首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 954 毫秒
1.
We have identified five independent allelic mutations, defining the gene cha-1, that result in decreased choline acetyltransferase (ChAT) activity in Caenorhabditis elegans. Four of the mutant alleles, when homozygous, lead to ChAT reductions of>98%, as well as recessive phenotypes of uncoordinated behavior, small size, slow growth and resistance to cholinesterase inhibitors. Animals homozygous for the fifth allele retain approximately 10% of the wild-type enzyme level; purified enzyme from this mutant has altered Km values for both choline and acetyl-CoA and is more thermolabile than the wild-type enzyme. These qualitative alterations, together with gene dosage data, argue that cha-1 is the structural gene for ChAT. cha-1 has been mapped to the left arm of linkage group IV and is within 0.02 map unit of the gene unc-17, mutant alleles of which lead to all of the phenotypes of cha-1 mutants except for the ChAT deficiency. Extensive complementation studies of cha-1 and unc-17 alleles reveal a complex complementation pattern, suggesting that both loci may be part of a single complex gene.  相似文献   

2.
Genetic Analysis of the Cha-1-Unc-17 Gene Complex in Caenorhabditis   总被引:3,自引:2,他引:1       下载免费PDF全文
J. B. Rand 《Genetics》1989,122(1):73-80
In C. elegans, the gene cha-1 is the structural gene for choline acetyltransferase, the enzyme which synthesizes acetylcholine. cha-1 is a complex gene which includes the previously described unc-17 locus; it has been hypothesized that a single protein is encoded which consists of several discrete structural domains. Mutations of the cha-1-unc-17 locus can be assigned to one of four classes on the basis of phenotype and complementation properties. A fine-structure map of this region has now been obtained by recombinational mapping. It is a large locus, spanning at least 0.035 map unit. On the map, the mutations lie in four contiguous, nonoverlapping regions, corresponding exactly to the different classes as defined by complementation and phenotype. Several new cha-1 mutations are described and mapped in the present study, including temperature-sensitive and lethal alleles.  相似文献   

3.
4.
5.
The effects of nerve growth factor (NGF) on the intracellular content of acetylcholine (ACh) in cultured septal neurons from developing rats have been examined. The content of ACh could be measured by using HPLC and electrochemical detection (HPLC-ECD), coupled with an immobilized enzyme column. This method of determination is very simple and rapid, and is highly sensitive. The content of ACh and the activity of choline acetyltransferase (ChAT) in cultured postnatal day 1 (P1) septal neurons grown on an astroglial "feeder" layer was increased during the period of cultivation by the addition of NGF. The activities of ChAT and the content of ACh increased in a dose-dependent manner in direct relationship to the different amounts of NGF employed. These effects of NGF, i.e., elevating the intracellular content of ACh, accompanied by an increase in activity of ChAT, also were confirmed in the P1 septal organotypic cultures. Additionally, embryonic day 17 (E17) septal neurons in a serum-free medium displayed a similar responsiveness to NGF with respect to the elevation in the content of ACh and the increase in activity of ChAT. These results suggest that intracellular levels of ACh are likely to be regulated by NGF in a fashion similar to that of the activity levels of the biosynthetic enzyme.  相似文献   

6.
A New Kind of Informational Suppression in the Nematode Caenorhabditis Elegans   总被引:16,自引:6,他引:10  
J. Hodgkin  A. Papp  R. Pulak  V. Ambros    P. Anderson 《Genetics》1989,123(2):301-313
Independent reversions of mutations affecting three different Caenorhabditis elegans genes have each yielded representatives of the same set of extragenic suppressors. Mutations at any one of six loci act as allele-specific recessive suppressors of certain allels of unc-54 (a myosin heavy chain gene), lin-29 (a heterochronic gene), and tra-2 (a sex determination gene). The same mutations also suppress certain alleles of another sex determination gene, tra-1, and of a morphogenetic gene, dpy-5. In addition to their suppression phenotype, the suppressor mutations cause abnormal morphogenesis of the male bursa and the hermaphrodite vulva. We name these genes smg-1 through smg-6 (suppressor with morphogenetic effect on genitalia), in order to distinguish them from mab (male abnormal) genes that can mutate to produce abnormal genitalia but which do not act as suppressors (smg-1 and smg-2 are new names for two previously described genes, mab-1 and mab-11). The patterns of suppression, and the interactions between the different smg genes, are described and discussed. In general, suppression is recessive and incomplete, and at least some of the suppressed mutations are hypomorphic in nature. A suppressible allele of unc-54 contains a deletion in the 3' noncoding region of the gene; the protein coding region of the gene is apparently unaffected. This suggests that the smg suppressors affect a process other than translation, for example mRNA processing, transport, or stability.  相似文献   

