首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Since green tea catechins are known to have antimicrobial activity against a variety of microorganisms, their possible effects on Helicobacter pylori in combination with antibiotics were examined. Fifty-six clinical isolates of H. pylori, including 19 isolates highly resistant to metronidazole (MTZ) and/or clarithromycin (CLR), were used to determine in vitro sensitivity to tea catechins. The MIC90 of both epigallocatechin gallate (EGCg) and epicatechin gallate (ECg) was 100 microg/ml. However, other tea catechins tested did not show any anti-H. pylori activity. Highly antibiotic-resistant clinical isolates showed a similar sensitivity to both EGCg and ECg. The kinetic study of antibacterial activity in liquid cultures revealed a relatively slow but strong activity on the growth of H. pylori. In combination with sub-MIC of amoxicillin (AMX), the antibacterial activity of AMX was significantly enhanced by the presence of EGCg. To estimate the general combination effect between EGCg and other antibiotics, such as MTZ and CLR, on the antibacterial activity against clinical isolates, the fraction inhibitory concentration (FIC) was determined by checkerboard study. The FIC indexes showed additive effects between EGCg and antibiotics tested. These results indicatethat EGCg may be a valuable therapeutic agent against H. pylori infection.  相似文献   

2.
Background: The aim of this study was to investigate the prevalence of resistances in Helicobacter pylori against commonly used antibiotics including metronidazole, clarithromycin, amoxicillin, and tetracycline in Iranian patients. Methods: H. pylori isolates were collected from gastric biopsies from patients referred for upper gastrointestinal endoscopy at Tooba Medical Center, Sari, Iran, from 2007 to 2010. None of them had been using antibiotics for at least 8 months. H. pylori was identified based on morphological shape and positive biochemical tests for catalase, oxidase, and urease activity. Antibiotic resistance for metronidazole, clarithromycin, amoxicillin, and tetracycline was investigated by using epsilometer test. Resistance was defined by minimal inhibitory concentration (MIC) > 0.5 mg/L for amoxicillin (AMX), >4 mg/L for tetracycline (TET), >8 mg/L for metronidazole (MTZ), and >1 mg/L for clarithromycin (CLR). Results: Strains were collected from 132 patients, mean age 45.8 years, 52 (39%) were women. Patients had diverse diagnoses: gastritis 42 (31.8%), duodenal ulcer 45 (34%), gastric cancer 15 (11.3%), or gastric ulcer 30 (22.7%). The prevalences of resistance of H. pylori strains isolated from the patients were 73.4% for metronidazole, 30% for clarithromycin, 6.8% for amoxicillin, and 9% for tetracycline. Twenty‐eight (21.2%) were double resistant to MTZ‐CLR, 16 (12.1%) showed triple resistance to MTZ‐CLR‐AMX, and 8 (6%) were resistant to all four tested antibiotics (MTZ‐CLR‐AMX‐TET). No associations were detected between multiple resistant strains and clinical manifestations (p > .05). Conclusions: The prevalence of H. pylori antibiotic resistance to metronidazole and clarithromycin was high in Iran consistent with the reported low success rates for H. pylori treatment in this country.  相似文献   

3.
The antibacterial activity of polyoxometalates (PMs) against Helicobacter pylori was investigated based on determinations of minimum inhibitory concentration (MIC) and fractional inhibitory concentration (FIC), time-killing of the bacteria, bacterial morphology and PM-uptake into the bacteria cell. The result of MIC values revealed that, of 13 PMs used in this study, highly negative-charged polyoxotungstates, such as K27[KAs4W40O140] and K18[KSb9W21O86], and Keggin-structural polyoxotungstates exhibited a potent antibacterial activity with the MIC values of less than 256 microg/ml. The former was the most active, and superior to metronidazole (MTZ) against MTZ-susceptible and resistant strains and also to clarithromycin (CLR) against CLR-resistant strains. In contrast, most of polyoxomolybdates showed little antibacterial activity with the MIC values of more than 256 microg/ml. The result of FIC index values indicated that the antibacterial polyoxotungstates had partially synergistic effect in combination with MTZ and CLR but indifferent effect in combination with amoxicillin (AMX). From the results of the time-killing and scanning electron microscope images, K27[KAs4W40O140] and K18[KSb9W21O86] proved the concentration-dependent bactericidal activity with the morphological change from bacillary form to coccoid form, while Keggin-structural K5[SiV(V)W11O40] showed the bacteriostatic activity with small change of morphology to coccoid form. The fluorescent X-ray analysis demonstrated that these polyoxotungstates were taken into the bacteria cell. It is pointed out that the Keggin-structure and/or high negativity polyoxotungstates are an important factor for the antibacterial activity against H. pylori.  相似文献   

