首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We reported that microRNA-30c (miR-30c) plays a key role in radiation-induced human cell damage through an apoptotic pathway. Herein we further evaluated radiation-induced miR-30 expression and mechanisms of delta-tocotrienol (DT3), a radiation countermeasure candidate, for regulating miR-30 in a mouse model and human hematopoietic CD34+ cells. CD2F1 mice were exposed to 0 (control) or 7–12.5 Gy total-body gamma-radiation, and CD34+ cells were irradiated with 0, 2 or 4 Gy of radiation. Single doses of DT3 (75 mg/kg, subcutaneous injection for mice or 2 μM for CD34+ cell culture) were administrated 24 h before irradiation and animal survival was monitored for 30 days. Mouse bone marrow (BM), jejunum, kidney, liver and serum as well as CD34+ cells were collected at 1, 4, 8, 24, 48 or 72 h after irradiation to determine apoptotic markers, pro-inflammatory cytokines interleukin (IL)-1β and IL-6, miR-30, and stress response protein expression. Our results showed that radiation-induced IL-1β release and cell damage are pathological states that lead to an early expression and secretion of miR-30b and miR-30c in mouse tissues and serum and in human CD34+ cells. DT3 suppressed IL-1β and miR-30 expression, protected against radiation-induced apoptosis in mouse and human cells, and increased survival of irradiated mice. Furthermore, an anti-IL-1β antibody downregulated radiation-induced NFκBp65 phosphorylation, inhibited miR-30 expression and protected CD34+ cells from radiation exposure. Knockdown of NFκBp65 by small interfering RNA (siRNA) significantly suppressed radiation-induced miR-30 expression in CD34+ cells. Our data suggest that DT3 protects human and mouse cells from radiation damage may through suppression of IL-1β-induced NFκB/miR-30 signaling.  相似文献   

2.
We have previously demonstrated that prostate carcinoma cells exposed to fractionated radiation differentially expressed more genes compared to single-dose radiation. To understand the role of miRNA in regulation of radiation-induced gene expression, we analyzed miRNA expression in LNCaP, PC3 and DU145 prostate cancer cells treated with single-dose radiation and fractionated radiation by microarray. Selected miRNAs were studied in RWPE-1 normal prostate epithelial cells by RT-PCR. Fractionated radiation significantly altered more miRNAs as compared to single-dose radiation. Downregulation of oncomiR-17-92 cluster was observed only in the p53 positive LNCaP and RWPE-1 cells treated with single-dose radiation and fractionated radiation. Comparison of miRNA and mRNA data by IPA target filter analysis revealed an inverse correlation between miR-17-92 cluster and several targets including TP53INP1 in p53 signaling pathway. The base level expressions of these miRNAs were significantly different among the cell lines and did not predict the radiation outcome. Tumor suppressor miR-34a and let-7 miRNAs were upregulated by fractionated radiation in radiosensitive LNCaP (p53 positive) and PC3 (p53-null) cells indicating that radiation-induced miRNA expression may not be regulated by p53 alone. Our data support the potential for using fractionated radiation to induce molecular targets and radiation-induced miRNAs may have a significant role in predicting radiosensitivity.  相似文献   

3.
MicroRNAs (miRNA) regulate expression of several genes associated with human cancer. Here, we analyzed the function of miR-34c, an effector of p53, in cervical carcinoma cells. Expression of either miR-34c-3p or miR-34c-5p mimics caused inhibition of cell proliferation in the HPV-containing SiHa cells but not in other cervical cells irrespective of tumorigenicity and HPV content. These results suggest that SiHa cells may lack of regulatory mechanisms for miR-34c. Monolayer proliferation results showed that miR-34c-3p produced a more pronounced inhibitory effect although both miRNAs caused inhibition of anchorage independent growth at similar extent. However, ectopic expression of pre-miR-34c-3p, but not pre-miR-34c-5p, caused S-phase arrest in SiHa cells triggering a strong dose-dependent apoptosis. A significant inhibition was observed only for miR-34c-3p on SiHa cells migration and invasion, therefore implying alternative regulatory pathways and targets. These results suggest differential tumor suppressor roles for miR-34c-3p and miR-34c-5p and provide new insights in the understanding of miRNA biology.  相似文献   