7.
Lymphocytes possess the essential components of a cholinergic system, including acetylcholine (ACh); choline acetyltransferase (ChAT), its synthesizing enzyme; and both muscarinic and nicotinic ACh receptors (mAChRs and nAChRs, respectively). Stimulation of lymphocytes with phytohemagglutinin, which activates T cells via the T cell receptor/CD3 complex, enhances the synthesis and release of ACh and up-regulates expression of ChAT and M(5) mAChR mRNAs. In addition, activation of protein kinase C and increases in intracellular cAMP also enhance cholinergic activity in T cells, and lymphocyte function associated antigen-1 (LFA-1; CD11a/CD18) is an important mediator of leukocyte migration and T cell activation. Anti-CD11a monoclonal antibody (mAb) as well as antithymocyte globulin containing antibodies against CD2, CD7 and CD11a all increase ChAT activity, ACh synthesis and release, and expression of ChAT and M(5) mAChR mRNAs in T cells. The cholesterol-lowering drug simvastatin inhibits LFA-1 signaling by binding to an allosteric site on CD11a (LFA-1 alpha chain), which leads to immunomodulation. We found that simvastatin abolishes anti-CD11a mAb-induced increases in lymphocytic cholinergic activity in a manner independent of its cholesterol-lowering activity. Collectively then, these results indicate that LFA-1 contributes to the regulation of lymphocytic cholinergic activity via CD11a-mediated pathways and suggest that simvastatin exerts its immunosuppressive effects in part via modification of lymphocytic cholinergic activity.  相似文献   

8.
We have isolated spontaneous mutations affecting the unc-54 major myosin heavy chain gene of Caenorhabditis elegans (variety Bristol). Spontaneous unc-54 mutants occur in C. elegans populations at a frequency of approximately 3 X 10(-7). We have studied the gene structure of 65 independent unc-54 mutations using filter-transfer hybridization techniques. Most unc-54 mutations (50 of 65) exhibit no abnormalities detected with these techniques; these mutations are small lesions affecting less than 100 base pairs. Approximately 17% of the mutations (11 of 65) are simple deletions, ranging in size from less than 100 base pairs to greater than 17 kilobases. One isolate contains two separate deletions, each of which affects unc-54. Two mutants contain tandem genetic duplications that include a portion of unc-54 and extend 8-10 kilobases beyond the 5' terminus of the mRNA. Conspicuously absent from our collection of spontaneous unc-54 mutations are any resulting from insertion of transposable genetic elements. Such mutants, if they occur, must arise at a frequency of less than 5 X 10(-9).  相似文献   

9.
Amyloid-beta accumulation in brains of Alzheimer's disease (AD) victims is accompanied by glial inflammatory reactions and preferential loss of cholinergic neurons. Therefore, the aim of this study was to find out whether proinflamatory cytokine interleukin 1beta (IL1beta) modifies effects of amyloid-beta (Abeta) on viability and cholinergic phenotype of septum derived T17 cholinergic neuroblastoma cells. In nondifferentiated T17 cells (NC) Abeta(25-35) (1 microg/ml) caused no changes in choline acetyltransferase (ChAT) activity, acetylcholine (ACh) release, subcellular distribution of acetyl-CoA, but doubled content of trypan blue positive cells. IL1beta (10 ng/ml) increased ACh release (125%) but did not change other parameters of NC. In the presence of Abeta IL1beta also increased ChAT activity (47%), ACh release (100%) but had no effect on acetyl-CoA distribution and cell viability. Differentiation with retinoic acid and dibutyryl cyclic AMP caused over two-fold increase of ChAT activity and ACh content, four-fold increase of ACh release and about 50% decrease of acetyl-CoA level in the mitochondria. In differentiated cells (DC), Abeta decreased ChAT activity (31%), ACh release (47%) and content of acetyl-CoA (80%) in cell cytoplasmic compartment, whereas IL1beta elevated ChAT activity (54%) and ACh release (32%). IL1beta totally reversed Abeta-evoked inhibition of ChAT activity and ACh release and restored control level of cytoplasmic acetyl-CoA but increased fraction of nonviable cells to 25%. Thus, IL1beta could compensate Abeta-evoked cholinergic deficits through the restoration of adequate expression of ChAT and provision of acetyl-CoA to cytoplasmic compartment in cholinergic neurons that survive under such pathologic conditions. These data indicate that IL1beta possess independent cholinotrophic and cholinotoxic activities that may modify Abeta effects on cholinergic neurons.  相似文献   

