until mid-summer. Brower (Brower, L. P. 1996 J. Exp. Biol. 199, 93–103.) proposed that east coast recolonization is accomplished by individuals migrating from the west over the Appalachians, but to date no evidence exists to support this hypothesis. We used hydrogen (δD) and carbon (δ13C) stable isotope measurements to estimate natal origins of 90 monarchs sampled from 17 sites along the eastern United States coast. We found the majority of monarchs (88%) originated in the mid-west and Great Lakes regions, providing, to our knowledge, the first direct evidence that second generation monarchs born in June complete a (trans-) longitudinal migration across the Appalachian mountains. The remaining individuals (12%) originated from parents that migrated directly from the Gulf coast during early spring. Our results provide evidence of a west to east longitudinal migration and provide additional rationale for conserving east coast populations by identifying breeding sources.  相似文献   

4.
Every autumn the entire eastern North American population of monarch butterflies (Danaus plexippus) undergoes a spectacular migration to overwintering sites in the mountains of central Mexico, where they form massive clusters and can number in the millions. Since their discovery, these sites have been extensively studied, and in many of these studies, monarchs were captured and sexes recorded. In a recent effort to compile the sex ratio data from these published records, a surprising trend was found, which appears to show a gradual decline in proportion of females over time. Sex ratio data from 14 collections of monarchs, all spanning 30 years and totaling 69 113 individuals, showed a significant negative correlation between proportion of females and year (r = −0.69, p = 0.007). Between 1976 and 1985, 53 per cent of overwintering monarchs were female, whereas in the last decade, 43 per cent were female. The relationship was significant with and without weighting the analyses by sampling effort. Moreover, analysis of a recent three-year dataset of sex ratios revealed no variation among nine separate colonies, so differences in sampling location did not influence the trend. Additional evidence from autumn migration collections appears to confirm that proportions of females are declining, and also suggests the sex ratio is shifting on breeding grounds. While breeding monarchs face a number of threats, one possibility is an increase in prevalence of the protozoan parasite, Ophryocystis elektroscirrha, which recent evidence shows affects females more so than males. Further study will be needed to determine the exact cause of this trend, but for now it should be monitored closely.  相似文献   

5.
Long-distance migration can lower parasite prevalence if strenuous journeys remove infected animals from wild populations. We examined wild monarch butterflies (Danaus plexippus) to investigate the potential costs of the protozoan Ophryocystis elektroscirrha on migratory success. We collected monarchs from two wintering sites in central Mexico to compare infection status with hydrogen isotope (δ 2H) measurements as an indicator of latitude of origin at the start of fall migration. On average, uninfected monarchs had lower δ 2H values than parasitized butterflies, indicating that uninfected butterflies originated from more northerly latitudes and travelled farther distances to reach Mexico. Within the infected class, monarchs with higher quantitative spore loads originated from more southerly latitudes, indicating that heavily infected monarchs originating from farther north are less likely to reach Mexico. We ruled out the alternative explanation that lower latitudes give rise to more infected monarchs prior to the onset of migration using citizen science data to examine regional differences in parasite prevalence during the summer breeding season. We also found a positive association between monarch wing area and estimated distance flown. Collectively, these results emphasize that seasonal migrations can help lower infection levels in wild animal populations. Our findings, combined with recent declines in the numbers of migratory monarchs wintering in Mexico and observations of sedentary (winter breeding) monarch populations in the southern U.S., suggest that shifts from migratory to sedentary behavior will likely lead to greater infection prevalence for North American monarchs.  相似文献   

6.
Parasites often produce large numbers of offspring within their hosts. High parasite burdens are thought to be important for parasite transmission, but can also lower host fitness. We studied the protozoan Ophryocystis elektroscirrha, a common parasite of monarch butterflies (Danaus plexippus), to quantify the benefits of high parasite burdens for parasite transmission. This parasite is transmitted vertically when females scatter spores onto eggs and host plant leaves during oviposition; spores can also be transmitted between mating adults. Monarch larvae were experimentally infected and emerging adult females were mated and monitored in individual outdoor field cages. We provided females with fresh host plant material daily and quantified their lifespan and lifetime fecundity. Parasite transmission was measured by counting the numbers of parasite spores transferred to eggs and host plant leaves. We also quantified spores transferred from infected females to their mating partners. Infected monarchs had shorter lifespans and lower lifetime fecundity than uninfected monarchs. Among infected females, those with higher parasite loads transmitted more parasite spores to their eggs and to host plant leaves. There was also a trend for females with greater parasite loads to transmit more spores to their mating partners. These results demonstrate that high parasite loads on infected butterflies confer a strong fitness advantage to the parasite by increasing between-host transmission.  相似文献   