4.
We previously reported that microRNA-30 (miR-30) expression was initiated by radiation-induced proinflammatory factor IL-1β and NFkB activation in mouse and human hematopoietic cells. However, the downstream effectors of miR-30 and its specific role in radiation-induced cell death are not well understood. In the present study, we evaluated effects of radiation on miR-30 expression and activation of intrinsic apoptotic pathway Bcl-2 family factors in in vivo mouse and in vitro human hematopoietic cells. CD2F1 mice and human CD34+ cells were exposed to different doses of gamma-radiation. In addition to survival studies, mouse blood, bone marrow (BM) and spleen cells and human CD34+ cells were collected at 4 h, and 1, 3 and 4 days after irradiation to determine apoptotic and stress response signals. Our results showed that mouse serum miR-30, DNA damage marker γ-H2AX in BM, and Bim, Bax and Bak expression, cytochrome c release, and caspase-3 and -7 activation in BM and/or spleen cells were upregulated in a radiation dose-dependent manner. Antiapoptotic factor Mcl-1 was significantly downregulated, whereas Bcl-2 was less changed or unaltered in the irradiated mouse cells and human CD34+ cells. Furthermore, a putative miR-30 binding site was found in the 3′ UTR of Mcl-1 mRNA. miR-30 directly inhibits the expression of Mcl-1 through binding to its target sequence, which was demonstrated by a luciferase reporter assay, and the finding that Mcl-1 was uninhibited by irradiation in miR-30 knockdown CD34+ cells. Bcl-2 expression was not affected by miR-30. Our data suggest miR-30 plays a key role in radiation-induced apoptosis through directly targeting Mcl-1in hematopoietic cells.  相似文献   

5.
Pancreatic cancer is a deadly disease with a poor prognosis. Recently, miRNAs have been reported to be abnormally expressed in several cancers and play a role in cancer development and progression. However, the role of miRNA in cancer stem cells remains unclear. Therefore, our aim was to investigate the role of miRNA in the CD133+ pancreatic cancer cell line Capan-1M9 because CD133 is a putative marker of pancreatic cancer stem cells. Using miRNA microarray, we found that the expression level of the miR-30 family decreased in CD133 genetic knockdown shCD133 Capan-1M9 cells. We focused on miR-30a, -30b, and -30c in the miR-30 family and created pancreatic cancer cell sublines, each transfected with these miRNAs. High expression of miR-30a, -30b, or -30c had no effect on cell proliferation and sphere forming. In contrast, these sublines were resistant to gemcitabine, which is a standard anticancer drug for pancreatic cancer, and in addition, promoted migration and invasion. Moreover, mesenchymal markers were up-regulated by these miRNAs, suggesting that mesenchymal phenotype is associated with an increase in migration and invasion. Thus, our study demonstrated that high expression of the miR-30 family modulated by CD133 promotes migratory and invasive abilities in CD133+ pancreatic cancer cells. These findings suggest that targeted therapies to the miR-30 family contribute to the development of novel therapies for CD133+ pancreatic cancer stem cells.  相似文献   

