首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 420 毫秒
1.
The construction and analysis of networks is increasingly widespread in biological research. We have developed esyN (“easy networks”) as a free and open source tool to facilitate the exchange of biological network models between researchers. esyN acts as a searchable database of user-created networks from any field. We have developed a simple companion web tool that enables users to view and edit networks using data from publicly available databases. Both normal interaction networks (graphs) and Petri nets can be created. In addition to its basic tools, esyN contains a number of logical templates that can be used to create models more easily. The ability to use previously published models as building blocks makes esyN a powerful tool for the construction of models and network graphs. Users are able to save their own projects online and share them either publicly or with a list of collaborators. The latter can be given the ability to edit the network themselves, allowing online collaboration on network construction. esyN is designed to facilitate unrestricted exchange of this increasingly important type of biological information. Ultimately, the aim of esyN is to bring the advantages of Open Source software development to the construction of biological networks.  相似文献   

2.
Starting from a limited set of reactions describing changes in the carbon skeleton of biochemical compounds complete sets of metabolic networks are constructed. The networks are characterized by the number and types of participating reactions. Elementary networks are defined by the condition that a specific chemical conversion can be performed by a set of given reactions and that this ability will be lost by elimination of any of these reactions. Groups of networks are identified with respect to their ability to perform a certain number of metabolic conversions in an elementary way which are called the network’s functions. The number of the network functions defines the degree of multifunctionality. Transitions between networks and mutations of networks are defined by exchanges of single reactions. Different mutations exist such as gain or loss of function mutations and neutral mutations. Based on these mutations neighbourhood relations between networks are established which are described in a graph theoretical way. Basic properties of these graphs are determined such as diameter, connectedness, distance distribution of pairs of vertices. A concept is developed to quantify the robustness of networks against changes in their stoichiometry where we distinguish between strong and weak robustness. Evolutionary algorithms are applied to study the development of network populations under constant and time dependent environmental conditions. It is shown that the populations evolve toward clusters of networks performing a common function and which are closely neighboured. Under changing environmental conditions multifunctional networks prove to be optimal and will be selected.  相似文献   

3.

Background  

A wide variety of biological data can be modeled as network structures, including experimental results (e.g. protein-protein interactions), computational predictions (e.g. functional interaction networks), or curated structures (e.g. the Gene Ontology). While several tools exist for visualizing large graphs at a global level or small graphs in detail, previous systems have generally not allowed interactive analysis of dense networks containing thousands of vertices at a level of detail useful for biologists. Investigators often wish to explore specific portions of such networks from a detailed, gene-specific perspective, and balancing this requirement with the networks' large size, complex structure, and rich metadata is a substantial computational challenge.  相似文献   

4.
The analysis of cortical and subcortical networks requires the identification of their nodes, and of the topology and dynamics of their interactions. Exploratory tools for the identification of nodes are available, e.g. magnetoencephalography (MEG) in combination with beamformer source analysis. Competing network topologies and interaction models can be investigated using dynamic causal modelling. However, we lack a method for the exploratory investigation of network topologies to choose from the very large number of possible network graphs. Ideally, this method should not require a pre-specified model of the interaction. Transfer entropy--an information theoretic implementation of Wiener-type causality--is a method for the investigation of causal interactions (or information flow) that is independent of a pre-specified interaction model. We analysed MEG data from an auditory short-term memory experiment to assess whether the reconfiguration of networks implied in this task can be detected using transfer entropy. Transfer entropy analysis of MEG source-level signals detected changes in the network between the different task types. These changes prominently involved the left temporal pole and cerebellum--structures that have previously been implied in auditory short-term or working memory. Thus, the analysis of information flow with transfer entropy at the source-level may be used to derive hypotheses for further model-based testing.  相似文献   

