首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Models of the evolution of host shifts and speciation in phytophagous insects are often built upon the assumption that host selection is under simple genetic control, perhaps even a single locus. The genetic basis for differences in host-plant preference by ovipositing insects was investigated using two closely related species of swallowtail butterfly, Papilio oregonius and P. zelicaon, which differ in the plant families on which females oviposit. Both species had been shown previously to vary within populations in host selection. A combination of analyses using reciprocal interspecific crosses and isofemale strains within populations indicated that oviposition preference in these species is determined significantly by one or more loci on the X chromosome, which female Lepidoptera inherit only paternally. Hence, preferences in hybrid females tended toward the paternal species. This is the first insect group for which partial control of oviposition preference has been localized onto a particular chromosome. In addition, one or more loci on another chromosome(s) appear to contribute to preference, as indicated by the partially intermediate preferences of some hybrid crosses. The overall differences in preference in the reciprocal interspecific hybrids were restricted to differences in the distribution of eggs laid among the local host plants of these two Papilio species; the reciprocal crosses did not differ in the small percentage of eggs laid on a novel potential host species. The variation in host selection found among the isofemale strains reinforces earlier results for these strains, indicating that there is genetic variation in host selection within these populations. Overall, the results indicate that the evolution of oviposition preference in these species involves genetic changes at two or more chromosomes with the X chromosome playing an important role in determining preference.  相似文献   

2.
Much of the world's biodiversity has resulted from specialization of insect populations onto different plant species, partially through evolution of preference in ovipositing females. Here I report an experimental analysis of how an oviposition preference hierarchy has evolved during the evolutionary diversification of an insect group to produce taxa ranging from monophagous to polyphagous. Tests on the Papilio machaon group of swallowtail butterflies show that the preference hierarchy for plant species is evolutionarily dynamic within this species complex, yet constrained among most populations within species, creating a geographic mosaic of populations differing to various degrees in patterns of host preference. The results indicate that different diet breadths can evolve within a group of closely-related species through a combination of conservatism in preference hierarchy among some populations, occasional but rare rearrangements in preference among others, correlations in preference for some plant species, and availability of similarly ranked hosts.  相似文献   

3.
Four allopatric populations of the widely distributed western anise swallowtail butterfly, Papilio zelicaon, use different plant genera as hosts, but simultaneous choice experiments showed that these populations have diverged only slightly in oviposition preference. Of the four populations—two from southeastern Washington State, one from coastal southwestern Washington State, and one from central California—three use hosts that are not available to any of the others. Although variation for the degree of preference for particular plant species occurred within and among populations, all four populations ranked hosts in the same overall order. Monophagy on a local, low-ranking host outside the range of high-ranking hosts did not necessarily lead to the loss of preference for those high-ranking hosts, thereby indicating that the high-ranking hosts would still be accepted, and in some cases even preferred, if a population encountered them again. Hence, the overall preference hierarchy among P. zelicaon populations appears to be evolutionarily conservative. Analyses of differences among families within the California population indicated that increased preference for some hosts is inversely correlated, whereas preference for other hosts may be uncorrelated. Positive correlations may also occur but were not observed among the plant species tested. Overall, the results indicate local monophagy on different plant species in P. zelicaon has not involved major reorganizations in the preference hierarchy of ovipositing females, even in populations that may have fed on a low-ranking host for many generations. Instead, small increases in preference for local hosts have occurred within an evolutionarily conservative preference hierarchy.  相似文献   