4.
Background. Triple therapy combining a proton pump inhibitor with two antibiotics, e.g. clarythromycin (CLR), metronidazole (MTZ) or amoxicillin (AMX), represents the standard in Helicobacter pylori eradication regimens. Resistance to antimicrobial agents, particularly MTZ (up to 56% in Western countries) and CLR (up to 15% in southern Europe), is frequently observed and may be associated with treatment failure [ 1 ]. Recently, several studies indicated that individual H. pylori colonies from a single anatomic site may not always yield identical genotypes, or the identical patterns of susceptibility to antibiotics [ 2 - 5 ]. Representative for every single patient we analyzed 27 H. pylori antrum isolates for susceptibility to antimicrobial agents in order to test whether identical H. pylori genotypes exhibit a similar pattern of susceptibility to antibiotics. Methods. PCR, RELP, PFGE, antibiotic susceptibility testing. Results. H. pylori genotype and antibiotic susceptibility pattern in families do not segregrate. Conclusion. Molecular typing of H. pylori from family members does not predict antibiotic susceptibility pattern.  相似文献   

5.
Among catechins tested, (-)epigallocatechin (EGC), (-)epicatechin gallate (ECg), (-) epigallocatechin gallate (EGCg) inhibited the growth of Staphylococcus aureus, Vibrio cholerae O1 classical Inaba 569B and El Tor Inaba V86. S. aureus was more sensitive than V. cholerae O1 to these compounds. EGCg showed also a bactericidal activity against V. cholerae O1 569B. Pyrogallol showed a stronger antibacterial activity against S. aureus and V. cholerae O1 than tannic and gallic acid. Rutin or caffein had no effect on them. ECg and EGCg showed the most potent anti-hemolysin activity against S. aureus alpha-toxin, Vibrio parahaemolyticus thermostable direct hemolysin (Vp-TDH) and cholera hemolysin. Among catechin relatives, only tannic acid had a potent anti-hemolysin activity against alpha-toxin. These results suggest that the catechol and pyrogallol groups are responsible for the antibacterial and bactericidal activities, while the conformation of catechins might play an important role in the anti-hemolysin activity.  相似文献   

6.
The inhibition of α-amylase from human saliva by polyphenolic components of tea and its specificity was investigated in vitro. Four kinds of green tea catechins, and their isomers and four kinds of their dimeric compounds (theaflavins) produced oxidatively during black tea production were isolated. They were (?)-epicatechin (EC), (?)-epigallocatechin (EGC), (?)-epicatechin gallate (ECg), (?)-epigallocatechin gallate (EGCg), (?)-catechin (C), (?)-gallocatechin (GC), (?)-catechin gallate (Cg), (?)-gallocatechin gallate (GCg), theaflavin (TF1), theaflavin monogallates (TF2A and TF2B), and theaflavin digallate (TF3). Among the samples tested, EC, EGC, and their isomers did not have significant effects on the activity of α-amylase. All the other samples were potent inhibitors and the inhibitory effects were in the order of TF3>TF2A>TF2B>TFl>Cg> GCg > ECg > EGCg. The inhibitory patterns were noncompetitive except for TF3.  相似文献   

7.
Catechins have a broad range of physiological functions and act as the main taste ingredient of green tea. Although catechins show a strong bitterness, the bitter taste receptor for catechins has not been fully understood. The objective of this study was to identify the receptor for the major green tea catechins such as (−)-epicatechin (EC), (−)-epicatechin gallate (ECg), (−)-epigallocatechin (EGC), and (−)-epigallocatechin gallate (EGCg). By the cell-based assay using cultured cells expressing human bitter taste receptor, a clear response of hTAS2R39-expressing cells was observed to 300 μM of either ECg or EGCg, which elicit a strong bitterness in humans. The response of hTAS2R39-expressing cells to ECg was the strongest among the tested catechins, followed by EGCg. Because the cellular response to EC and EGC is much weaker than those of ECg and EGCg, galloyl groups was strongly supposed to be involved in the bitter intensity. This finding is similar to the observations of taste intensity obtained from a human sensory study. Our results suggest the participation of hTAS2R39 in the detection of catechins in humans, indicating the possibility that bitterness of tea catechins can be evaluated by using cells expressing hTAS2R39.  相似文献   