7.
Like most migratory species, monarch butterflies (Danaus plexippus) must stop frequently during their long southward migration to rest and refuel, and the places where they stop are important for the success of the migration. The behavior of monarch butterflies at migratory stopover sites has never been examined in detail. Here we present results of a long-term study of monarchs at one stopover site in coastal South Carolina where over 12,000 monarchs have been captured, measured and tagged (with numbered stickers to track recovery rates) over 13 years. Only 3 monarchs (0.023%) were recovered at the monarchs’ overwintering sites in Mexico, which is consistent with other tagging studies on the eastern coast. The migration season was longer at this site than at inland locations and monarchs continued to be captured in November and December, when most monarchs had already arrived at the overwintering areas in Mexico. In addition, there were 94 monarchs captured between Jan 1 and Mar 15, indicating that some monarchs overwinter at this site. Of all monarchs captured during the migration season, 80% were captured while nectaring and 10% while roosting. Others were basking, resting, flying and even mating. The sex ratio was male biased by three to one in all behavior categories except those captured mating. Roosting and nectaring monarchs had fresher wings than those in other behavior categories, suggesting that these are younger individuals. There were 13 observations of females ovipositing on non-native Asclepias curassavica during the fall months, which speaks to the potential for this plant to pull monarchs out of the migratory pool. Aside from these insights, this study also serves as an example of the potential that monarch tagging studies have to advance scientific understanding of monarch migration.  相似文献   

8.
The monarch butterfly, Danaus plexippus, is one of Australia's best-known exotic butterflies, being first recorded here in the spring/summer of 1870/1871. However, the source of the original population is unknown. Using historical records we suggest that the most likely source of the founder population was from Vanuatu and/or New Caledonia. Many almost simultaneous 'first records' for the butterfly in Australia suggest that a large, well-distributed population was present when first noticed. While such a population may have developed from a limited number of individuals flying across the Coral Sea, the well documented, very dramatic appearance of large monarch populations in Australia does not appear to fit this model. Rather, we hypothesise that large numbers of monarchs were carried to Australia on cyclonic winds: no fewer that 3 cyclones hit the Queensland coast in early 1870. If one or more of these cyclones tracked from the Vanuatu/New Caledonia chain, then they may have transported monarchs. Once established on the central/northern Queensland coast, natural migration would account for the appearance of butterflies further south. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Herbivores that have recently expanded their host plant ranges provide opportunities to test hypotheses about the evolution of host plant specialization. Here, we take advantage of the contemporary global range expansion of the monarch butterfly (Danaus plexippus) and conduct a reciprocal rearing experiment involving monarch populations with divergent host plant assemblages. Specifically, we ask the following questions: (1) Do geographically disparate populations of monarch butterflies show evidence for local adaptation to their host plants? If so, what processes contribute to this pattern? (2) How is dietary breadth related to performance across multiple host species in monarch populations? (3) Does the coefficient of variation in performance vary across sympatric versus allopatric hosts? We find evidence for local adaptation in larval growth rate and survival based on sympatric/allopatric contrasts. Migratory North American monarchs, which have comparatively broad host breadth, have higher mean performance than derived nonmigratory populations across all host plant species. Monarchs reared on their sympatric host plants show lower coefficient of variation in performance than monarchs reared on allopatric hosts. We focus our discussion on possible mechanisms contributing to local adaptation to novel host plants and potential explanations for the reduction in performance that we observed in derived monarch populations.  相似文献   