6.
7.
Li XH  Ha CT  Fu D  Xiao M 《PloS one》2012,7(5):e36604
Radiotherapy is commonly used for cancer treatment. However, it often results in side effects due to radiation damage in normal tissue, such as bone marrow (BM) failure. Adult hematopoietic stem and progenitor cells (HSPC) reside in BM next to the endosteal bone surface, which is lined primarily by hematopoietic niche osteoblastic cells. Osteoblasts are relatively more radiation-resistant than HSPCs, but the mechanisms are not well understood. In the present study, we demonstrated that the stress response gene REDD1 (regulated in development and DNA damage responses 1) was highly expressed in human osteoblast cell line (hFOB) cells after γ irradiation. Knockdown of REDD1 with siRNA resulted in a decrease in hFOB cell numbers, whereas transfection of PCMV6-AC-GFP-REDD1 plasmid DNA into hFOB cells inhibited mammalian target of rapamycin (mTOR) and p21 expression and protected these cells from radiation-induced premature senescence (PS). The PS in irradiated hFOB cells were characterized by significant inhibition of clonogenicity, activation of senescence biomarker SA-β-gal, and the senescence-associated cytokine secretory phenotype (SASP) after 4 or 8 Gy irradiation. Immunoprecipitation assays demonstrated that the stress response proteins p53 and nuclear factor κ B (NFkB) interacted with REDD1 in hFOB cells. Knockdown of NFkB or p53 gene dramatically suppressed REDD1 protein expression in these cells, indicating that REDD1 was regulated by both factors. Our data demonstrated that REDD1 is a protective factor in radiation-induced osteoblast cell premature senescence.  相似文献   

8.
9.
10.
11.
12.
13.
14.
microRNAs (miRNAs) are short non-coding RNAs that regulate gene expression by targeting mRNAs, inhibiting the expression of the associated proteins. Although a role for aberrant miRNA expression in cancer has been postulated, the pathophysiologic role and relevance of aberrantly expressed miRNAs in tumor biology has not been established. We evaluated the expression pattern of miRNAs in human breast cancer cells by qPCR, finding out an up-regulated miRNA miR-29b and studying its biological effect by migration assay. We defined a target gene PTEN by bioinformatics approach and western blot. In breast cancer cell line MDA-MB-231 cell, which migrate faster than MCF-7, we observed that miR-29b was highly over-expressed. Inhibition of miR-29b in cultured cells increased the expression of the phosphatase and tensin homolog (PTEN) tumor suppressor, promoting apoptosis, decreasing migration, and decreasing invasion. In contrast, enhanced miR-29b expression by transfection with pre-miR-29b decreased the expression of PTEN and impaired apoptosis, increasing tumor cell migration and invasion. Moreover, PTEN was shown to be a direct target of miR-29b and was also shown to contribute to the miR-29b-mediated effects on cell invasion. Modulation of miR-29b altered the role of PTEN involved in cell migration and invasion. Aberrant expression of miR-29b, which modulates PTEN expression, can contribute to migration, invasion, and anti-apoptosis.  相似文献   

15.

Background

MicroRNAs (miRNA) are 20∼25 nucleotide non-coding RNAs that inhibit the translation of targeted mRNA, and they have been implicated in the development of human malignancies. High grade serous ovarian carcinomas, the most common and lethal subtype of ovarian cancer, can occur sporadically or in the setting of BRCA1/2 syndromes. Little is known regarding the miRNA expression profiles of high grade serous carcinoma in relation to BRCA1/2 status, and compared to normal tubal epithelium, the putative tissue of origin for high grade serous carcinomas.

Methodology/Principal Findings

Global miRNA expression profiling was performed on a series of 33 high grade serous carcinomas, characterized with respect to BRCA1/2 status (mutation, epigenetic silencing with loss of expression or normal), and with clinical follow-up, together with 2 low grade serous carcinomas, 2 serous borderline tumors, and 3 normal fallopian tube samples, using miRNA microarrays (328 human miRNA). Unsupervised hierarchical clustering based on miRNA expression profiles showed no clear separation between the groups of carcinomas with different BRCA1/2 status. There were relatively few miRNAs that were differentially expressed between the genotypic subgroups. Comparison of 33 high grade serous carcinomas to 3 normal fallopian tube samples identified several dysregulated miRNAs (false discovery rate <5%), including miR-422b and miR-34c. Quantitative RT-PCR analysis performed on selected miRNAs confirmed the pattern of differential expression shown by microarray analysis. Prognostically, lower level miR-422b and miR-34c in high grade serous carcinomas were both associated with decreased disease-specific survival by Kaplan-Meier analysis (p<0.05).