4.
We assessed the role of visual and olfactory cues on oviposition preference in the oligophagous tomato fruit fly, Neoceratitis cyanescens (Bezzi) (Diptera: Tephritidae). In a field survey, we evaluated the stage of susceptibility of field‐grown tomatoes by monitoring N. cyanescens infestations from fruit‐setting up to harvest, in relation to post‐flowering time, size, and visual properties of fruit. In two‐choice laboratory experiments, we tested the degree to which females use visual and olfactory cues to select their host plant for oviposition. In addition, we investigated the ability of flies to avoid fruit already infested by conspecific eggs or larvae, and the influence of natal host fruit on oviposition preference. Neoceratitis cyanescens females preferentially lay their eggs in small yellow‐green unripe fruit (2–3.5 cm diameter, 10–21 days post‐flowering). Damage to fruit was significantly affected by brightness and size properties. In laboratory experiments, females chose to lay their eggs in bright orange rather than yellow domes. On the sole basis of olfactory stimuli, females showed a significant preference for unripe vs. ripe host fruit, for unripe fruit vs. flowers or leaves, and for host vs. non‐host fruit (or control). However, colour interacted with odour as females dispatched their eggs equally between the yellow dome and the bright orange dome when unripe fruit of tomato was placed under the yellow dome vs. ripe fruit under the bright orange dome. When offered real ripe and unripe tomatoes, females preferred unripe tomatoes. Females significantly chose to lay eggs in non‐infested fruit when they were given the choice between these or fruit infested with larvae. In contrast, recent stings containing eggs did not deter females from laying eggs. Rather, they could have an attractive effect when deposited within <1 h. Regardless of their natal host plant, tomato or bugweed, N. cyanescens females laid significantly more eggs in a dome containing bugweed fruit. However, 15% of females originating from tomato laid eggs exclusively in the dome with tomato, against 3% of females originating from bugweed.  相似文献   

5.
In Lepidoptera, host plant selection is first conditioned by oviposition site preference of adult females followed by feeding site preference of larvae. Dietary experience to plant volatile cues can induce larval and adult host plant preference. We investigated how the parent’s and self-experience induce host preference in adult females and larvae of three lepidopteran stem borer species with different host plant ranges, namely the polyphagous Sesamia nonagrioides, the oligophagous Busseola fusca and the monophagous Busseola nairobica, and whether this induction can be linked to a neurophysiological phenotypic plasticity. The three species were conditioned to artificial diet enriched with vanillin from the neonate larvae to the adult stage during two generations. Thereafter, two-choice tests on both larvae and adults using a Y-tube olfactometer and electrophysiological (electroantennography [EAG] recordings) experiments on adults were carried out. In the polyphagous species, the induction of preference for a new olfactory cue (vanillin) by females and 3rd instar larvae was determined by parents’ and self-experiences, without any modification of the sensitivity of the females antennae. No preference induction was found in the oligophagous and monophagous species. Our results suggest that lepidopteran stem borers may acquire preferences for new olfactory cues from the larval to the adult stage as described by Hopkins’ host selection principle (HHSP), neo-Hopkins’ principle, and the concept of ‘chemical legacy.’  相似文献   

6.
Monarch butterflies, Danaus plexippus L. (Lepidoptera: Nymphalidae), occur world‐wide and are specialist herbivores of plants in the milkweed family (Asclepiadaceae). In North America, two monarch populations breed east and west of the continental divide in areas populated by different host plant species. To examine the population variation in monarch responses to different Asclepias species, we measured oviposition preference and larval performance among captive progeny reared from adult butterflies collected in eastern and western North America. Host plant use was evaluated using two milkweed species widely distributed in eastern North America (A. incarnata and A. syriaca), and two species common to western North America (A. fascicularis and A. speciosa). We predicted that exposure to different host plant species in their respective breeding ranges could select for divergent host use traits, so that monarchs should preferentially lay more eggs on, and larvae should perform better on, milkweed species common to their native habitats. Results showed that across all adult female butterflies, oviposition preferences were highest for A. incarnata and lowest for A. fascicularis, but mean preferences did not differ significantly between eastern and western monarch populations. Larvae from both populations experienced the highest survival and growth rates on A. incarnata and A. fascicularis, and we again found no significant interactions between monarch source population and milkweed species. Moreover, the average rank order of larval performance did not correspond directly to mean female oviposition preferences, suggesting that additional factors beyond larval performance influence monarch oviposition behavior. Finally, significant family level variation was observed for both preference and performance responses within populations, suggesting an underlying genetic variation or maternal effects governing these traits.  相似文献   

