首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
2.
Generation of induced pluripotent stem cells (iPSCs) with naive pluripotency is important for their applications in regenerative medicine. In female iPSCs, acquisition of naive pluripotency is coupled to X chromosome reactivation (XCR) during somatic cell reprogramming, and live cell monitoring of XCR is potentially useful for analyzing how iPSCs acquire naive pluripotency. Here we generated female mouse embryonic stem cells (ESCs) that carry the enhanced green fluorescent protein (EGFP) and humanized Kusabira-Orange (hKO) genes inserted into an intergenic site near either the Syap1 or Taf1 gene on both X chromosomes. The ESC clones, which initially expressed both EGFP and hKO, inactivated one of the fluorescent protein genes upon differentiation, indicating that the EGFP and hKO genes are subject to X chromosome inactivation (XCI). When the derived somatic cells carrying the EGFP gene on the inactive X chromosome (Xi) were reprogrammed into iPSCs, the EGFP gene on the Xi was reactivated when pluripotency marker genes were induced. Thus, the fluorescent protein genes inserted into an intergenic locus on both X chromosomes enable live cell monitoring of XCI during ESC differentiation and XCR during reprogramming. This is the first study that succeeded live cell imaging of XCR during reprogramming.  相似文献   

3.
4.
5.
6.
7.
8.
Induced pluripotent stem cells (iPSCs) are a promising type of stem cells, comparable to embryonic stem cells (ESCs) in terms of self-renew and pluripotency, generated by reprogramming somatic cells. These cells are an attractive approach to supply patient-specific pluripotent cells, for producing in vitro models of disease, drug discovery, toxicology and potentially treating degenerative disease circumventing immune rejection. In spite of the great advance since iPSCs’ establishment, their obtention and propagation is an increasing area of great interest.In a recent work, we have shown that the conditioned medium from a bovine granulosa cell line (BGC-CM) is able to preserve the basic properties of mESCs. Therefore, based on our previous results and the reported resemblance between iPSCs and ESCs, we hypothesized that BGC-CM could provide a favorable context to culturing iPSCs. In this work, we have reprogrammed mouse embryonic fibroblasts obtaining iPSC lines, and showed that they can be propagated in BGC-CM while maintaining self-renewal and pluripotency, evidenced by expression of specific gene markers and capability of in vitro and in vivo differentiation to cell types from the three germ layers. We believe that these findings may provide a novel context to propagate iPSCs to study the molecular mechanisms involved in self-renewal and pluripotency.  相似文献   

9.
10.
PIWI proteins play essential and conserved roles in germline development, including germline stem cell maintenance and meiosis. Because germline regulators such as OCT4, NANOG, and SOX2 are known to be potent factors that reprogram differentiated somatic cells into induced pluripotent stem cells (iPSCs), we investigated whether the PIWI protein family is involved in iPSC production. We find that all three mouse Piwi genes, Miwi, Mili, and Miwi2, are expressed in embryonic stem cells (ESCs) at higher levels than in fibroblasts, with Mili being the highest. However, mice lacking all three Piwi genes are viable and female fertile, and are only male sterile. Furthermore, embryonic fibroblasts derived from Miwi/Mili/Miwi2 triple knockout embryos can be efficiently reprogrammed into iPS cells. These iPS cells expressed pluripotency markers and were capable of differentiating into all three germ layers in teratoma assays. Genome-wide expression profiling reveals that the triple knockout iPS cells are very similar to littermate control iPS cells. These results indicate that PIWI proteins are dispensable for direct reprogramming of mouse fibroblasts.  相似文献   