Conclusions/Significance

High grade serous ovarian carcinomas with and without BRCA1/2 abnormalities demonstrate very similar miRNA expression profiles. High grade serous carcinomas as a group exhibit significant miRNA dysregulation in comparison to tubal epithelium and the levels of miR-34c and miR-422b appear to be prognostically important.  相似文献   

16.
Lung cancer is the leading cause of cancer mortality in the world today. Although some advances in lung cancer therapy have been made, patient survival is still poor. MicroRNAs (miRNAs) can act as oncogenes or tumor-suppressor genes in human malignancy. The miR-34 family consists of tumor-suppressive miRNAs, and its reduced expression has been reported in various cancers, including non-small cell lung cancer (NSCLC). In this study, we found that miR-34a and miR-34c target platelet-derived growth factor receptor alpha and beta (PDGFR-α and PDGFR-β), cell surface tyrosine kinase receptors that induce proliferation, migration and invasion in cancer. MiR-34a and miR-34c were downregulated in lung tumors compared to normal tissues. Moreover, we identified an inverse correlation between PDGFR-α/β and miR-34a/c expression in lung tumor samples. Finally, miR-34a/c overexpression or downregulation of PDGFR-α/β by siRNAs, strongly augmented the response to TNF-related apoptosis inducing ligand (TRAIL) while reducing migratory and invasive capacity of NSCLC cells.  相似文献   

17.
18.
19.
microRNAs have recently emerged as master regulators of gene expression during development and cell differentiation. Although profound changes in gene expression also occur during antigen-induced T cell differentiation, the role of miRNAs in the process is not known. We compared the miRNA expression profiles between antigen-specific na?ve, effector and memory CD8+ T cells using 3 different methods--small RNA cloning, miRNA microarray analysis and real-time PCR. Although many miRNAs were expressed in all the T cell subsets, the frequency of 7 miRNAs (miR-16, miR-21, miR-142-3p, miR-142-5p, miR-150, miR-15b and let-7f) alone accounted for approximately 60% of all miRNAs, and their expression was several fold higher than the other expressed miRNAs. Global downregulation of miRNAs (including 6/7 dominantly expressed miRNAs) was observed in effector T cells compared to na?ve cells and the miRNA expression levels tended to come back up in memory T cells. However, a few miRNAs, notably miR-21 were higher in effector and memory T cells compared to na?ve T cells. These results suggest that concomitant with profound changes in gene expression, miRNA profile also changes dynamically during T cell differentiation. Sequence analysis of the cloned mature miRNAs revealed an extensive degree of end polymorphism. While 3'end polymorphisms dominated, heterogeneity at both ends, resembling drosha/dicer processing shift was also seen in miR-142, suggesting a possible novel mechanism to generate new miRNA and/or to diversify miRNA target selection. Overall, our results suggest that dynamic changes in the expression of miRNAs may be important for the regulation of gene expression during antigen-induced T cell differentiation. Our study also suggests possible novel mechanisms for miRNA biogenesis and function.  相似文献   

20.
To investigate involvement of miRNAs in radiation responses we used microRNAome profiling to analyze the sex-specific response of radiation sensitive hematopoietic lymphoid tissues. We show that radiation exposure resulted in a significant and sex-specific deregulation of microRNA expression in murine spleen and thymus tissues. Among the regulated miRNAs, we found that changes in expression of miR-34a and miR-7 may be involved in important protective mechanisms counteracting radiation cytotoxicity. We observed a significant increase in the expression of tumor-suppressor miR-34a, paralleled by a decrease in the expression of its target oncogenes NOTCH1, MYC, E2F3 and cyclin D1. Additionally, we show that miR-7 targets the lymphoid-specific helicase LSH, a pivotal regulator of DNA methylation and genome stability. While miR-7 was significantly down-regulated LSH was significantly up-regulated. These cellular changes may constitute an attempt to counteract radiation-induced hypomethylation. Tissue specificity of miRNA responses and possible regulation of miRNA expression upon irradiation are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号