7.
Theory predicts that environmental heterogeneity in space or in time can maintain genetic polymorphism. Stable polymorphisms are expected to be more readily maintained if there are genotype specific habitat preferences. Genotype specific preferences for oviposition sites in Drosophila could be a major factor promoting habitat selection, and thus the maintenance of genetic variation. This hypothesis is being tested using the cactophilic species, D. buzzatii and D. aldrichi, where available evidence indicates a potential for such habitat selection, the habitats (oviposition sites) being yeast species found in the natural environment of these flies (cactus rots). Genetic variation for oviposition preferences was tested using isofemale lines—for D. buzzatii, a total of 60 lines from seven localities widely distributed through the species range in Australia, and for D. aldrichi, 21 lines from three of these localities. Females were given a choice of five yeast species as oviposition sites. Genetic variation for oviposition preferences on these natural substrates was demonstrated. There was significant variation among isofemale lines within populations in their patterns of preferences for oviposition on the five yeast species. However, analyses of preferences for each yeast species separately showed that the genetic variation for preferences relates to only three of the five species. Heritabilities of individual female preferences for these three species were low, ranging up to 9%. Little geographic differentiation was apparent among populations, most likely due to similar selection regimes within each population. Within populations, this kind of habitat selection could act to maintain polymorphisms, both at loci determining the habitat preferences and at other loci in linkage disequilibrium with them.  相似文献   

8.
Studies on strategies of host plant use in sympatric-related species are significant to the theory of sympatric speciation. Altica fragariae Nakane and Altica koreana Ogloblin are sympatric closely related flea beetles found in Beijing, northern China. All their recorded host plants are in the subfamily Rosoideae of the Rosaceae, so we regard them as a model system to study interactions between herbivorous insects and plant-insect co-evolution. We conducted a set of experiments on the host preference and performance of these flea beetles to study whether these closely related species have the ability to use sympatric novel host plants and whether monophagous and oligophagous flea beetles use the same strategy in host plant use. Oviposition preference experiments showed that A. koreana, a monophagous flea beetle, displayed high host fidelity. However, A. fragariae, which is oligophagous, often made "oviposition mistakes," ovipositing on nonhost plants such as Potentilla chinensis, the host plant of A. koreana, although normal host plants were preferred over novel ones. Larval performance studies suggested that A. fragariae was able to develop successfully on P. chinensis. Feeding experiences of larvae had no effect on feeding preference, oviposition preference, and fecundity of adults. However, females were impaired in their reproductive ability when fed on nonhost plants. Therefore, A. fragariae finished their development of larval stages on P. chinensis and came back to their primary host plant, Duchesnea indica, for feeding and reproduction after eclosion.  相似文献   

9.
This paper reports on an investigation of two populations of Junonia coenia, the buckeye butterfly, one that feeds on the species' typical host plant (Plantago lanceolata) and one that utilizes a novel host plant (Kickxia elatine). I examined these populations for local adaptive responses in terms of oviposition behavior, growth, and chemical defense, on both P. lanceolata and K. elatine. In addition, I examined the genetic architecture underlying these traits using a full-sib quantitative genetic analysis. I found that a significant majority of females prefer the host plant species found at their collection sites in oviposition tests, but that there is no evidence that they are locally adapted in growth performance, as measured by fifth-instar and pupal weights and development times. Neither are there correlations between oviposition preferences of females and the growth performance or levels of chemical defense of their offspring. The two populations studied do, however, show specialization in terms of the levels of chemical defense they sequester from their host plants. I argue that these results indicate that natural enemies are the normal barriers to host range expansion in this oligophagous herbivore because a breakdown in those barriers results in genetic changes that enhance resistance to predation. This is despite the fact that adaptive responses in physiology are unlikely to be limited by a lack of genetic variability; the genetic architecture among traits would be conducive to specialization in growth performance; and there are costs to chemical defense in this species. All these conditions would tend to argue that J. coenia harbors considerable potential for coevolutionary interactions with its chemically defended hosts, but this potential is not realized, probably because natural selection on diet breadth by natural enemies is much stronger than selection from host plants in this system.  相似文献   

10.
1. A series of experiments was conducted to measure the impact of plant genotype, plant growth rate, and intraspecific competition on the oviposition preference and offspring performance of the host races of Eurosta solidaginis (Diptera: Tephritidae), a fly that forms galls on Solidago altissima and Solidago gigantea (Asteraceae). Previous research has shown that both host races prefer to oviposit on their own host plant where survival is much higher than on the alternate host plant. In this study, neither host race showed any relationship between oviposition preference and offspring performance in choosing among plants of their natal host species. 2. The larval survival of both host races differed among plant genotypes when each host race oviposited on its natal host species. In one experiment, altissima host race females showed a preference among plant genotypes that was not correlated with offspring performance on those genotypes. In all other experiments, neither the altissima nor gigantea host race demonstrated a preference for specific host plant genotypes. 3. Eurosta solidaginis had a preference for ovipositing on rapidly growing ramets in all experiments, however larval survival was not correlated with ramet growth rate at the time of oviposition. 4. Eurosta solidaginis suffered high mortality from intraspecific competition in the early larval stage. There was little evidence, however, that females avoided ovipositing on ramets that had been attacked previously. This led to an aggregated distribution of eggs among ramets and strong intraspecific competition. 5. There was no interaction among plant genotype, plant growth rate, or intraspecific competition in determining oviposition preference or offspring performance.  相似文献   