10.
Monarch butterflies, Danaus plexippus L. (Lepidoptera: Nymphalidae), occur world‐wide and are specialist herbivores of plants in the milkweed family (Asclepiadaceae). In North America, two monarch populations breed east and west of the continental divide in areas populated by different host plant species. To examine the population variation in monarch responses to different Asclepias species, we measured oviposition preference and larval performance among captive progeny reared from adult butterflies collected in eastern and western North America. Host plant use was evaluated using two milkweed species widely distributed in eastern North America (A. incarnata and A. syriaca), and two species common to western North America (A. fascicularis and A. speciosa). We predicted that exposure to different host plant species in their respective breeding ranges could select for divergent host use traits, so that monarchs should preferentially lay more eggs on, and larvae should perform better on, milkweed species common to their native habitats. Results showed that across all adult female butterflies, oviposition preferences were highest for A. incarnata and lowest for A. fascicularis, but mean preferences did not differ significantly between eastern and western monarch populations. Larvae from both populations experienced the highest survival and growth rates on A. incarnata and A. fascicularis, and we again found no significant interactions between monarch source population and milkweed species. Moreover, the average rank order of larval performance did not correspond directly to mean female oviposition preferences, suggesting that additional factors beyond larval performance influence monarch oviposition behavior. Finally, significant family level variation was observed for both preference and performance responses within populations, suggesting an underlying genetic variation or maternal effects governing these traits.  相似文献   

11.
The Eastern North American monarch butterfly population has severely declined over the past decade. The decreasing availability of larval host plants (milkweeds) due to the use of herbicide-tolerant crops has been implicated in this decline. Roadsides could provide additional habitat for monarchs. In this study we document the occurrence of milkweed and monarchs on roadsides, and discuss whether roadsides are appropriate targets for monarch habitat restoration. We sampled roadside rights-of-way in the Upper Midwestern U.S. during the summer of 2015 to estimate the abundance, distribution, and diversity of milkweeds and the extent to which monarchs use these milkweeds. We then compared monarch densities in roadsides to other habitat types and modelled immature monarch densities based on several site characteristics. Our findings suggest that roadsides have conservation potential for monarchs, especially when other habitat is scarce and if wildlife-friendly management practices are enacted. Milkweeds were found on ~60% of roadside transects. Asclepias syriaca was the most common of the seven species encountered, occurring on 97% of transects with milkweed. Immature monarchs were observed in roadsides, but in lower densities than other habitats during the same time period. At lower milkweed densities, immature monarch density per unit area is positively correlated with milkweed density. However, milkweed density weakens as a predictor of immature monarch density over ~0.6 plants per m2, possibly indicating a saturation effect.  相似文献   

12.
Natural selection should strongly favour hosts that can protect themselves against parasites. Most studies on animals so far have focused on resistance, a series of mechanisms through which hosts prevent infection, reduce parasite growth or clear infection. However, animals may instead evolve tolerance, a defence mechanism by which hosts do not reduce parasite infection or growth, but instead alleviate the negative fitness consequences of such infection and growth. Here, we studied genetic variation in resistance and tolerance in the monarch butterfly (Danaus plexippus) to its naturally occurring protozoan parasite, Ophryocystis elektroscirrha. We exposed 560 monarch larvae of 19 different family lines to one of five different parasite inoculation doses (0, 1, 5, 10 and 100 infective spores) to create a range of parasite loads in infected butterflies. We then used two proxies of host fitness (adult lifespan and body mass) to quantify: (i) qualitative resistance (the ability to prevent infection; also known as avoidance or anti-infection resistance); (ii) quantitative resistance (the ability to limit parasite growth upon infection; also known as control or anti-growth resistance); and (iii) tolerance (the ability to maintain fitness with increasing parasite infection intensity). We found significant differences among host families in qualitative and quantitative resistance, indicating genetic variation in resistance. However, we found no genetic variation in tolerance. This may indicate that all butterflies in our studied population have evolved maximum tolerance, as predicted by some theoretical models.  相似文献   

13.
Host susceptibility and patterns of infection are predicted to differ between males and females due to sex-based tradeoffs between the demands of reproduction and costly immune defenses. In this study, we examined immune defenses and the response to experimental infection by a protozoan parasite, Ophryocystis elektroscirrha, in male and female monarch butterflies, Danaus plexippus. We quantified two measures of immunity in late instar larvae: the concentration of circulating hemocytes and mid-gut phenoloxidase activity, and also quantified final parasite loads, body size, longevity, and wing melanism of adult butterflies. Results showed that females had greater average hemocyte counts than males in the absence of infection; males, but not females, showed an increased concentration of hemocytes in the presence of infection. However, higher hemocyte concentrations in larvae were not significantly correlated with lower adult parasite loads, and mid-gut phenoloxidase activity was not significantly associated with hemocyte counts or parasite treatments. Among unparasitized females, greater hemocyte concentrations were costly in terms of reduced body size, but for parasite-treated females, hemocyte concentrations and body size were positively associated. Across all monarchs, unparasitized butterflies showed greater wing melanism (darker forewings) than parasitized monarchs. Overall, this study provides support for differential costs of immune defenses in male and female monarch butterflies, and a negative association between parasite infection and monarch wing melanism.  相似文献   

