首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 760 毫秒
1.
Many dynamical systems, including lakes, organisms, ocean circulation patterns, or financial markets, are now thought to have tipping points where critical transitions to a contrasting state can happen. Because critical transitions can occur unexpectedly and are difficult to manage, there is a need for methods that can be used to identify when a critical transition is approaching. Recent theory shows that we can identify the proximity of a system to a critical transition using a variety of so-called 'early warning signals', and successful empirical examples suggest a potential for practical applicability. However, while the range of proposed methods for predicting critical transitions is rapidly expanding, opinions on their practical use differ widely, and there is no comparative study that tests the limitations of the different methods to identify approaching critical transitions using time-series data. Here, we summarize a range of currently available early warning methods and apply them to two simulated time series that are typical of systems undergoing a critical transition. In addition to a methodological guide, our work offers a practical toolbox that may be used in a wide range of fields to help detect early warning signals of critical transitions in time series data.  相似文献   

2.
Climate change and intensified land‐use impose severe stress on arid ecosystems, resulting in relatively rapid degradation which is difficult to reverse. To prevent such critical transitions it is crucial to detect early warning signals. Increased ‘patchiness’– smaller and fewer vegetated patches – is thought to be such a signal, but the underlying mechanisms are still poorly understood. Facilitation between plants is known to be an important mechanism driving the patchiness of the vegetation, but we lack understanding of how interactions between plants change in response to combined effects of drought and consumer pressure – the main stressors in many arid ecosystems. Over the last decade numerous experimental studies have tested how intensity of facilitation between plants changes with increasing stress. The most recent synthesis predicts a decline in facilitation intensity at the severe end of a drought stress gradient. Adding consumer pressure may result in even earlier and faster declines in facilitation intensity. So far, studies on critical transitions and plant–plant interactions have developed separately. The relationship between stress and facilitation intensity has been overlooked in critical transition theory, while facilitation intensity may determine the position of a critical transition threshold. In this study, we incorporate experimental studies on the relation between stress and facilitation intensity into the critical transition framework, to improve our ability to predict critical transitions. Moreover, we propose that a decline in facilitation intensity at the severe end of a stress gradient may occur prior to a critical transition. Inclusion of consumer pressure will speed up this process, leading to earlier and faster degradation. In‐field monitoring of seedling–facilitator associations and declines in facilitator recruitment can indicate declines in facilitation intensity and may thus provide additional early warning signals for imminent critical transitions, besides increased patchiness.  相似文献   

3.
《Biophysical journal》2021,120(20):4484-4500
Epithelial-mesenchymal transition (EMT), a basic developmental process that might promote cancer metastasis, has been studied from various perspectives. Recently, the early warning theory has been used to anticipate critical transitions in EMT from mathematical modeling. However, the underlying mechanisms of EMT involving complex molecular networks remain to be clarified. Especially, how to quantify the global stability and stochastic transition dynamics of EMT and what the underlying mechanism for early warning theory in EMT is remain to be fully clarified. To address these issues, we constructed a comprehensive gene regulatory network model for EMT and quantified the corresponding potential landscape. The landscape for EMT displays multiple stable attractors, which correspond to E, M, and some other intermediate states. Based on the path-integral approach, we identified the most probable transition paths of EMT, which are supported by experimental data. Correspondingly, the results of transition actions demonstrated that intermediate states can accelerate EMT, consistent with recent studies. By integrating the landscape and path with early warning concept, we identified the potential barrier height from the landscape as a global and more accurate measure for early warning signals to predict critical transitions in EMT. The landscape results also provide an intuitive and quantitative explanation for the early warning theory. Overall, the landscape and path results advance our mechanistic understanding of dynamical transitions and roles of intermediate states in EMT, and the potential barrier height provides a new, to our knowledge, measure for critical transitions and quantitative explanations for the early warning theory.  相似文献   