11.
Oviposition of phytophagous insects is determined either by adaptive behaviours allowing evaluation and response to host plant quality and/or by nutritional constraints occurring during oogenesis. Besides differences found among host plant species, plant intraspecific diversity can also affect insect oviposition. However, to date few studies have extensively investigated the factors accounting for the effect of this intraspecific variation. We addressed this question using oilseed rape (Brassica napus) and the pollen beetle (Meligethes aeneus), a phytophagous insect that uses the same plants and plant organs both for feeding and laying eggs. Our objectives were to test for a genotypic effect of oilseed rape on pollen beetle oviposition and identify the origin of the possible intergenotypic differences. We tested three hypotheses: oviposition is directly linked to (1) the amount of food eaten; (2) the nutritional quality of the food eaten; (3) a preference of females for certain plant genotypes. Results showed intergenotypic differences in both the number and the size of eggs laid. The factor that best accounted for most of these differences was the amount of food eaten. Nutritional quality of the pollen was of minor importance and females exhibited no preference among genotypes. These results reveal the importance of adult feeding on subsequent oviposition in phytophagous insects, an often neglected factor which partly determines the amount of energy available for oogenesis. Taking into account this factor may be of crucial importance in studies conducted on synovogenic insect species feeding on the same plant on which they lay eggs.  相似文献   

12.
Animals often express behavioral preferences for different types of food or other resources, and these preferences can evolve or shift following association with novel food types. Shifts in preference can involve at least two phenomena: a change in rank preference or a change in specificity. The former corresponds to a change in the order in which hosts are preferred, while a shift in specificity can be an increase in the tendency to utilize multiple hosts. These possibilities have been examined in relatively few systems that include extensive population-level replication. The Melissa blue butterfly, Lycaeides melissa, has colonized exotic alfalfa, Medicago sativa, throughout western North America. We assayed the host preferences of 229 females from ten populations associated with novel and native hosts. In four out of five native-associated populations, a native host was preferred over the exotic host, while preference for a native host characterized only two out of five of the alfalfa-associated populations. Across all individuals from alfalfa-associated populations, there appears to have been a decrease in specificity: females from these populations lay fewer eggs on the native host and more eggs on the exotic relative to females from native-host populations. However, females from alfalfa-associated populations did not lay more eggs on a third plant species, which suggests that preferences for specific hosts in this system can potentially be gained and lost independently. Geographic variation in oviposition preference in L. melissa highlights the value of surveying a large number of populations when studying the evolution of a complex behavioral trait.  相似文献   

13.
Abstract. 1. The butterfly genus Mitoura in Northern California includes three nominal species associated with four host plants having parapatric or interdigitated ranges. Genetic analyses have shown the taxa to be very closely related, and adults from all host backgrounds will mate and produce viable offspring in the laboratory. Oviposition preference and larval performance were investigated with the aim of testing the hypothesis that variation in these traits can exist in a system in which non‐ecological barriers to gene flow (i.e. geographic barriers and genetic incompatibilities) appear to be minimal. 2. Females were sampled from 12 locations throughout Northern California, including sympatric and parapatric populations associated with the four different host‐plant species. Oviposition preference was assayed by confining wild‐caught females with branches of all four host species and counting the number of eggs laid on each. Offspring were reared on the same host species and two measures of larval success were taken: per cent survival and pupal weight. 3. For populations associated with one of the hosts, incense cedar, the preference–performance relationship is simple: the host that females chose is the plant which results in the highest pupal weights for offspring. The preference–performance relationship for populations associated with the other hosts is more complex and may reflect different levels of local adaptation. The variation in preference and performance reported here suggests that these traits can evolve when non‐ecological barriers to gene flow are low, and that differences in these traits may be important for the evolution of reproductive isolation within Mitoura.  相似文献   