14.
Wing membranes of laboratory and field-reared monarch butterflies (Danaus plexippus) were analyzed for their stable-hydrogen (δD) and carbon (δ13C) isotope ratios to determine whether this technique could be used to identify their natal origins. We hypothesized that the hydrogen isotopic composition of monarch butterfly wing keratin would reflect the hydrogen isotope patterns of rainfall in areas of natal origin where wings were formed. Monarchs were reared in the laboratory on milkweed plants (Asclepias sp.) grown with water of known deuterium content, and, with the assistance of volunteers, on native milkweeds throughout eastern North America. The results show that the stable hydrogen isotopic composition of monarch butterflies is highly correlated with the isotopic composition of the milkweed host plants, which in turn corresponds closely with the long-term geographic patterns of deuterium in rainfall. Stable-carbon isotope values in milkweed host plants were similarly correlated with those values in monarch butterflies and showed a general pattern of enrichment along a southwest to northeast gradient bisecting the Great Lakes. These findings indicate that natal origins of migratory and wintering monarchs in Mexico can be inferred from the combined δD and δ13C isotopic signatures in their wings. This relationship establishes that analysis of hydrogen and carbon isotopes can be used to answer questions concerning the biology of migratory monarch butterflies and provides a new approach to tracking similar migratory movements of other organisms. Received: 1 July 1998 / Accepted: 11 November 1998  相似文献   

15.
Eastern North American monarch butterflies (Danaus plexippus L.) show a series of range shifts during their breeding season. Using ecological niche modeling, we studied the environmental context of these shifts by identifying the ecological conditions that monarchs use in successive summer months. Monarchs use a consistent ecological regimen through the summer, but these conditions contrast strikingly with those used during the winter. Hence, monarchs exhibit niche-following among sequential breeding generations but niche-switching between the breeding and overwintering stages of their annual cycle. We projected their breeding ecological niche onto monthly future climate scenarios, which indicated northward shifts, particularly at the northern extreme of their summer movements, over the next 50 yrs; if both monarchs and their milkweed host plants cannot track these changing climates, monarchs could lose distributional area during critical breeding months.  相似文献   

16.
Summary Mice (Peromyscus melanotis) immigrate extensively to overwintering colonies of monarch butterflies (Danaus plexippus) in México. There they feed on both live and dead butterflies that accumulate on the ground and in low vegetation. Through a series of feeding experiments, we examined the potential impact of mouse predation on these colonies, as well as how this predation was influenced by the accessibility and the degree of desiccation of the monarchs. Mice attacked on average 39.9 wet (freshlykilled) butterflies per night. We estimated that a population of mice (75–105 individuals) could kill approximately 0.40–0.57 million butterflies in a 1 ha colony (4–5.7% of the colony) over the 135-day overwintering season. In feeding experiments, mice fed disproportionately on: 1) wet (hydrated) monarchs close to the ground versus those perched higher; 2) wet monarchs, when both wet and dry (desiccated) monarchs were on the ground; and 3) wet monarchs on stakes versus dry monarchs on the ground. Mice commonly ate the entire abdomen of dry monarchs, whereas they fed selectively on the abdomen of wet monarchs by discarding the bitter, cardenolide-laden cuticle and eating the internal tissues. These results suggest that the monarchs' state of desiccation is more important than their accessibility in determining the feeding preferences of these mice. However, the monarchs' strong tendency to crawl up vegetation does appear to reduce their risk to mouse predation.  相似文献   