4.
Critical transitions are sudden, often irreversible, changes that can occur in a large variety of complex systems; signals that warn of critical transitions are therefore highly desirable. We propose a new method for early warning signals that integrates multiple sources of information and data about the system through the framework of a generalized model. We demonstrate our proposed approach through several examples, including a previously published fisheries model. We regard our method as complementary to existing early warning signals, taking an approach of intermediate complexity between model-free approaches and fully parameterized simulations. One potential advantage of our approach is that, under appropriate conditions, it may reduce the amount of time series data required for a robust early warning signal.  相似文献   

5.
随着气候变化和人类活动对陆地生态系统双重扰动的不断加剧,越来越多的研究已经意识到生态系统结构和功能会发生难以预知的突变,并且恢复起来需要很长时间.开发判别典型生态系统临界转换的早期预警模型及理解其生态学机制成为生态学研究的热点.目前,基于跨越多个时空尺度的理论和实验研究,提出了多种预警陆地生态系统临界转换的理论框架和指...  相似文献   

6.
Many complex systems have been found to exhibit critical transitions, or so-called tipping points, which are sudden changes to a qualitatively different system state. These changes can profoundly impact the functioning of a system ranging from controlled state switching to a catastrophic break-down; signals that predict critical transitions are therefore highly desirable. To this end, research efforts have focused on utilizing qualitative changes in markers related to a system’s tendency to recover more slowly from a perturbation the closer it gets to the transition—a phenomenon called critical slowing down. The recently studied scaling of critical slowing down offers a refined path to understand critical transitions: to identify the transition mechanism and improve transition prediction using scaling laws.Here, we outline and apply this strategy for the first time in a real-world system by studying the transition to spiking in neurons of the mammalian cortex. The dynamical system approach has identified two robust mechanisms for the transition from subthreshold activity to spiking, saddle-node and Hopf bifurcation. Although theory provides precise predictions on signatures of critical slowing down near the bifurcation to spiking, quantitative experimental evidence has been lacking. Using whole-cell patch-clamp recordings from pyramidal neurons and fast-spiking interneurons, we show that 1) the transition to spiking dynamically corresponds to a critical transition exhibiting slowing down, 2) the scaling laws suggest a saddle-node bifurcation governing slowing down, and 3) these precise scaling laws can be used to predict the bifurcation point from a limited window of observation. To our knowledge this is the first report of scaling laws of critical slowing down in an experiment. They present a missing link for a broad class of neuroscience modeling and suggest improved estimation of tipping points by incorporating scaling laws of critical slowing down as a strategy applicable to other complex systems.  相似文献   

7.
Many complex systems exhibit critical transitions. Of considerable interest are bifurcations, small smooth changes in underlying drivers that produce abrupt shifts in system state. Before reaching the bifurcation point, the system gradually loses stability (‘critical slowing down’). Signals of critical slowing down may be detected through measurement of summary statistics, but how extrinsic and intrinsic noises influence statistical patterns prior to a transition is unclear. Here, we consider a range of stochastic models that exhibit transcritical, saddle-node and pitchfork bifurcations. Noise was assumed to be either intrinsic or extrinsic. We derived expressions for the stationary variance, autocorrelation and power spectrum for all cases. Trends in summary statistics signaling the approach of each bifurcation depend on the form of noise. For example, models with intrinsic stochasticity may predict an increase in or a decline in variance as the bifurcation parameter changes, whereas models with extrinsic noise applied additively predict an increase in variance. The ability to classify trends of summary statistics for a broad class of models enhances our understanding of how critical slowing down manifests in complex systems approaching a transition.  相似文献   

8.
Most work on generic early warning signals for critical transitions focuses on indicators of the phenomenon of critical slowing down that precedes a range of catastrophic bifurcation points. However, in highly stochastic environments, systems will tend to shift to alternative basins of attraction already far from such bifurcation points. In fact, strong perturbations (noise) may cause the system to “flicker” between the basins of attraction of the system’s alternative states. As a result, under such noisy conditions, critical slowing down is not relevant, and one would expect its related generic leading indicators to fail, signaling an impending transition. Here, we systematically explore how flickering may be detected and interpreted as a signal of an emerging alternative attractor. We show that—although the two mechanisms differ—flickering may often be reflected in rising variance, lag-1 autocorrelation and skewness in ways that resemble the effects of critical slowing down. In particular, we demonstrate how the probability distribution of a flickering system can be used to map potential alternative attractors and their resilience. Thus, while flickering systems differ in many ways from the classical image of critical transitions, changes in their dynamics may carry valuable information about upcoming major changes.  相似文献   