8.
Green tea contains a high concentration of such catechins as (-)-epicatechin (EC), (-)-epigallocatechin (EGC), (-)-epicatechin gallate (ECg), and (-)-epigallocatechin gallate (EGCg). Their biological activities have been evaluated by in vitro experiments using cultured cells or bacteria, but the order of activity of the various catechins differed with the study. We have been studying the interaction of tea catechins with lipid bilayers, and clarified that the number of hydroxyl groups on the B-ring, the presence of the galloyl moiety, and the stereochemical structure of each catechin govern their affinity for lipid bilayers. We investigated in this present study the effects of various external factors on the affinity of tea catechins for lipid bilayers by using liposomes as model membranes. The amount of tea catechins incorporated into the lipid bilayers increased with increasing salt concentration in an aqueous medium and decreased with increasing negative electric charge of the lipid bilayers. Furthermore, the amount of EGCg or ECg incorporated into the lipid bilayers increased with increasing EC concentration. These results reveal that the salt concentration in an aqueous medium, the electric charge of the membrane, and the presence of other catechins governed the affinity of tea catechins for the lipid bilayers.  相似文献   

9.
The most evident challenge to treatment of Helicobacter pylori, a bacterium responsible for gastritis, peptic ulcers and gastric cancer, is the increasing rate of resistance to all currently used therapeutic antibiotics. Thus, the development of novel therapies is urgently required. N-geranyl-N''-(2-adamantyl) ethane-1, 2-diamine (SQ109) is an ethylene diamine-based antitubercular drug that is currently in clinical trials for the treatment of tuberculosis (TB). Previous pharmacokinetic studies of SQ109 revealed that persistently high concentrations of SQ109 remain in the stomach 4 hours post oral administration in rats. This finding, combined with the need for new anti- Helicobacter therapies, prompted us to define the in vitro efficacy of SQ109 against H. pylori. Liquid broth micro-dilution was used for susceptibility studies to determine the antimicrobial activity of SQ109 against a total of 6 laboratory strains and 20 clinical isolates of H. pylori; the clinical isolates included a multi-drug resistant strain. All strains tested were susceptible to SQ109 with MIC and MBC ranges of 6-10 µM and 50-60 µM, respectively. SQ109 killing kinetics were concentration- and time-dependent. SQ109 killed H. pylori in 8-10 h at 140 µM (2MBCs) or 4-6 h at 200 µM (~3MBCs). Importantly, though the kinetics of killing were altered, SQ109 retained potent bactericidal activity against H. pylori at low pH. Additionally, SQ109 demonstrated robust thermal stability and was effective at killing slow growing or static bacteria. In fact, pretreatment of cultures with a bacteriostatic concentration of chloramphenicol (Cm) synergized the effects of typically bacteriostatic concentrations of SQ109 to the level of five-logs of bacterial killing. A molar-to-molar comparison of the efficacy of SQ109 as compared to metronidazole (MTZ), amoxicillin (AMX), rifampicin (RIF) and clarithromycin (CLR), revealed that SQ109 was superior to MTZ, AMX and RIF but not to CLR. Finally, the frequency of resistance to SQ109 was low and electron microscopy studies revealed that SQ109 interacted with bacterial inner membrane and cytoplasmic content(s). Collectively, our in vitro data demonstrate that SQ109 is an effective monotherapy against susceptible and multi-drug resistant strains of H. pylori and may be useful alone or in combination with other antibiotics for development as a new class of anti- Helicobacter drugs.  相似文献   

10.
Bacterial pneumonia in immunocompromised patients as well as elderly persons often becomes a life threatening disease, even when effective antibiotics are used extensively. In addition, the appearance of antibiotic-resistant bacteria in medical facilities as well as in patients requires another approach to treat such patients besides treatment with antibiotics. In this regard, green tea catechins, such as epigallocatechin gallate (EGCg), may be one of the potential agents for such purpose due to its possible potential immunomodulatory as well as antimicrobial activity. The studies by us showed that EGCg enhanced the in vitro resistance of alveolar macrophages to Legionella pneumophila infection by selective immunomodulatory effects on cytokine formation. Furthermore, the tobacco smoking-induced impairment of alveolar macrophages regarding antibacterial as well as immune activity was also recovered by EGCg treatment. These results indicate that EGCg may be a possible potential immunotherapeutic agent against respiratory infections in immunocompromised patients, such as heavy smokers.  相似文献   