5.
Finding statistically significant communities in networks   总被引:1,自引:0,他引:1  
Community structure is one of the main structural features of networks, revealing both their internal organization and the similarity of their elementary units. Despite the large variety of methods proposed to detect communities in graphs, there is a big need for multi-purpose techniques, able to handle different types of datasets and the subtleties of community structure. In this paper we present OSLOM (Order Statistics Local Optimization Method), the first method capable to detect clusters in networks accounting for edge directions, edge weights, overlapping communities, hierarchies and community dynamics. It is based on the local optimization of a fitness function expressing the statistical significance of clusters with respect to random fluctuations, which is estimated with tools of Extreme and Order Statistics. OSLOM can be used alone or as a refinement procedure of partitions/covers delivered by other techniques. We have also implemented sequential algorithms combining OSLOM with other fast techniques, so that the community structure of very large networks can be uncovered. Our method has a comparable performance as the best existing algorithms on artificial benchmark graphs. Several applications on real networks are shown as well. OSLOM is implemented in a freely available software (http://www.oslom.org), and we believe it will be a valuable tool in the analysis of networks.  相似文献   

6.
CFinder: locating cliques and overlapping modules in biological networks   总被引:6,自引:0,他引:6  
Most cellular tasks are performed not by individual proteins, but by groups of functionally associated proteins, often referred to as modules. In a protein association network modules appear as groups of densely interconnected nodes, also called communities or clusters. These modules often overlap with each other and form a network of their own, in which nodes (links) represent the modules (overlaps). We introduce CFinder, a fast program locating and visualizing overlapping, densely interconnected groups of nodes in undirected graphs, and allowing the user to easily navigate between the original graph and the web of these groups. We show that in gene (protein) association networks CFinder can be used to predict the function(s) of a single protein and to discover novel modules. CFinder is also very efficient for locating the cliques of large sparse graphs. Availability: CFinder (for Windows, Linux and Macintosh) and its manual can be downloaded from http://angel.elte.hu/clustering. Supplementary information: Supplementary data are available on Bioinformatics online.  相似文献   

7.
Babur O  Colak R  Demir E  Dogrusoz U 《Proteomics》2008,8(11):2196-2198
High-throughput experiments, most significantly DNA microarrays, provide us with system-scale profiles. Connecting these data with existing biological networks poses a formidable challenge to uncover facts about a cell's proteome. Studies and tools with this purpose are limited to networks with simple structure, such as protein-protein interaction graphs, or do not go much beyond than simply displaying values on the network. We have built a microarray data analysis tool, named PATIKAmad, which can be used to associate microarray data with the pathway models in mechanistic detail, and provides facilities for visualization, clustering, querying, and navigation of biological graphs related with loaded microarray experiments. PATIKAmad is freely available to noncommercial users as a new module of PATIKAweb at http://web.patika.org.  相似文献   

8.
9.

Background

Mathematical modelling of cellular networks is an integral part of Systems Biology and requires appropriate software tools. An important class of methods in Systems Biology deals with structural or topological (parameter-free) analysis of cellular networks. So far, software tools providing such methods for both mass-flow (metabolic) as well as signal-flow (signalling and regulatory) networks are lacking.

Results

Herein we introduce CellNetAnalyzer, a toolbox for MATLAB facilitating, in an interactive and visual manner, a comprehensive structural analysis of metabolic, signalling and regulatory networks. The particular strengths of CellNetAnalyzer are methods for functional network analysis, i.e. for characterising functional states, for detecting functional dependencies, for identifying intervention strategies, or for giving qualitative predictions on the effects of perturbations. CellNetAnalyzer extends its predecessor FluxAnalyzer (originally developed for metabolic network and pathway analysis) by a new modelling framework for examining signal-flow networks. Two of the novel methods implemented in CellNetAnalyzer are discussed in more detail regarding algorithmic issues and applications: the computation and analysis (i) of shortest positive and shortest negative paths and circuits in interaction graphs and (ii) of minimal intervention sets in logical networks.

Conclusion

CellNetAnalyzer provides a single suite to perform structural and qualitative analysis of both mass-flow- and signal-flow-based cellular networks in a user-friendly environment. It provides a large toolbox with various, partially unique, functions and algorithms for functional network analysis.CellNetAnalyzer is freely available for academic use.  相似文献   