9.
10.
Synthesis The quickly expanding literature on early warning signals for critical transitions in ecosystems suggests that critical slowing down is a key phenomenon to measure the distance to a tipping point in ecosystems. Such work is broadly misinterpreted as showing that slowing down is specific to tipping points. In this contribution, we show why this is not the case. Early warning signals based on critical slowing down indicate a broader class of situations where a system becomes increasingly sensitive to perturbations. Ecosystem responses to external changes can surprise us by their abruptness and irreversibility. Models have helped identifying indicators of impending catastrophic shifts, referred to as ‘generic early warning signals’. These indicators are linked to a phenomenon known as ‘critical slowing down’ which describes the fact that the recovery rate of a system after a perturbation decreases when the system approaches a bifurcation – such as the classical fold bifurcation associated to catastrophic shifts. However, contrary to what has sometimes been suggested in the literature, a decrease in recovery rate cannot be considered as specific to approaching catastrophic shifts. Here, we analyze the behavior of early warning signals based on critical slowing down in systems approaching a range of catastrophic and non‐catastrophic situations. Our results show that slowing down generally happens in situations where a system is becoming increasingly sensitive to external perturbations, independently of whether the impeding change is catastrophic or not. These results highlight that indicators specific to catastrophic shifts are still lacking. More importantly, they also imply that in systems where we have no reason to expect catastrophic transitions, slowing down may still be used in a more general sense as a warning signal for a potential decrease in stability.  相似文献   

11.
《植物生态学报》2013,37(11):1059
当一个存在多稳态的生态系统临近突变阈值点时, 外界条件即使发生一个微小变化, 也会引发生态系统的剧烈响应, 使之进入结构和功能截然不同的另一稳定状态, 这种现象称为重大突变(critical transition)。重大突变所导致的稳态转换总是伴随着生态系统服务的急剧变化, 可能对人类可持续发展产生重大影响。预测生态系统突变的发生非常困难, 但科学家在此领域的大量研究结果表明, 通过监测一些通用指标可以判断生态系统是否不断临近重大突变阈值点, 进而可以进行生态系统重大突变预警。该文对近年来生态系统重大突变检测领域所取得的成果进行总结与归纳, 论述了生态系统重大突变的产生机制及其后果, 介绍了生态系统突变预警信号提取的理论基础, 从时间和空间两个维度总结了近年来生态系统重大突变预警信号的提取方法, 概述了当前研究面临的挑战, 指出生态系统突变预警信号的检测应充分利用时空动态数据, 并且联合多个指标, 从多个角度进行综合预警, 此外, 还应重视生态系统结构与重大突变之间的关系, 增强生态系统突变预警能力。  相似文献   

12.
Complex systems inspired analysis suggests a hypothesis that financial meltdowns are abrupt critical transitions that occur when the system reaches a tipping point. Theoretical and empirical studies on climatic and ecological dynamical systems have shown that approach to tipping points is preceded by a generic phenomenon called critical slowing down, i.e. an increasingly slow response of the system to perturbations. Therefore, it has been suggested that critical slowing down may be used as an early warning signal of imminent critical transitions. Whether financial markets exhibit critical slowing down prior to meltdowns remains unclear. Here, our analysis reveals that three major US (Dow Jones Index, S&P 500 and NASDAQ) and two European markets (DAX and FTSE) did not exhibit critical slowing down prior to major financial crashes over the last century. However, all markets showed strong trends of rising variability, quantified by time series variance and spectral function at low frequencies, prior to crashes. These results suggest that financial crashes are not critical transitions that occur in the vicinity of a tipping point. Using a simple model, we argue that financial crashes are likely to be stochastic transitions which can occur even when the system is far away from the tipping point. Specifically, we show that a gradually increasing strength of stochastic perturbations may have caused to abrupt transitions in the financial markets. Broadly, our results highlight the importance of stochastically driven abrupt transitions in real world scenarios. Our study offers rising variability as a precursor of financial meltdowns albeit with a limitation that they may signal false alarms.  相似文献   

13.