10.
11.
12.
Immortalized rat brain endothelial RBE4 cells do not express choline acetyltransferase (ChAT), but they do express an endogenous machinery that enables them to release specifically acetylcholine (ACh) on calcium entry when they have been passively loaded with the neurotransmitter. Indeed, we have previously reported that these cells do not release glutamate or GABA after loading with these transmitters. The present study was set up to engineer stable cell lines producing ACh by transfecting them with an expression vector construct containing the rat ChAT. ChAT transfectants expressed a high level of ChAT activity and accumulated endogenous ACh. We examined evoked ACh release from RBE4 cells using two parallel approaches. First, Ca2+-dependent ACh release induced by a calcium ionophore was followed with a chemiluminescent procedure. We showed that ChAT-transfected cells released the transmitter they had synthesized and accumulated in the presence of an esterase inhibitor. Second, ACh released on an electrical depolarization was detected in real time by a whole-cell voltage-clamped Xenopus myocyte in contact with the cell. Whether cells synthesized ACh or whether they were passively loaded with ACh, electrical stimulation elicited the release of ACh quanta detected as inward synaptic-like currents in the myocyte. Repetitive stimulation elicited a continuous train of responses of decreasing amplitudes, with rare failures. Amplitude analysis showed that the currents peaked at preferential levels, as if they were multiples of an elementary component. Furthermore, we selected an RBE4 transgenic clone exhibiting a high level of ChAT activity to introduce the Torpedo vesicular ACh transporter (VAChT) gene. However, as the expression of ChAT was inactivated in stable VAChT transfectants, the potential influence of VAChT on evoked ACh release could only be studied on cells passively loaded with ACh. VAChT expression modified the pattern of ACh delivery on repetitive electrical stimulation. Stimulation trains evoked several groups of responses interrupted by many failures. The total amount of released ACh and the mean quantal size were not modified. As brain endothelial cells are known as suitable cellular vectors for delivering gene products to the brain, the present results suggest that RBE4 cells genetically modified to produce ACh and intrinsically able to support evoked ACh release may provide a useful tool for improving altered cholinergic function in the CNS.  相似文献   

13.
The Caenorhabditis elegans unc-60 gene encodes two functionally distinct isoforms of ADF/cofilin that are implicated in myofibril assembly. Here, we show that one of the gene products, UNC-60B, is specifically required for proper assembly of actin into myofibrils. We found that all homozygous viable unc-60 mutations resided in the unc-60B coding region, indicating that UNC-60B is responsible for the Unc-60 phenotype. Wild-type UNC-60B had F-actin binding, partial actin depolymerizing, and weak F-actin severing activities in vitro. However, mutations in UNC-60B caused various alterations in these activities. Three missense mutations resulted in weaker F-actin binding and actin depolymerizing activities and complete loss of severing activity. The r398 mutation truncated three residues from the COOH terminus and resulted in the loss of severing activity and greater actin depolymerizing activity. The s1307 mutation in a putative actin-binding helix caused greater activity in actin-depolymerizing and severing. Using a specific antibody for UNC-60B, we found varying protein levels of UNC-60B in mutant animals, and that UNC-60B was expressed in embryonic muscles. Regardless of these various molecular phenotypes, actin was not properly assembled into embryonic myofibrils in all unc-60 mutants to similar extents. We conclude that precise control of actin filament dynamics by UNC-60B is required for proper integration of actin into myofibrils.  相似文献   

14.
Genetic Organization of the Unc-60 Region in Caenorhabditis Elegans   总被引:2,自引:1,他引:1  
We have investigated the chromosomal region around unc-60 V, a gene affecting muscle structure, in the nematode Caenorhabditis elegans. The region studied covers 3 map units and lies at the left end of linkage group (LG) V. Compared to the region around dpy-11 (at the center of LGV), the unc-60 region has relatively few visible genes per map unit. We found the same to be true for essential genes. By screening simultaneously for recessive lethals closely linked to either dpy-11 or unc-60, we recovered ethyl methanesulfonate-induced mutations in 10 essential genes near dpy-11 but in only two genes near unc-60. Four deficiency breakpoints were mapped to the unc-60 region. Using recombination and deficiency mapping we established the following gene order: let-336, unc-34, let-326, unc-60, emb-29, let-426. Regarding unc-60 itself, we compared the effect of ten alleles (including five isolated during this study) on hermaphrodite mobility and fecundity. We used intragenic mapping to position eight of these alleles. The results show that these alleles are not distributed uniformly within the gene, but map to two groups approximately 0.012 map unit apart.  相似文献   