10.
Daily MD  Upadhyaya TJ  Gray JJ 《Proteins》2008,71(1):455-466
Allosteric proteins bind an effector molecule at one site resulting in a functional change at a second site. We hypothesize that networks of contacts altered, formed, or broken are a significant contributor to allosteric communication in proteins. In this work, we identify which interactions change significantly between the residue-residue contact networks of two allosteric structures, and then organize these changes into graphs. We perform the analysis on 15 pairs of allosteric structures with effector and substrate each present in at least one of the two structures. Most proteins exhibit large, dense regions of contact rearrangement, and the graphs form connected paths between allosteric effector and substrate sites in five of these proteins. In the remaining 10 proteins, large-scale conformational changes such as rigid-body motions are likely required in addition to contact rearrangement networks to account for substrate-effector communication. On average, clusters which contain at least one substrate or effector molecule comprise 20% of the protein. These allosteric graphs are small worlds; that is, they typically have mean shortest path lengths comparable to those of corresponding random graphs and average clustering coefficients enhanced relative to those of random graphs. The networks capture 60-80% of known allostery-perturbing mutants in three proteins, and the metrics degree and closeness are statistically good discriminators of mutant residues from nonmutant residues within the networks in two of these three proteins. For two proteins, coevolving clusters of residues which have been hypothesized to be allosterically important differ from the regions with the most contact rearrangement. Residues and contacts which modulate normal mode fluctuations also often participate in the contact rearrangement networks. In summary, residue-residue contact rearrangement networks provide useful representations of the portions of allosteric pathways resulting from coupled local motions.  相似文献   

11.
A duplication growth model of gene expression networks   总被引:8,自引:0,他引:8  
  相似文献   

12.
Harmonic analysis on manifolds and graphs has recently led to mathematical developments in the field of data analysis. The resulting new tools can be used to compress and analyze large and complex data sets, such as those derived from sensor networks or neuronal activity datasets, obtained in the laboratory or through computer modeling. The nature of the algorithms (based on diffusion maps and connectivity strengths on graphs) possesses a certain analogy with neural information processing, and has the potential to provide inspiration for modeling and understanding biological organization in perception and memory formation.  相似文献   

13.
Networks of evolving genotypes can be constructed from the worldwide time-resolved genotyping of pathogens like influenza viruses. Such genotype networks are graphs where neighbouring vertices (viral strains) differ in a single nucleotide or amino acid. A rich trove of network analysis methods can help understand the evolutionary dynamics reflected in the structure of these networks. Here, I analyse a genotype network comprising hundreds of influenza A (H3N2) haemagglutinin genes. The network is rife with cycles that reflect non-random parallel or convergent (homoplastic) evolution. These cycles also show patterns of sequence change characteristic for strong and local evolutionary constraints, positive selection and mutation-limited evolution. Such cycles would not be visible on a phylogenetic tree, illustrating that genotype network analysis can complement phylogenetic analyses. The network also shows a distinct modular or community structure that reflects temporal more than spatial proximity of viral strains, where lowly connected bridge strains connect different modules. These and other organizational patterns illustrate that genotype networks can help us study evolution in action at an unprecedented level of resolution.  相似文献   

14.
This article develops a novel approach and algorithmic tools for the modeling and survivability analysis of networks with heterogeneous nodes, and examines their application to space-based networks. Space-based networks (SBNs) allow the sharing of spacecraft on-orbit resources, such as data storage, processing, and downlink. Each spacecraft in the network can have different subsystem composition and functionality, thus resulting in node heterogeneity. Most traditional survivability analyses of networks assume node homogeneity and as a result, are not suited for the analysis of SBNs. This work proposes that heterogeneous networks can be modeled as interdependent multi-layer networks, which enables their survivability analysis. The multi-layer aspect captures the breakdown of the network according to common functionalities across the different nodes, and it allows the emergence of homogeneous sub-networks, while the interdependency aspect constrains the network to capture the physical characteristics of each node. Definitions of primitives of failure propagation are devised. Formal characterization of interdependent multi-layer networks, as well as algorithmic tools for the analysis of failure propagation across the network are developed and illustrated with space applications. The SBN applications considered consist of several networked spacecraft that can tap into each other''s Command and Data Handling subsystem, in case of failure of its own, including the Telemetry, Tracking and Command, the Control Processor, and the Data Handling sub-subsystems. Various design insights are derived and discussed, and the capability to perform trade-space analysis with the proposed approach for various network characteristics is indicated. The select results here shown quantify the incremental survivability gains (with respect to a particular class of threats) of the SBN over the traditional monolith spacecraft. Failure of the connectivity between nodes is also examined, and the results highlight the importance of the reliability of the wireless links between spacecraft (nodes) to enable any survivability improvements for space-based networks.  相似文献   

15.