Background

Despite high vaccination coverage, many childhood infections pose a growing threat to human populations. Accurate disease forecasting would be of tremendous value to public health. Forecasting disease emergence using early warning signals (EWS) is possible in non-seasonal models of infectious diseases. Here, we assessed whether EWS also anticipate disease emergence in seasonal models.

Methods

We simulated the dynamics of an immunizing infectious pathogen approaching the tipping point to disease endemicity. To explore the effect of seasonality on the reliability of early warning statistics, we varied the amplitude of fluctuations around the average transmission. We proposed and analyzed two new early warning signals based on the wavelet spectrum. We measured the reliability of the early warning signals depending on the strength of their trend preceding the tipping point and then calculated the Area Under the Curve (AUC) statistic.

Results

Early warning signals were reliable when disease transmission was subject to seasonal forcing. Wavelet-based early warning signals were as reliable as other conventional early warning signals. We found that removing seasonal trends, prior to analysis, did not improve early warning statistics uniformly.

Conclusions

Early warning signals anticipate the onset of critical transitions for infectious diseases which are subject to seasonal forcing. Wavelet-based early warning statistics can also be used to forecast infectious disease.
  相似文献   

14.
The size of the basin of attraction in ecosystems with alternative stable states is often referred to as "ecological resilience." Ecosystems with a low ecological resilience may easily be tipped into an alternative basin of attraction by a stochastic event. Unfortunately, it is very difficult to measure ecological resilience in practice. Here we show that the rate of recovery from small perturbations (sometimes called "engineering resilience") is a remarkably good indicator of ecological resilience. Such recovery rates decrease as a catastrophic regime shift is approached, a phenomenon known in physics as "critical slowing down." We demonstrate the robust occurrence of critical slowing down in six ecological models and outline a possible experimental approach to quantify differences in recovery rates. In all the models we analyzed, critical slowing down becomes apparent quite far from a threshold point, suggesting that it may indeed be of practical use as an early warning signal. Despite the fact that critical slowing down could also indicate other critical transitions, such as a stable system becoming oscillatory, the robustness of the phenomenon makes it a promising indicator of loss of resilience and the risk of upcoming regime shifts in a system.  相似文献   

15.
Transitions in ecological systems often occur without apparent warning, and may represent shifts between alternative persistent states. Decreasing ecological resilience (the size of the basin of attraction around a stable state) can signal an impending transition, but this effect is difficult to measure in practice. Recent research has suggested that a decreasing rate of recovery from small perturbations (critical slowing down) is a good indicator of ecological resilience. Here we use analytical techniques to draw general conclusions about the conditions under which critical slowing down provides an early indicator of transitions in two-species predator-prey and competition models. The models exhibit three types of transition: the predator-prey model has a Hopf bifurcation and a transcritical bifurcation, and the competition model has two saddle-node bifurcations (in which case the system exhibits hysteresis) or two transcritical bifurcations, depending on the parameterisation. We find that critical slowing down is an earlier indicator of the Hopf bifurcation in predator-prey models in which prey are regulated by predation rather than by intrinsic density-dependent effects and an earlier indicator of transitions in competition models in which the dynamics of the rare species operate on slower timescales than the dynamics of the common species. These results lead directly to predictions for more complex multi-species systems, which can be tested using simulation models or real ecosystems.  相似文献   

16.
Individual variation is central to species involved in complex interactions with others in an ecological system. Such ecological systems could exhibit tipping points in response to changes in the environment, consequently leading to abrupt transitions to alternative, often less desirable states. However, little is known about how individual trait variation could influence the timing and occurrence of abrupt transitions. Using 101 empirical mutualistic networks, I model the eco-evolutionary dynamics of such networks in response to gradual changes in strength of co-evolutionary interactions. Results indicated that individual variation facilitates the timing of transition in such networks, albeit slightly. In addition, individual variation significantly increases the occurrence of large abrupt transitions. Furthermore, topological network features also positively influence the occurrence of such abrupt transitions. These findings argue for understanding tipping points using an eco-evolutionary perspective to better forecast abrupt transitions in ecological systems.  相似文献   