15.
W. Shreffler  T. Magardino  K. Shekdar    E. Wolinsky 《Genetics》1995,139(3):1261-1272
Two Caenorhabditis elegans genes, unc-8 and sup-40, have been newly identified, by genetic criteria, as regulating ion channel function in motorneurons. Two dominant unc-8 alleles cause motorneuron swelling similar to that of other neuronal types in dominant mutants of the deg-1 gene family, which is homologous to a mammalian gene family encoding amiloride-sensitive sodium channel subunits. As for previously identified deg-1 family members, unc-8 dominant mutations are recessively suppressed by mutations in the mec-6 gene, which probably encodes a second type of channel component. An unusual dominant mutation, sup-41 (lb125), also co-suppresses unc-8 and deg-1, suggesting the existence of yet another common component of ion channels containing unc-8 or deg-1 subunits. Dominant, transacting, intragenic suppressor mutations have been isolated for both unc-8 and deg-1, consistent with the idea that, like their mammalian homologues, the two gene products function as multimers. The sup-40 (lb130) mutation dominantly suppresses unc-8 motorneuron swelling and produces a novel swelling phenotype in hypodermal nuclei. sup-40 may encode an ion channel component or regulator that can correct the osmotic defect caused by abnormal unc-8 channels.  相似文献   

16.
Acetylcholine (ACh), the classical neurotransmitter, also affects a variety of nonexcitable cells, such as endothelia, microglia, astrocytes and lymphocytes in both the nervous system and secondary lymphoid organs. Most of these cells are very distant from cholinergic synapses. The action of ACh on these distant cells is unlikely to occur through diffusion, given that ACh is very short-lived in the presence of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), two extremely efficient ACh-degrading enzymes abundantly present in extracellular fluids. In this study, we show compelling evidence for presence of a high concentration and activity of the ACh-synthesizing enzyme, choline-acetyltransferase (ChAT) in human cerebrospinal fluid (CSF) and plasma. We show that ChAT levels are physiologically balanced to the levels of its counteracting enzymes, AChE and BuChE in the human plasma and CSF. Equilibrium analyses show that soluble ChAT maintains a steady-state ACh level in the presence of physiological levels of fully active ACh-degrading enzymes. We show that ChAT is secreted by cultured human-brain astrocytes, and that activated spleen lymphocytes release ChAT itself rather than ACh. We further report differential CSF levels of ChAT in relation to Alzheimer’s disease risk genotypes, as well as in patients with multiple sclerosis, a chronic neuroinflammatory disease, compared to controls. Interestingly, soluble CSF ChAT levels show strong correlation with soluble complement factor levels, supporting a role in inflammatory regulation. This study provides a plausible explanation for the long-distance action of ACh through continuous renewal of ACh in extracellular fluids by the soluble ChAT and thereby maintenance of steady-state equilibrium between hydrolysis and synthesis of this ubiquitous cholinergic signal substance in the brain and peripheral compartments. These findings may have important implications for the role of cholinergic signaling in states of inflammation in general and in neurodegenerative disease, such as Alzheimer’s disease and multiple sclerosis in particular.  相似文献   

17.
Abstract: Nerve growth factor (NGF) treatment of primary cultures of embryonic day 17 rat basal forebrain differentially altered activity of choline acetyltransferase (ChAT) and high-affinity choline transport; ChAT specific activity was increased by threefold in neurons grown in the presence of NGF for between 4 and 8 days, whereas high-affinity choline transport activity was not changed relative to control. Dose-response studies revealed that enhancement of neuronal ChAT activity occurred at low concentrations of NGF with an EC50 of 7 ng/ml, with no enhancement of high-affinity choline transport observed at NGF concentrations up to 100 ng/ml. In addition, synthesis of acetylcholine (ACh) and ACh content in neurons grown in the presence of NGF for up to 6 days was increased significantly compared with controls. These results suggest that regulation of ACh synthesis in primary cultures of basal forebrain neurons is not limited by provision of choline by the high-affinity choline transport system and that increased ChAT activity in the presence of NGF without a concomitant increase in high-affinity choline transport is sufficient to increase ACh synthesis. This further suggests that intracellular pools of choline, which do not normally serve as substrate for ACh synthesis, may be made available for ACh synthesis in the presence of NGF.  相似文献   

18.
Spontaneous Unstable UNC-22 IV Mutations in C. ELEGANS Var. Bergerac   总被引:21,自引:2,他引:19  
This paper describes a mutator system in the nematode Caenorhabditis elegans var. Bergerac for the gene unc-22. Of nine C. elegans and two C. briggsae strains tested only the Bergerac BO strain yielded mutant animals at a high frequency and the unc-22 IV gene is a preferred mutational target. The forward spontaneous mutation frequency at the unc-22 locus in Bergerac BO is about 1 x 10-4 , and most of these spontaneous unc-22 mutations revert at frequencies between 2 x 10-3 and 2 x 10 -4. Both the forward mutation frequency and the reversion frequency are sensitive to genetic background. Spontaneous unc-22 mutations derived in a Bergerac background and placed in a primarily Bristol background revert at frequencies of <10-6. When reintroduced into a Bergerac/Bristol hybrid background the mutations once again become unstable.