Background

Transmission patterns of sexually-transmitted infections (STIs) could relate to the structure of the underlying sexual contact network, whose features are therefore of interest to clinicians. Conventionally, we represent sexual contacts in a population with a graph, that can reveal the existence of communities. Phylogenetic methods help infer the history of an epidemic and incidentally, may help detecting communities. In particular, phylogenetic analyses of HIV-1 epidemics among men who have sex with men (MSM) have revealed the existence of large transmission clusters, possibly resulting from within-community transmissions. Past studies have explored the association between contact networks and phylogenies, including transmission clusters, producing conflicting conclusions about whether network features significantly affect observed transmission history. As far as we know however, none of them thoroughly investigated the role of communities, defined with respect to the network graph, in the observation of clusters.

Methods

The present study investigates, through simulations, community detection from phylogenies. We simulate a large number of epidemics over both unweighted and weighted, undirected random interconnected-islands networks, with islands corresponding to communities. We use weighting to modulate distance between islands. We translate each epidemic into a phylogeny, that lets us partition our samples of infected subjects into transmission clusters, based on several common definitions from the literature. We measure similarity between subjects’ island membership indices and transmission cluster membership indices with the adjusted Rand index.

Results and Conclusion

Analyses reveal modest mean correspondence between communities in graphs and phylogenetic transmission clusters. We conclude that common methods often have limited success in detecting contact network communities from phylogenies. The rarely-fulfilled requirement that network communities correspond to clades in the phylogeny is their main drawback. Understanding the link between transmission clusters and communities in sexual contact networks could help inform policymaking to curb HIV incidence in MSMs.  相似文献   

16.

Background  

Protein-protein association is essential for a variety of cellular processes and hence a large number of investigations are being carried out to understand the principles of protein-protein interactions. In this study, oligomeric protein structures are viewed from a network perspective to obtain new insights into protein association. Structure graphs of proteins have been constructed from a non-redundant set of protein oligomer crystal structures by considering amino acid residues as nodes and the edges are based on the strength of the non-covalent interactions between the residues. The analysis of such networks has been carried out in terms of amino acid clusters and hubs (highly connected residues) with special emphasis to protein interfaces.  相似文献   

17.

Introduction

Human personality is described preferentially in terms of factors (dimensions) found using factor analysis. An alternative and highly related method is network analysis, which may have several advantages over factor analytic methods.

Aim

To directly compare the ability of network community detection (NCD) and principal component factor analysis (PCA) to examine modularity in multidimensional datasets such as the neuroticism-extraversion-openness personality inventory revised (NEO-PI-R).

Methods

434 healthy subjects were tested on the NEO-PI-R. PCA was performed to extract factor structures (FS) of the current dataset using both item scores and facet scores. Correlational network graphs were constructed from univariate correlation matrices of interactions between both items and facets. These networks were pruned in a link-by-link fashion while calculating the network community structure (NCS) of each resulting network using the Wakita Tsurumi clustering algorithm. NCSs were matched against FS and networks of best matches were kept for further analysis.

Results

At facet level, NCS showed a best match (96.2%) with a ‘confirmatory’ 5-FS. At item level, NCS showed a best match (80%) with the standard 5-FS and involved a total of 6 network clusters. Lesser matches were found with ‘confirmatory’ 5-FS and ‘exploratory’ 6-FS of the current dataset. Network analysis did not identify facets as a separate level of organization in between items and clusters. A small-world network structure was found in both item- and facet level networks.

Conclusion

We present the first optimized network graph of personality traits according to the NEO-PI-R: a ‘Personality Web’. Such a web may represent the possible routes that subjects can take during personality development. NCD outperforms PCA by producing plausible modularity at item level in non-standard datasets, and can identify the key roles of individual items and clusters in the network.  相似文献   

18.
19.
We present a simple method for the analysis of large networks based on their graph spectral properties. One of the advantages of this method is that it uses a single numerical computation to identify subclusters in a connected graph, which can significantly simplify the complexity involved in analyzing large graphs. This is illustrated using a network of protein chains constructed on the basis of their structural similarities. The large-scale network properties and the cluster and subcluster organization of the protein chain network are presented. We summarize the results of structural and functional analyses of the nodes present in these clusters and elucidate the implications of structural similarity in the protein chain universe.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号