11.
MicroRNAs (miRNAs), small non-coding RNAs that fine-tune gene expression, play multiple roles in the cell, including cell fate specification. We have analyzed the differential expression of miRNAs during fibroblast reprogramming into induced pluripotent stem cells (iPSCs) and endoderm induction from iPSCs upon treatment with high concentrations of Activin-A. The reprogrammed iPSCs assumed an embryonic stem cell (ESC)-like miRNA signature, marked by the induction of pluripotency clusters miR-290–295 and miR-302/367 and conversely the downregulation of the let-7 family. On the other hand, endoderm induction in iPSCs resulted in the upregulation of 13 miRNAs. Given that the liver and the pancreas are common derivatives of the endoderm, analysis of the expression of these 13 upregulated miRNAs in hepatocytes and pancreatic islets revealed a tendency for these miRNAs to be expressed more in pancreatic islets than in hepatocytes. These observations provide insights into how differentiation may be guided more efficiently towards the endoderm and further into the liver or pancreas. Moreover, we also report novel miRNAs enriched for each of the cell types analyzed.  相似文献   

12.
It remains controversial whether the abnormal epigenetic modifications accumulated in the induced pluripotent stem cells (iPSCs) can ultimately affect iPSC pluripotency. To probe this question, iPSC lines with the same genetic background and proviral integration sites were established, and the pluripotency state of each iPSC line was characterized using tetraploid (4N) complementation assay. Subsequently, gene expression and global epigenetic modifications of “4N-ON” and the corresponding “4N-OFF” iPSC lines were compared through deep sequencing analyses of mRNA expression, small RNA profile, histone modifications (H3K27me3, H3K4me3, and H3K4me2), and DNA methylation. We found that methylation of an imprinted gene, Zrsr1, was consistently disrupted in the iPSC lines with reduced pluripotency. Furthermore, the disrupted methylation could not be rescued by improving culture conditions or subcloning of iPSCs. Moreover, the relationship between hypomethylation of Zrsr1 and pluripotency state of iPSCs was further validated in independent iPSC lines derived from other reprogramming systems.  相似文献   

13.
14.

Background

Reprogrammed cells, including induced pluripotent stem cells (iPSCs) and nuclear transfer embryonic stem cells (NT-ESCs), are similar in many respects to natural embryonic stem cells (ESCs). However, previous studies have demonstrated that iPSCs retain a gene expression signature that is unique from that of ESCs, including differences in microRNA (miRNA) expression, while NT-ESCs are more faithfully reprogrammed cells and have better developmental potential compared with iPSCs.

Results

We focused on miRNA expression and explored the difference between ESCs and reprogrammed cells, especially ESCs and NT-ESCs. We also compared the distinct expression patterns among iPSCs, NT-ESCs and NT-iPSCs. The results demonstrated that reprogrammed cells (iPSCs and NT-ESCs) have unique miRNA expression patterns compared with ESCs. The comparison of differently reprogrammed cells (NT-ESCs, NT-iPSCs and iPSCs) suggests that several miRNAs have key roles in the distinct developmental potential of reprogrammed cells.

Conclusions

Our data suggest that miRNAs play a part in the difference between ESCs and reprogrammed cells, as well as between MEFs and pluripotent cells. The variation of miRNA expression in reprogrammed cells derived using different reprogramming strategies suggests different characteristics induced by nuclear transfer and iPSC generation, as well as different developmental potential among NT-ESCs, iPSCs and NT-iPSCs.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-488) contains supplementary material, which is available to authorized users.  相似文献   

15.
Huang J  Wang F  Okuka M  Liu N  Ji G  Ye X  Zuo B  Li M  Liang P  Ge WW  Tsibris JC  Keefe DL  Liu L 《Cell research》2011,21(5):779-792
Telomerase and telomeres are important for indefinite replication of stem cells. Recently, telomeres of somatic cells were found to be reprogrammed to elongate in induced pluripotent stem cells (iPSCs). The role of telomeres in developmental pluripotency in vivo of embryonic stem cells (ESCs) or iPSCs, however, has not been directly addressed. We show that ESCs with long telomeres exhibit authentic developmental pluripotency, as evidenced by generation of complete ESC pups as well as germline-competent chimeras, the most stringent tests available in rodents. ESCs with short telomeres show reduced teratoma formation and chimera production, and fail to generate complete ESC pups. Telomere lengths are highly correlated (r > 0.8) with the developmental pluripotency of ESCs. Short telomeres decrease the proliferative rate or capacity of ESCs, alter the expression of genes related to telomere epigenetics, down-regulate genes important for embryogenesis and disrupt germ cell differentiation. Moreover, iPSCs with longer telomeres generate chimeras with higher efficiency than those with short telomeres. Our data show that functional telomeres are essential for the developmental pluripotency of ESCs/iPSCs and suggest that telomere length may provide a valuable marker to evaluate stem cell pluripotency, particularly when the stringent tests are not feasible.  相似文献   