11.
Methylation of tea catechins by rat liver homogenates   总被引:1,自引:0,他引:1  
Methylation of (-)-epigallocatechin (EGC), (-)-epicatechin gallate (ECg), and (-)-epigallocatechin gallate (EGCg) was carried out with a rat liver homogenate and S-adenosyl-L-methionine. A structural analysis of the reaction products by MS and NMR showed that 4'-O-methyl EGC, 4"-O-methyl ECg, and 4"-O-methyl EGCg had been formed from EGC, ECg, and EGCg, respectively. These results suggest that methylation may be one of the metabolic pathways to the catechins.  相似文献   

12.
The title determination was conducted by HPLC with electrochemical detection using an ODS column and a mobile phase of acetonitrile: 0.1 M phosphate buffer (pH 2.5) (15:85, v/v). The eight catechins, gallocatechin (GC), epigallocatechin (EGC), catechin (C), epicatechin (EC), epigallocatechin gallate (EGCg), gallocatechin gallate (GCg), epicatechin gallate (ECg), and catechin gallate (Cg), were detected at 0.6 V vs Ag/AgCl. Good linear relationships between current and amount were noted for 0.5-250 pmol of each catechin, with a correlation coefficient of 0.999 in each case. The detection limit for any one was 0.5 pmol (signal to noise ratio, S/N = 3). After the ingestion of 340 ml canned green tea, GC, EGC, C, and EC, mostly in conjugated form, were determined in urine samples. Conjugated catechins were hydrolyzed by enzymes using sulfatase and beta-glucuronidase. The time courses of the above four catechins showed a maxima at 1-3 h after tea ingestion. (+), (-)-EC and (+), (-)-C were present in canned tea.  相似文献   

13.
《Phytomedicine》2015,22(1):173-177
Resistance of H. pylori strains to common antibiotics has been developed in different parts of the world and continues to increase. It is important to investigate the novel and efficient anti-H. pylori drugs, among which the plants would be suitable sources.Satureja bachtiarica Bunge is traditionally used as antimicrobial agent. In this study, we evaluated the antibacterial activity of S. bachtiarica Bunge essential oil against 10 clinical isolates of Helicobacter pylori by disc diffusion and agar dilution methods. The chemical composition of essential oil was analyzed by GC and GC–MS. Carvacrol (45.5%) and thymol (27.9%) were the primary constituents of oil, followed by p-cymene (4.4%), and γ-terpinene (4.0%). S. bachtiarica essential oil showed strong antibacterial activity against clinical isolates of H. pylori (17.6 ± 1.1 mm and 0.035 ± 0.13 μl/ml). Carvacrol, as the first main component, had a significant role in this effect, whereas in the presence of thymol, the antibacterial effect of carvacrol was reduced. Therefore, S. bachtiarica essential oil can be applied as an alternative agent for treatment of H. pylori infections. More studies would be required to better clarify its mechanism of action on H. pylori.  相似文献   

14.
The ability of various tea catechins to generate H2O2 and the hydroxyl radical in the presence of the Cu2+ ion was investigated and compared with the effect of iron ions. The presence of Cu2+ accelerated the generation of H2O2 by EGC, while EGCg with Cu2+ generated a little H2O2. The presence of iron ions inhibited the generation of H2O2 by EGC. EGC and EC with Cu2+ generated the hydroxyl radical, while EGCg and ECg with Cu2+ did not. The fact that EGCg showed less prooxidative activity than EGC can be explained by the chelating ability of catechin gallates to metal ions under the experimental conditions.  相似文献   

15.
Evaluating the binding energy of a catechin/caffeine complex in water is important in order to elucidate the ability for molecular recognition of tea catechins. The results of this study revealed that the stoichiometric ratio of the complexation between tea chatechins (EGCg, ECg, EGC, and EC) and caffeine was 1:1 at least up to a concentration of 5.0 mM. The free energy (-DeltaG) values for binding in water at 301 K were evaluated to be 2.7, 2.6, 2.2, and 2.0 kcal/mol for EGCg, ECg, EGC, and EC, respectively, by the titration method with (1)H-NMR. An investigation of the (1)H-NMR chemical shift change and NOESY spectra in the catechin/caffeine solutions showed the participation of the A-rings of the catechins in complexation, as well as that of the galloyl groups or B-rings.  相似文献   