14.
In some herbivorous insects, such as Coleoptera and aphids, not only the host species of larvae, but also those of adults should be considered as key determinants of potential fecundity because oviposition is affected by the quality of host species during both larval and adult stages. This study examined the relatively greater impact on host species of the larval or adult stage on oviposition of the willow leaf beetle Plagiodera versicolora Laicharting (Coleoptera: Chrysomelidae). We conducted an experiment using a 2 × 2 experimental design, in which either of two different host plant species was fed in larval and adult stages. Females fed on a locally unavailable host Salix eriocarpa in the adult stage did not lay any eggs, but those fed on the locally available host S. babylonica laid 67–75 eggs on average, irrespective of larval host species. Such reproductively inactive females fed S. eriocarpa as an adult host recovered reproductive activity within 3 weeks after changing the host species to S. babylonica. This result indicated that the host species fed in the adult stage had a greater impact on oviposition than in the larval stage.  相似文献   

15.
Host plant selection by ovipositing females is a key process determining the success of phytophagous insects. In oligophagous lepidopterans, host-specific plant secondary chemicals are expected to be dominant factors governing oviposition behavior; distinctive compounds can serve as high-contrast signals that clearly differentiate confamilial hosts from non-hosts increasing the accuracy of host quality evaluation. Agonopterix alstroemeriana (Clerk) (Lepidoptera: Oecophoridae) and Conium maculatum L. (Apiaceae) form an extremely specialized plant-herbivore system, with A. alstroemeriana monophagous on C. maculatum, a plant with few other insect herbivores at least in part due to its virtually unique capacity among plants to produce piperidine alkaloids. Here we have studied the response of A. alstroemeriana oviposition to unique host plant secondary metabolites, piperidine alkaloids, and widespread compounds, mono- and sesquiterpenes, in a concentration-dependent fashion. Rates of oviposition were negatively correlated with Z-ocimene concentrations. To confirm the deterrent properties of this monoterpene for A. alstroemeriana oviposition, we conducted a choice experiment using artificially damaged C. maculatum plants, with higher emission of volatiles, and undamaged control plants. Damaged plants were less preferred as oviposition sites compared to the controls. The lack of association between oviposition and piperidine alkaloids, defenses unique to Conium species, suggests that quantitative changes of these species-specific chemicals do not play a predominant role in host selection by the monophagous A. alstroemeriana.  相似文献   

16.
Oviposition preference is considered to be one of the most important factors behind patterns of host use among herbivorous insects. However, preference is defined as host plant choice under equal host abundance and availability, and it is likely that frequency-dependent effects will alter the actual pattern of host use beyond what preference trials reveals. The effects of such alterations are poorly known but could be important for the understanding of specialization and host shifts. We investigated how changes in frequency of a preferred and a less preferred host affected movement patterns and egg deposition within and among patches in a polyphagous butterfly, Polygonia c-album. Two experiments were carried out in large (8 × 30 m) outdoor cages, artificially divided into distinct patches with different frequencies of the two hosts: one that allowed for limited movement between patches and one that did not. There was a clear effect of frequency on patch selection; females spent more time in and laid more eggs in patches with a high frequency of the preferred host, which will potentially have a large effect on host use by modifying encounter rates in favor of the preferred host. However, there was no significant frequency-dependent plant choice within patches in any experiment. Instead, results indicate that females are distributing their eggs among plants species according to specific likelihoods of oviposition, independent of encounter rates, which is compatible with a strategy of risk-spreading.Co-ordinating editor: N. Yamamura  相似文献   