17.
Quantifying how climate and land use factors drive population dynamics at regional scales is complex because it depends on the extent of spatial and temporal synchrony among local populations, and the integration of population processes throughout a species’ annual cycle. We modeled weekly, site‐specific summer abundance (1994–2013) of monarch butterflies Danaus plexippus at sites across Illinois, USA to assess relative associations of monarch abundance with climate and land use variables during the winter, spring, and summer stages of their annual cycle. We developed negative binomial regression models to estimate monarch abundance during recruitment in Illinois as a function of local climate, site‐specific crop cover, and county‐level herbicide (glyphosate) application. We also incorporated cross‐seasonal covariates, including annual abundance of wintering monarchs in Mexico and climate conditions during spring migration and breeding in Texas, USA. We provide the first empirical evidence of a negative association between county‐level glyphosate application and local abundance of adult monarchs, particularly in areas of concentrated agriculture. However, this association was only evident during the initial years of the adoption of herbicide‐resistant crops (1994–2003). We also found that wetter and, to a lesser degree, cooler springs in Texas were associated with higher summer abundances in Illinois, as were relatively cool local summer temperatures in Illinois. Site‐specific abundance of monarchs averaged approximately one fewer per site from 2004–2013 than during the previous decade, suggesting a recent decline in local abundance of monarch butterflies on their summer breeding grounds in Illinois. Our results demonstrate that seasonal climate and land use are associated with trends in adult monarch abundance, and our approach highlights the value of considering fine‐resolution temporal fluctuations in population‐level responses to environmental conditions when inferring the dynamics of migratory species.  相似文献   

18.
Aletes acaulis, Cymopterus hendersonii, Cymopterus panamintensis var. acutifolius, Lomatium rigidum, Lomatium scabrum var. tripinnatum, Musineon tenuifolium, Sphenosciadium capitellatum, Tauschia arguta and Tauschia parishii are among the twenty-two species of the Apiaceae family to which female Indra Swallowtail butterflies (Papilio indra: Lepidoptera) are attracted for oviposition. Because plant volatile oils are known to be attractants for female butterflies, the percent composition of the essential oils of each species was studied. Amongst the nine host plants 168 essential oil components were identified representing between 84% and 99% of the oils. Principal Components Analysis and hierarchical cluster analysis on the essential oil compositions of the larval host plants against four non-larval host plants separated the hosts from the non-hosts into distinct clusters. Volatile components of the oils common to the nine species of Apiaceae are correlated with the expression of physiological attraction behavior by the butterfly.  相似文献   

19.

Background  

In the fall, Eastern North American monarch butterflies (Danaus plexippus) undergo a magnificent long-range migration. In contrast to spring and summer butterflies, fall migrants are juvenile hormone deficient, which leads to reproductive arrest and increased longevity. Migrants also use a time-compensated sun compass to help them navigate in the south/southwesterly direction en route for Mexico. Central issues in this area are defining the relationship between juvenile hormone status and oriented flight, critical features that differentiate summer monarchs from fall migrants, and identifying molecular correlates of behavioral state.  相似文献   

20.
The taxonomy of the myrmecophilous Maculinea alcon group (Lepidoptera: Lycaenidae) is highly debated. The host-plant and host-ant usage of these butterflies have conventionally been important in their identification. Maculinea ‘rebeli’ has generally been considered to be the xerophilous form of Ma. alcon (Ma. alcon X hereafter) with Gentiana cruciata as initial food plant. However, the type locality and all other known sites of Ma. rebeli are found above the coniferous zone, and are well separated from the lower regions where Ma. alcon X sites are found. Furthermore, no food plant and host ant data for the nominotypic Ma. rebeli have yet been published. Our aim was therefore to identify the host ant(s) of Ma. rebeli around the type locality and compare this with the host ant usage of nearby Ma. alcon X. Nests of Myrmica spp. (Hymenoptera: Formicidae) close to the host plants were opened on one Ma. alcon X (host plant: Gentiana cruciata) and two Ma. rebeli (host plant: Gentianella rhaetica, first record, confirmed by oviposition and emerging larvae) sites just before the flying period, to find prepupal larvae and pupae. Three Myrmica species (My. lobulicornis, My. ruginodis, My. sulcinodis) were found on the two Ma. rebeli sites, which parasitized exclusively My. sulcinodis (22 individuals in 7 nests). On the Ma. alcon X site Myrmica sabuleti and My. lonae were found, with My. sabuleti the exclusive host (51 individuals in 10 nests). Ichneumon cf. eumerus parasitized both butterflies. The results highlight the differentiation of Maculinea rebeli from Ma. alcon X, from both conservation biological and ecological points of view. Thus, it should be concluded that Ma. rebeli does not simply represent an individual form of Ma. alcon but it can be considered as at least an ecological form adapted to high mountain conditions both in its initial food plant and host ant species. In addition, it should be emphasized that Ma. alcon X (= Ma. rebeli auct. nec Hirschke) cannot be synonymised with Ma. rebeli (Hirschke, 1904).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号