The mutator activity could not be localized to a discrete site in the Bergerac genome. Nor did mutator activity require the Bergerac unc-22 gene as a target since the Bristol unc-22 homolog placed in a Bergerac background also showed high mutation frequency. Intragenic mapping of two spontaneous unc-22 alleles, st136 and st137, place both mutations in the central region of the known unc-22 map. However, these mutations probably recombine with one another, suggesting that the unstable mutations can occur in more than one site in unc-22. Examination of the phenotypic effect of these mutations on muscle structure indicates that they are less severe in their effect than a known amber allele. We suggest that this mutator system is polygenic and dispersed over the nematode genome and could represent activity of the transposable element Tc1.

  相似文献   

19.
Hypoxic chemosensitivity of peripheral arterial chemoreceptors and the ventilatory response to O2 deprivation increases with postnatal development. Multiple putative neurotransmitters, which are synthesized in the carotid body (CB), are thought to mediate signals generated by hypoxia. Acetylcholine (ACh) is believed to be a major excitatory neurotransmitter participating in hypoxic chemosensitivity. However, it is not known whether ACh originates from type I cells in the CB. In these studies, we tested the hypothesis that choline acetyltransferase (ChAT) and vesicular ACh transporter (VAChT) mRNAs are expressed in the CB and that mRNA levels would increase with postnatal maturation or exposure to hypoxia. Semiquantitative in situ hybridization histochemistry and immunohistochemistry were used to localize cholinergic markers within neurons and cells of the rat CB, the nodose-petrosal-jugular ganglion complex, and the superior cervical ganglion up to postnatal day 28. We show that the pattern of distribution, in tissue sections, is similar for both ACh markers; however, the level of VAChT mRNA is uniformly greater than that of ChAT. VAChT mRNA and immunoreactivity are detected abundantly in the nodose-petrosal-jugular ganglion complex in a number of microganglion cells embedded in nerve fibers innervating the CB for all postnatal groups, whereas ChAT mRNA is detected in only a few of these cells. Contrary to our hypothesis, postnatal maturation caused a reduction in ACh trait expression, whereas hypoxic exposure did not induce the upregulation of VAChT and ChAT mRNA levels in the CB, microganglion, or within the ganglion complex. The present findings indicate that the source of ACh in the CB is likely within autonomic microganglion cells and cholinergic nerve terminals.  相似文献   

20.
Evolutional study on acetylcholine expression   总被引:1,自引:0,他引:1  
Acetylcholine (ACh) is a well-known neurotransmitter in the cholinergic nervous systems of vertebrates and insects; however, there is only indirect evidence for its presence in lower invertebrates, such as plants and fungi. We therefore investigated the expression of ACh in invertebrates (sea squirt, sea urchin, trepang, squid, abalone, nereis, sea anemone, coral and sponge), plants (arabidopsis, eggplant, bamboo shoot, cedar, hinoki, pine, podcarp, fern, horsetail and moss), fungi (yeast and mushroom) and bacteria by assaying ACh content and synthesis, focusing on the presence of two synthetic enzymes, choline acetyltransferase (ChAT) and carnitine acetyltransferase (CarAT). Using a specific radioimmunoassay, ACh was detected in all samples tested. The levels varied considerably, however, with the upper portion of bamboo shoots having the highest content (2.9 micromol/g). ACh synthesis was also detected in all samples tested; moreover, the activity in most samples from the animal kingdom, as well as bamboo shoots and the stem of the shiitake mushroom, were sensitive to both ChAT and CarAT inhibitors. Levels of ACh synthesis were lower in samples from other plants, fungi and bacteria and were insensitive to ChAT and CarAT inhibitors. These findings demonstrate the presence of ACh and ACh-synthesizing activity in evolutionally primitive life as well as in more complex multicellular organisms. In the context of the recent discovery of non-neuronal ACh in various mammalian species, these findings suggest that ACh been expressed in organisms from the beginning of life, functioning as a local mediator as well as a neurotransmitter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号