16.
The inhibitory activities against DNA polymerases (pols) of catechin derivatives (i.e., flavan-3-ols) such as (+)-catechin, (-)-epicatechin, (-)-gallocatechin, (-)-epigallocatechin, (+)-catechin gallate, (-)-epicatechin gallate, (-)-gallocatechin gallate, and (-)-epigallocatechin gallate (EGCg) were investigated. Among the eight catechins, some catechins inhibited mammalian pols, with EGCg being the strongest inhibitor of pol alpha and lambda with IC(50) values of 5.1 and 3.8 microM, respectively. EGCg did not influence the activities of plant (cauliflower) pol alpha and beta or prokaryotic pols, and further had no effect on the activities of DNA metabolic enzymes such as calf terminal deoxynucleotidyl transferase, T7 RNA polymerase, and bovine deoxyribonuclease I. EGCg-induced inhibition of pol alpha and lambda was competitive with respect to the DNA template-primer and non-competitive with respect to the dNTP (2'-deoxyribonucleotide 5'-triphosphate) substrate. Tea catechins also suppressed TPA (12-O-tetradecanoylphorbol-13-acetate)-induced inflammation, and the tendency of the pol inhibitory activity was the same as that of anti-inflammation. EGCg at 250 microg was the strongest suppressor of inflammation (65.6% inhibition) among the compounds tested. The relationship between the structure of tea catechins and the inhibition of mammalian pols and inflammation was discussed.  相似文献   

17.
Using the cytokinesis-block micronucleus assay in WIL2-NS cells, we investigated the effects of six tea constituents, (-)-epigallocatechin-3-O-gallate (EGCg), (-)-epicatechin-3-O-gallate (ECg), (-)-epigallocatechin (EGC), (-)-epicatechin (EC), (+)-catechin (+C) and gallic acid (GA), on chromosomal damage in two ways; induction by each component on its own and prevention against treatment of reactive oxygen species (ROS). None of the tea constituents induced chromosomal damage at <10 microM. On the other hand, EGCg, EGC, ECg, +C and GA prevented H(2)O(2)-induced chromosomal damage in a dose-dependent manner with a significant effect detected at 1 microM. Chromosomal damage induced by tert-butylhydroperoxide was apparently prevented by EGCg and ECg at 0.3 microM, but not by EGC and GA even at 10 microM, suggesting that the galloyl group linked to flavan-3-ol is needed for the observed protective effect. These results suggest that physiological concentration of tea constituents are not genotoxic but rather anti-genotoxic against ROS, although their preventive effects are slightly different depending on their chemical structure.  相似文献   

18.
The deodorizing mechanism of (-)-epigallocatechin gallate (EGCg), the main constituent of a green tea extract, against methyl mercaptan (CH3SH) was investigated. EGCg showed deodorizing activity against CH3SH by a chemical reaction between EGCg and CH3SH. The non-volatile reaction products were identified to be compounds introducing a methylthio and/or a methylsulfinyl group into the B ring of EGCg, and gaseous oxygen was necessary for deodorizing activity. From these results, it was assumed that the deodorizing mechanism of EGCg was due to the addition of a methylthio group to the ortho-quinone generated by atmospheric oxygen. It was also found that secondary compounds produced by the reaction between EGCg and CH3SH had a stronger deodorizing activity than that of EGCg itself.  相似文献   

19.
In this study, we investigated the relationship between the stability of catechins and their electrophilic reactivity with proteins. The stability of catechins was evaluated by HPLC analysis. Catechol-type catechins were stable in a neutral buffer, but pyrogallol-type catechins, such as (-)-epigallocatechin gallate (EGCg), were unstable. The electrophilic reactivity of catechins with thiol groups in a model peptide and a protein was confirmed by both mass spectrometry and electrophoresis/blotting with redox-cycling staining. In a comparison of several catechins, pyrogallol-type catechins had higher reactivity with protein thiols than catechol-type catechins. The instability and reactivity of EGCg were enhanced in an alkaline pH buffer. The reactivity of EGCg was reduced by antioxidants due to their ability to prevent EGCg autoxidation. These results indicate that the instability against oxidation of catechins is profoundly related to their electrophilic reactivity. Consequently, the difference in these properties of tea catechins can contribute to the magnitude of their biological activities.  相似文献   

20.
An extract of Japanese green tea, one of the most popular drinks in Japan, was an inhibitor of the growth of Streptococcus mutans, a bacterium responsible for causing dental caries. The analysis of the extract revealed that the main antibacterial components of the extract were several polyphenolic compounds, especially gallocatechin (GC), epigallocatechin (EGC), and epigallocatechin gallate (EGCg). GC was the most active component and its minimum inhibitory concentration against the bacterium was around 250 μg per ml.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号