17.
Invasion waves are a fundamental building block of theoretical ecology. In this study, we aim to take the first steps to link propagation failure and fast acceleration of traveling waves to critical transitions (or tipping points). The approach is based upon a detailed numerical study on various versions of the Fisher–Kolmogorov–Petrovskii–Piscounov equation. The main motivation of this work is to contribute to the following question: how much information do statistics, collected by a stationary observer, contain about the speed and bifurcations of traveling waves? We suggest warning signs based upon closeness to carrying capacity, second-order moments, and transients of localized initial invasions. However, we also show that these warning signs can be difficult to interpret if limited information is available and that the generalization of classical variance-based warning signs is problematic in the context of propagation failure.  相似文献   

18.
Critical transitions are qualitative changes of state that occur when a stochastic dynamical system is forced through a critical point. Many critical transitions are preceded by characteristic fluctuations that may serve as model‐independent early warning signals, implying that these events may be predictable in applications ranging from physics to biology. In nonbiological systems, the strength of such early warning signals has been shown partly to be determined by the speed at which the transition occurs. It is currently unknown whether biological systems, which are inherently high dimensional and typically display low signal‐to‐noise ratios, also exhibit this property, which would have important implications for how ecosystems are managed, particularly where the forces exerted on a system are anthropogenic. We examine whether the rate of forcing can alter the strength of early warning signals in (1) a model exhibiting a fold bifurcation where a state shift is driven by the harvesting of individuals, and (2) a model exhibiting a transcritical bifurcation where a state shift is driven by increased grazing pressure. These models predict that the rate of forcing can alter the detectability of early warning signals regardless of the underlying bifurcation the system exhibits, but that this result may be more pronounced in fold bifurcations. These findings have important implications for the management of biological populations, particularly harvested systems such as fisheries, and suggest that knowing the class of bifurcations a system will manifest may help discriminate between true‐positive and false‐positive signals.  相似文献   

19.
Identification of pathways involved in the structural transitions of biomolecular systems is often complicated by the transient nature of the conformations visited across energy barriers and the multiplicity of paths accessible in the multidimensional energy landscape. This task becomes even more challenging in exploring molecular systems on the order of megadaltons. Coarse-grained models that lend themselves to analytical solutions appear to be the only possible means of approaching such cases. Motivated by the utility of elastic network models for describing the collective dynamics of biomolecular systems and by the growing theoretical and experimental evidence in support of the intrinsic accessibility of functional substates, we introduce a new method, adaptive anisotropic network model (aANM), for exploring functional transitions. Application to bacterial chaperonin GroEL and comparisons with experimental data, results from action minimization algorithm, and previous simulations support the utility of aANM as a computationally efficient, yet physically plausible, tool for unraveling potential transition pathways sampled by large complexes/assemblies. An important outcome is the assessment of the critical inter-residue interactions formed/broken near the transition state(s), most of which involve conserved residues.  相似文献   

20.
Numerous model studies demonstrate that ecosystems might not shift smoothly with a gradual change in resource concentration. At specific points, vegetation can suddenly shift from one stable state to another. To predict such undesirable shifts, statistical indicators are proposed for early warning prediction. These so-called classical indicators can address whether vegetation state is moving towards the tipping point of an abrupt transition, however when the transition will occur is hard to predict. Recent studies suggest that complex network based indicators can improve early warning signals of abrupt transitions in complex dynamic systems. In this study, both classical and network based indicators are tested in a coupled land–atmosphere ecological model in which a scale-dependent hydrology-infiltration feedback and a large scale vegetation–precipitation feedback are represented. Multiple biomass equilibria are found in the model and abrupt transitions can occur when rainfall efficiency is decreased. Interaction network based indicators of these transitions are compared with classical indicators, such as the lag-1 autocorrelation and Moran's coefficient, with particular focus on the transition associated with desertification. Two criteria are used to evaluate the quality of these early warning indicators and several high quality network based indicators are identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号