17.
The relationship between oviposition preference and larval performance is a central topic in insect–plant biology. In this study, we investigate whether the oligophagous flea beetle, Altica fragariae Nakane (Coleoptera: Chrysomelidae), exhibits a positive preference–performance relationship, and whether oviposition preference develops over time. We tested the beetles using four sympatric plant species: Duchesnea indica (Andrews) Focke (the normal host plant), Agrimonia pilosa Ledeb. (a secondary host plant), and Potentilla chinensis Ser. and Sanguisorba officinalis L. (host plants of two related Altica species) (all Rosaceae). In no‐choice experiments, both oviposition rate and offspring fitness parameters (eclosion rate, development time, and body mass) were highest on D. indica. Oviposition rate was much lower on P. chinensis than on A. pilosa, whereas offspring fitness parameters did not differ significantly between these two host plants. Offspring fitness were lowest for S. officinalis, and adult females refused to oviposit on this acceptable non‐host in a no‐choice situation. Repeated two‐choice experiments showed that the proportion of oviposition on one of the novel host plants decreased significantly over time when the alternative host plant was D. indica. In repeated two‐choice experiments using A. pilosa and P. chinensis, females mainly fed on A. pilosa but distributed their eggs equally over the two host plants, in accordance with the lack of difference in offspring fitness on those hosts. Together, these results showed that A. fragariae females develop a positive preference–performance relationship over time. We suggest that A. fragariae achieves this through adaptive learning of oviposition preference: not only does the female learn to discriminate among the host plants when there is a fitness difference for her offspring, but the female also fails to discriminate when there is no fitness difference.  相似文献   

18.
Coccinella septempunctata and Propylea quatuordecimpunctata in North America have documented invasive capacity. Studies are needed to identify relevant life-history parameters responsible for their successful spatial spread. This study is a detailed analysis of phenotypic variation in reproductive traits of several Nearctic and Palearctic populations of these two coccinellid species. From 47 to 61% of C. septempunctata females laid their first batch of eggs within the first two weeks of their adult life. Within P. quatuordecimpunctatapopulations, 56 to 83% of females initiated oviposition within 2 weeks. The remaining females either had preoviposition periods > 2 weeks or never laid eggs during a 60-day observation period. Analysis of daily fecundity revealed differences in oviposition strategies among females within each population. Repeatability estimates of daily parity for C. septempunctata populations were 0.32 for Iowa (USA), 0.35 for Delaware (USA), 0.28 for France, and 0.33 for Ukraine. Repeatability estimates for P. quatuordecimpunctata populations were 0.35 for Canada, 0.25 for France, and 0.33 for Turkey. The within-female component accounted for most of the variation in daily parity; this was due to female variability in their daily oviposition rates. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
It is expected that females preferentially oviposit on plant hosts that allow for optimal larval performance. However, this expectation contradicts empirical evidence where adults do not always choose the best host for their descendants. Recent evidence suggests that females’ host selection depends on the number of potential hosts. Females from oligophagous species seem to be able to choose an appropriate host in terms of larval performance, whereas in polyphagous species, adult oviposition preference is not related with larval performance. This suggests that larvae in polyphagous species could be taking a more active role in host selection than their mothers. Here, we evaluated the oviposition preference and the larval preference and performance of two polyphagous species of economic importance, Copitarsia decolora (Guenée) (Lepidoptera: Noctuidae: Cuculliinae) and Peridroma saucia (Hübner) (Lepidoptera: Noctuidae: Noctuinae), on eight species of cultivated plants. In laboratory and greenhouse choice assays, we tested adult preference for oviposition and larval preference at 1 and 24 h. Larval performance was measured in terms of survival to adulthood, length of larval period, and pupal weight. We found that both adult females and larvae actively choose their hosts and that the larval preference toward the hosts is related to the females’ preference in both herbivore species. However, the females and larvae did not preferentially select the host with the best larval performance, indicating that larval performance is not related to female or larval preference and that other selective pressures are influencing the choice of the host plant in these two species.  相似文献   

20.
Food acceptance by larvae of two lepidopteran species feeding on Rosaceae, viz. Yponomeuta evonymellus (monophagous) and Y. padellus (oligophagous), was compared. The influence of seasonal changes in plants as food for both insects was examined, in particular, the effects of nitrogen and sorbitol in leaves. In the laboratory, Y. evonymellus accepts Crataegus monogyna, a host plant of Y. padellus, and Y. padellus accepts Prunus padus, the host plant of Y. evonymellus. P. padus is the most suitable food plant for Y. evonymellus. No difference in food-quality for Y. padellus was found between C. monogyna and P. padus. The performance of both species on P. padus is less influenced by seasonal changes than on Crataegus. The suitability of Crataegus decreases during the season. This is probably caused by the decrease of its nitrogen content, and not by the decrease of sorbitol in the plant. The monophagous, Y. evonymellus, is more sensitive to seasonal changes in its food when fed with a non host plant than the oligophagous Y. padellus. In oviposition experiments both species have a preference for their normal host-plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号