16.
17.
The discovery that adult somatic cells can be reprogrammed into pluripotent cells by expressing a combination of factors associated with pluripotency holds immense promise for a wide range of biotechnological and therapeutic applications. However, some hurdles—such as improving the low reprogramming efficiencies and ensuring the pluripotent potential, genomic integrity and safety of the resulting cells—must be overcome before induced pluripotent stem cells (iPSCs) can be used for clinical purposes. Several groups have recently shown that key tumour suppressors—such as members of the p53 and p16INK4a/retinoblastoma networks—control the efficiency of iPSC generation by activating cell‐intrinsic programmes such as senescence. Here, we discuss the implications of these discoveries for improving the safety and efficiency of iPSC generation, and for increasing our understanding of different aspects of basic biology—such as the control of pluripotency or the mechanisms involved in the generation of cancer stem cells.  相似文献   

18.
With their capability to undergo unlimited self-renewal and to differentiate into all cell types in the body, induced pluripotent stem cells (iPSCs), reprogrammed from somatic cells of human patients with defined factors, hold promise for regenerative medicine because they can provide a renewable source of autologous cells for cell therapy without the concern for immune rejection. In addition, iPSCs provide a unique opportunity to model human diseases with complex genetic traits, and a panel of human diseases have been successfully modeled in vitro by patient-specific iPSCs. Despite these progresses, recent studies have raised the concern for genetic and epigenetic abnormalities of iPSCs that could contribute to the immunogenicity of some cells differentiated from iPSCs. The oncogenic potential of iPSCs is further underscored by the findings that the critical tumor suppressor p53, known as the guardian of the genome, suppresses induced pluripotency. Therefore, the clinic application of iPSCs will require the optimization of the reprogramming technology to minimize the genetic and epigenetic abnormalities associated with induced pluripotency.  相似文献   

19.
20.
Many emerging cell-based therapies are based on pluripotent stem cells, though complete understanding of the properties of these cells is lacking. In these cells, much is still unknown about the cytoskeletal network, which governs the mechanoresponse. The objective of this study was to determine the cytoskeletal state in undifferentiated pluripotent stem cells and remodeling with differentiation. Mouse embryonic stem cells (ESCs) and reprogrammed induced pluripotent stem cells (iPSCs), as well as the original un-reprogrammed embryonic fibroblasts (MEFs), were evaluated for expression of cytoskeletal markers. We found that pluripotent stem cells overall have a less developed cytoskeleton compared to fibroblasts. Gene and protein expression of smooth muscle cell actin, vimentin, lamin A, and nestin were markedly lower for ESCs than MEFs. Whereas, iPSC samples were heterogeneous with most cells expressing patterns of cytoskeletal proteins similar to ESCs with a small subpopulation similar to MEFs. This indicates that dedifferentiation during reprogramming is associated with cytoskeletal remodeling to a less developed state. In differentiation studies, it was found that shear stress-mediated differentiation resulted in an increase in expression of cytoskeletal intermediate filaments in ESCs, but not in iPSC samples. In the embryoid body model of spontaneous differentiation of pluripotent stem cells, however, both ESCs and iPSCs had similar gene expression for cytoskeletal proteins during early differentiation. With further differentiation, however, gene levels were significantly higher for iPSCs compared to ESCs. These results indicate that reprogrammed iPSCs more readily reacquire cytoskeletal proteins compared to the ESCs that need to form the network de novo. The strategic selection of the parental phenotype is thus critical not only in the context of reprogramming but also the ultimate functionality of the iPSC-differentiated cell population. Overall, this increased characterization of the cytoskeleton in pluripotent stem cells will allow for the better understanding and design of stem cell-based therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号